

Visual QuickStart Guide

CSS3
Jason Cranford Teague

Peachpit Press

1249 Eighth Street

Berkeley, CA 94710

510/524-2178

510/524-2221 (fax)

Find us on the Web at www.peachpit.com

To report errors, please send a note to errata@peachpit.com

Peachpit Press is a division of Pearson Education

Copyright © 2011 by Jason Cranford Teague

Project Editor: Nancy Peterson

Development Editor: Bob Lindstrom

Copyeditors: Anne Marie Walker, Liz Merfeld

Technical Editor: Chris Mills

Production Editor: Cory Borman

Compositor: Danielle Foster

Indexer: Jack Lewis

Cover design: Peachpit Press

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any

form by any means—electronic, mechanical, photocopying, recording, or otherwise—

without the prior written permission of the publisher. For information on obtaining

permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While

every precaution has been taken in preparation of this book, neither the author nor

Peachpit shall have any liability to any person or entity with respect to any loss or damage

caused or alleged to be caused directly or indirectly by the instructions contained in this

book or by the computer software and hardware products described in it.

Trademarks
Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of

Pearson Education.

Other trademarks are the property of their respective owners.

Many of the designations used by manufacturers and sellers to distinguish their

products are claimed as trademarks. Where those designations appear in this book, and

Peachpit was aware of the trademark claim, the designations appear as requested by

the owner of the trademark. All other product names and services identified throughout

the book are used in an editorial fashion only and for the benefit of such companies

with no intention of infringement of the trademark. No such use, or the use of any trade

name, is intended to convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-71963-8

ISBN 0-321-71963-8

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

Dedication
For Jocelyn and Dashiel, the two most dynamic forces in my life.

Special Thanks to:
Tara, my soul mate and best critic.

Dad and Nancy who made me who I am.

Uncle Johnny, for his unwavering support.

Pat and Red, my two biggest fans.

Nancy P., who kept the project going.

Bob and Anne Marie, who dotted my i’s and made sure that everything

made sense.

Chris, who held my feet to the fire on every line of code.

Danielle and Cory, who put the book together with great patience and

made it look pretty.

Thomas, who was always there when I needed help.

Heather, who gave me a chance when I needed it most.

Judy, Boyd, Dr. G and teachers everywhere who care. Keep up the

good work.

Charles Dodgson (aka Lewis Carroll), for writing Alice’s Adventures in
Wonderland.

John Tenniel, for his incredible illustrations of Alice’s Adventures in
Wonderland.

Douglas Adams, Neil Gaiman, Philip K. Dick, and Carl Sagan whose

writings inspire me every day.

BBC 6 Music, The Craig Charles Funk and Soul Show, Rasputina,

Stricken City, Groove Armada, Electrocute, Twisted Tongue, Bat for

Lashes, Cake, Client, Jonathan Coulton, Cracker, Nine Inch Nails, 8mm,

KMFDM, Nizlopi, the Pogues, Ramones, New Model Army, Cocteau

Twins, the Sisters of Mercy, the Smiths, Mojo Nixon, Bauhaus, Lady

Tron, David Bowie, Falco, T. R ex, Bad Religion, The National, Dr. Rub-

berfunk, Smoove and Turell, JET, Depechee Mode, Ian Dury, The Kinks,

This Mortal Coil, Rancid, Monty Python, the Dead Milkmen, New Order,

Regina Spektor, The Sex Pistols, Dead Can Dance, Beethoven, Bach,

Brahms, Handel, Mozart, Liszt, Vivaldi, Holst, Synergy, and Garrison

Keillor (for the Writer’s Almanac) whose noise helped keep me from

going insane while writing this book.

Contents at a Glance v

Contents at a Glance

Introduction . xv

Chapter 1 Understanding CSS3 .1

Chapter 2 HTML5 Primer . 15

Chapter 3 CSS Basics . 33

Chapter 4 Selective Styling . 69

Chapter 5 Font Properties. . 117

Chapter 6 Text Properties . 151

Chapter 7 Color and Background Properties 179

Chapter 8 List and Table Properties 213

Chapter 9 User Interface and Generated
Content Properties 229

Chapter 10 Box Properties . 241

Chapter 11 Visual Formatting Properties 279

Chapter 12 Transformation and Transition Properties 303

Chapter 13 Fixing CSS . 323

Chapter 14 Essential CSS Techniques 343

Chapter 15 Managing Style Sheets 361

Appendix A CSS Quick Reference 393

Appendix B HTML and UTF Character Encoding 407

Index . 413

This page intentionally left blank

Table of Contents vii

Table of Contents

Introduction . xv

Chapter 1 Understanding CSS3 . 1

What Is a Style? . 2

What Are Cascading Style Sheets? 3

How does CSS work? . 4

The Evolution of CSS . 6

CSS Level 1 (CSS1) . 7

CSS Level 2 (CSS2) . 7

CSS Level 3 (CSS3) . 7

CSS and HTML. . 8

Types of CSS Rules . 9

The Parts of a CSS Rule. 11

Browser CSS extensions 11

New in CSS3 .13

Chapter 2 HTML5 Primer .15

What Is HTML? . 16

Basic HTML Document Structure 17

HTML Properties . 17

HTML and CSS . 18

Types of HTML Elements 19

The Evolution of HTML5 22

And then came XHTML 22

The problem with XHTML2 23

And then there was HTML5. 23

Is it HTML5 or XHTML5? 24

What’s New in HTML5? 25

How Does HTML5 Structure Work? 26

Using HTML5 Structure Now. 27

Making HTML5 work in Internet Explorer 30

Putting It All Together . 32

viii Table of Contents

Chapter 3 CSS Basics . .33

The Basic CSS Selectors 34

Inline: Adding Styles to an HTML Tag 35

Embedded: Adding Styles to a Web Page 38

External: Adding Styles to a Web Site 41

Creating an external style sheet 41

Linking to a style sheet 44

Importing a style sheet 46

(Re)Defining HTML Tags 48

Defining Reusable Classes 51

Defining Unique IDs. . 55

Defining Universal Styles 59

Grouping: Defining Elements Using the

Same Styles. . 62

Adding Comments to CSS 66

Putting It All Together . 68

Chapter 4 Selective Styling . .69

The Element Family Tree 70

Defining Styles Based on Context. 71

Styling descendents. 71

Styling only the children 74

Styling siblings . 76

Working with Pseudo-classes 80

Styling links. . 82

Styling for interaction 86

NEW IN CSS3: Styling specific children with

pseudo-classes ★ 88

Styling for a particular language 89

NEW IN CSS3: Not styling an element ★ 91

Working with Pseudo-elements 92

Working with first letters and lines. 92

Setting content before and after an element 94

Defining Styles Based on Tag Attributes 96

NEW IN CSS3: Querying the Media ★ 100

Media queries .100

Using the @media rule 106

Inheriting Properties from a Parent 109

Managing existing or inherited property values 110

Table of Contents ix

Making a Declaration !important. 111

Determining the Cascade Order. 113

Putting It All Together . 116

Chapter 5 Font Properties . 117

Understanding Typography on the Web 119

Specifying the character set 119

Generic font families 120

Dingbats . 122

HTML character entities. 123

Setting a Font-Stack. . 124

Finding Fonts . 126

Web-safe fonts . 126

Downloadable Webfonts 127

Setting a better font stack 128

Setting the Font Size . 133

NEW IN CSS3: Adjusting Font Size for

Understudy Fonts ★ 136

Making Text Italic . 139

Setting Bold, Bolder, Boldest. 142

Creating Small Caps. . 144

Setting Multiple Font Values 146

Putting It All Together150

Chapter 6 Text Properties. . 151

Adjusting Text Spacing 153

Adjusting the space between letters (tracking) 153

Adjusting space between words. 155

Adjusting space between lines of text (leading) 156

Setting Text Case . 158

NEW IN CSS3: Adding a Text Drop Shadow ★ 160

Aligning Text Horizontally 162

Aligning Text Vertically 164

Indenting Paragraphs . 167

Controlling White Space 169

Decorating Text . 172

Coming Soon! . 175

Putting It All Together . 177

x Table of Contents

Chapter 7 Color and Background Properties 179

Choosing Color Values 181

Color keywords . 181

RGB hex values . 182

RGB decimal values . 182

Percentage values . 183

New in CSS3: HSL values ★ 183

New in CSS3: Color alpha values ★. 183

New in CSS3: Color Gradients in Backgrounds ★ . . . 187

Internet Explorer gradients 187

Mozilla gradients. . 188

Webkit gradients. . 189

Choosing Your Color Palette 191

Color wheel basics . 194

Online color scheme tools 195

Setting Text Color . 196

Setting a Background Color 198

Setting a Background Image 200

Using Background Shorthand 208

Putting It All Together 212

Chapter 8 List and Table Properties 213

Setting the Bullet Style 216

Creating Your Own Bullets 217

Setting Bullet Positions218

Setting Multiple List Styles 219

Setting the Table Layout 220

Setting the Space Between Table Cells. 222

Collapsing Borders Between Table Cells 223

Dealing with Empty Table Cells 225

Setting the Position of a Table Caption 226

Putting It All Together 227

Chapter 9 User Interface and Generated
Content Properties . 229

Changing the Mouse Pointer Appearance 232

Adding Content Using CSS. 234

Teaching the Browser to Count 236

Specifying the Quote Style 238

Putting It All Together 240

Table of Contents xi

Chapter 10 Box Properties . 241

Understanding an Element’s Box 245

Parts of the box . 246

Displaying an Element 248

Setting the Width and Height of an Element 251

Controlling Overflowing Content 254

Floating Elements in the Window 257

Clearing a floated element 258

Setting an Element’s Margins 260

Setting an Element’s Outline 263

Setting an Element’s Border 265

NEW IN CSS3: Rounding Border Corners ★ 268

NEW IN CSS3: Setting a Border Image ★ 271

Setting an Element’s Padding 274

Coming Soon! . 276

Putting it All Together277

Chapter 11 Visual Formatting Properties 279

Understanding the Window and Document 283

Setting the Positioning Type 285

Static positioning . 285

Relative positioning 286

Absolute positioning 286

Fixed positioning. 287

Setting an Element’s Position 290

Stacking Objects in 3D 292

Setting the Visibility of an Element 294

Clipping an Element’s Visible Area 296

NEW IN CSS3: Setting an Element’s Opacity ★ 298

NEW IN CSS3: Setting an Element’s Shadows ★ . . . 300

Putting It All Together 302

Chapter 12 Transformation and Transition Properties 303

NEW IN CSS3: Transforming an Element ★ 307

2D transformations 308

3D transformations . 311

NEW IN CSS3: Adding Transitions Between

Element States ★ .316

What can be transitioned? 316

Putting It All Together . 321

xii Table of Contents

Chapter 13 Fixing CSS . 323

Adjusting CSS for Internet Explorer 324

The underscore hack 325

IE conditional CSS . 328

Fixing the Internet Explorer Box Model 333

Resetting CSS . 335

A simple CSS reset 336

YUI2: Reset CSS .337

Eric Meyer’s reset . 338

Fixing the Float . 340

Break tag clear all fix 340

Overflow fix . 342

Chapter 14 Essential CSS Techniques 343

Creating Multicolumn Layouts with Float 346

Styling Links Versus Navigation 350

Using CSS Sprites . 354

Creating a CSS Drop-down Menu 357

Chapter 15 Managing Style Sheets 361

Creating Readable Style Sheets 362

Include an introduction and TOC 362

Define colors, fonts, and other constants. 362

Use section headers 364

The @ rules go at the top 364

Choose an organization scheme. 365

Use specificity for hierarchy 366

CSS Libraries and Frameworks 367

Style Sheet Strategies 368

The One For All method 368

The Divide and Conquer method 369

The Aggregate method 370

The Dynamic method 371

Troubleshooting CSS Code 372

Ask these questions 372

If all else fails, try these ideas 375

Debugging CSS in Firebug and Web Inspector 376

Firebug for Firefox . 377

Web Inspector in Safari and Chrome 379

Validating Your CSS Code 381

Table of Contents xiii

Minifying Your CSS . 382

32 CSS Best Practices 385

Appendix A CSS Quick Reference 393

Basic Selectors . 394

Pseudo-Classes . 395

Pseudo-Elements . 395

Text Properties. 396

Font Properties . 397

Color and Background Properties 398

List Properties . 399

Table Properties . 399

User Interface and Generated

Content Properties. 400

Box Properties . 401

Visual Formatting Properties. 404

Transform Properties

(-webkit-, -moz-, -o-) 405

Transition Properties

(-webkit-, -moz-, -o-) 406

Appendix B HTML and UTF Character Encoding 407

HTML and UTF Character Encoding. 408

Index . 413

This page intentionally left blank

Introduction xv

Introduction

These days, everyone is a Web designer.

Whether you are adding a comment to a

Facebook page, creating your own blog,

or building a Fortune 50 Web site, you are

involved in Web design.

As the Web expands, everyone from PTA

presidents to presidents of multinational

corporations is using this medium to get

messages out to the world because the

Web is the most effective way to commu-

nicate your message to the people around

you and around the world.

Knowing how to design for the Web isn’t

always about designing complete Web

sites. Many people are creating simple

Web pages for auction sites, their own

photo albums, or their blogs. So, whether

you are planning to redesign your corpo-

rate Web site or place your kid’s gradua-

tion pictures online, learning Cascading

Style Sheets (CSS) is your next step into

the larger world of Web design.

What Is This
Book About?
HTML is how Web pages are structured.

CSS is how Web pages are designed. This

book deals primarily with how to use CSS

to add a visual layer to the HTML structure

of your Web pages.

CSS is a style sheet language; that is, it

is not a programming language. Instead,

it’s code that tells a device (usually a Web

browser) how the content in a file should

be displayed. CSS is meant to be easily

understood by anyone, not just “computer

people.” Its syntax is straightforward, basi-

cally consisting of rules that tell an element

on the screen how it should appear.

This book also includes the most recent

additions to the CSS language, commonly

referred to as CSS3 (or CSS Level 3). CSS3

builds on and extends the previous version

of CSS. For the time being, it’s important to

understand what is new in CSS3 because

some browsers (most notably Internet

Explorer) have incomplete support or no

support for these new features.

xvi Introduction

CSS3 Visual QuickStart Guide has

three parts:

■ CSS Introduction and Syntax (Chapters

1–4)—This section lays the founda-

tion you require to understand how to

assemble basic style sheets and apply

them to a Web page. It also gives you a

crash course in HTML5.

■ CSS Properties (Chapters 5–12)—This

section contains all the styles and val-

ues that can be applied to the elements

that make up your Web pages.

■ Working with CSS. (Chapters 13–15)—

This section gives advice and explains

best practices for creating Web pages

and Web sites using CSS.

Who is this book for?
To understand this book, you need to be

familiar with HTML (Hypertext Markup Lan-

guage). You don’t have to be an expert, but

you should know the difference between a

<p> element and a
 tag. That said, the

more knowledge of HTML you bring to this

book, the more you’ll get out of it.

Chapter 2 deals briefly with HTML5, bring-

ing you up to date on the latest changes.

If you are already familiar with HTML, this

chapter has everything you will need to

get going.

What tools do you need
for this book?
The great thing about CSS and DHTML is

that, like HTML, they don’t require any spe-

cial or expensive software. Their code is

just text, and you can edit it with programs

as simple as TextEdit (Mac OS) or NotePad

(Windows).

Introduction xvii

Why Standards (Still) Matter
The idea of a standard way to communicate over the Internet was the principle behind the creation

of the World Wide Web: You should be able to transmit information to any computer anywhere in

the world and display it in the way the author intended. In the beginning, only one form of HTML

existed, and everyone on the Web used it. This situation didn’t present any real problem because

almost everyone used Mosaic, the first popular graphics-based browser, and Mosaic was the stan-

dard. That, as they say, was then.

Along came Netscape Navigator and the first HTML extensions were born. These extensions

worked only in Netscape, however, and anyone who didn’t use that browser was out of luck.

Although the Netscape extensions defied the standards of the World Wide Web Consortium

(W3C), most of them—or at least some version of them—eventually became part of those very

standards. According to some people, the Web has gone downhill ever since.

The Web is a very public form of discourse, the likes of which has not existed since people lived in

villages and sat around the campfire telling stories every night. The problem is that without stan-

dards, not everyone in the global village can make it to the Web campfire. You can use as many

bleeding-edge techniques as you like. You can include Flash, JavaScript, QuickTime video, Ajax,

HTML5, or CSS3 but if only a fraction of browsers can see your work, you’re keeping a lot of fellow

villagers out in the cold.

When coding for this book, I spent 35 to 45 percent of my time trying to get the code to run as

smoothly as possible in Internet Explorer, Firefox (and related Mozilla browsers), Opera, Safari, and

Chrome. This timeframe holds true for most of my Web projects; much of the coding time is spent on

cross-browser inconsistencies. If the browsers stuck to the standards, this time would be reduced to

almost nothing. Your safest bet as a designer, then, is to know the standards of the Web, try to use

them as much as possible, and demand that the browser manufacturers use them as well.

xviii Introduction

Values and Units
Used in This Book
Throughout this book, you’ll need to enter

various values to define properties. These

values take various forms, depending on

the needs of the property. Some values are

straightforward—a number is a number—

but others have special units associated

with them.

Values in angle brackets (< >) represent

one type of value (Table i.1) that you will

need to choose, such as <length> (a length

value like 12px) or <color> (a color value).

Words that appear in code font are literal

values and should be typed exactly as

shown, such as normal, italic, or bold.

Length values
Length values come in two varieties:

■ Relative values, which vary depending

on the computer being used (Table i.2).

■ Absolute values, which remain constant

regardless of the hardware and soft-

ware being used (Table i.3).

I generally recommend using ems to

describe font sizes for the greatest stability

between operating systems and browsers.

TABLE I.1 Value Types

Value Type What It Is Example

<number> A number 1, 2, 3

<length> A measurement

of distance or

size

1in

<color> A chromatic

expression

red

<percentage> A proportion 35%

<URL> The absolute

or relative path

to a file on the

Internet

http://www.

mySite.net/

images/01.jpg

TABLE I.2 Relative Length Values

Unit Name What It Is Example

em Em Relative to the

current font

size (similar to

percentage)

3em

ex x-height Relative to

the height of

lowercase letters

in the font

5ex

px Pixel Relative to

the monitor’s

resolution

125px

TABLE I.3 Absolute Length Values

Unit Name What It Is Example

pt Point 72pt = 1inch 12pt

pc Picas 1pc = 12pt 3pc

mm Millimeters 1mm = .24pc 25mm

cm Centimeters 1cm = 10mm 5.1cm

in Inches 1in = 2.54cm 8.25in

http://www.mySite.net/images/01.jpg
http://www.mySite.net/images/01.jpg
http://www.mySite.net/images/01.jpg

Introduction xix

Color values
You can describe color on the screen in a

variety of ways, but most of these descrip-

tions are just different ways of telling the

computer how much red, green, and blue

are in a particular color.

Chapter 7 provides an extensive explana-

tion of color values.

Browser-safe Colors?
Certain colors always display properly on any

monitor. These colors are called browser-safe

colors. You’ll find them fairly easy to remem-

ber because their values stay consistent. In

hexadecimal values, you can use any combina-

tion of 00, 33, 66, 99, CC, and FF. In numeric

values, use 0, 51, 102, 153, 204, or 255. In

percentages, use 0, 20, 40, 60, 80, or 100.

Percentages
Many of the properties in this book have a

percentage as their values. The behavior

of each percentage value depends on the

property in use.

URLs
A Uniform Resource Locator (URL) is the

unique address of something on the Web.

This resource could be an HTML docu-

ment, a graphic, a CSS file, a JavaScript

file, a sound or video file, a CGI script, or

any of a variety of other file types. URLs

can be local—describing the location of the

resource relative to the current docu-

ment—or global—describing the absolute

location of the resource on the Web and

beginning with http://.

xx Index

Reading This Book
For the most part, the text, tables, figures,

code, and examples should be self-explan-

atory. But you need to know a few things in

advance to understand this book.

CSS value tables
Each section that explains a CSS property

includes a quick-reference table of the

values that the property can use, as well as

the browsers and CSS levels compatible

with those values A. The Compatibility

column displays the first browser version

that supported the value type. Table i.4

lists the browser abbreviations used in this

book. Keep in mind, though, that even if

the value is available in a particular version

of the browser, it may not be available for

all operating systems.

TABLE I.4 Browser Abbreviations

Abbreviation Browser

IE Microsoft Internet Explorer

FF* Mozilla Firefox

O Opera

S Apple Safari

C Google Chrome

* Includes other Mozilla-based browsers: Camino

and Flock

A The property tables in Part 1 of this book

show you the values available with a property,

the earliest browser version in which the value is

available, and with which version of CSS the value

was introduced.

Cursor Values

Value Compatibility

<cursor name> IE4, N6, CSS2

<URL> CSS2

auto IE4, N6, CSS2 Version of CSS where this
value was introduced

Earliest version of the browser in
which this value is supported

Values supported
by this property

Index xxi

The Code
For clarity and precision, this book uses

several layout techniques to help you see

the difference between the text of the

book and the code.

Code looks like this:

<style>
p { font-size: 12pt; }
</style>

All code in this book is presented in

lowercase. In addition, quotes in the code

always appear as straight quotes (" or '),

not curly quotes (“ or ’). There is a good

reason for this distinction. Curly quotes

(also called smart quotes) will cause the

code to fail.

When you type a line of code, the com-

puter can run the line as long as needed;

but in this book, lines of code have to

be broken to make them fit on the page.

When that happens, you’ll see a gray

arrow ➝ , indicating that the line of code

is continued from above, like this:

.title { font: bold 28pt/26pt times,
➝ serif; color: #FFF; background
➝ color: #000; background-image:
➝ url(bg_ title.gif); }

A numbered step often includes a line of

code in red from the main code block:

p { color: red; }

This is a reference to help you pinpoint

where that step applies in the larger code

block that accompanies the task. This code

will then be highlighted in red in the code

listing to help you more easily identify it.

xxii Introduction

Web Site for This Book
I hope you’ll be using a lot of the code from

this book in your Web pages, and you are

free to use any code in this book without

asking my permission (although a mention

about the book is always appreciated).

However, be careful—retyping information

can lead to errors. Some books include a

CD-ROM containing all the code from the

book, and you can copy it from that disc.

But guess who pays for that CD? You do.

And CDs aren’t cheap.

But if you bought this book, you already

have access to the largest resource of

knowledge that ever existed: the Web. And

that’s exactly where you can find the code

from this book.

My support site for this Visual QuickStart

Guide is at www.speaking-in-styles.com/

css3vqs.

This site includes all the code you see in the

book, as well as quick-reference charts. You

can download the code and any important

updates and corrections from this site.

www.speaking-in-styles.com/css3vqs
www.speaking-in-styles.com/css3vqs

It’s not enough to style a Web page ele-

ment. The art of CSS—and thus the art of

Web design—is the ability to style elements

based on their context. You must consider

where an element is in the document;

which elements surround it; its attributes,

content, and dynamic state; and even the

platform displaying the element (screen,

handheld device, TV, and so on).

Selective styling is the closest that CSS

gets to traditional computer programming,

allowing you to style elements if they meet

certain criteria. This level of styling can get

increasingly complex, so it’s important, at

least in this chapter, to start out as simply

as possible and build a firm foundation of

understanding.

4
Selective Styling

In This Chapter
The Element Family Tree 70

Defining Styles Based on Context 71

Working with Pseudo-classes 80

Working with Pseudo-elements 92

Defining Styles Based on Tag Attributes 96

NEW IN CSS3: Querying the Media ★ 100

Inheriting Properties from a Parent 109

Making a Declaration !important 111

Determining the Cascade Order 113

Putting It All Together 116

70 Chapter 4

The Element
Family Tree
When a tag is surrounded by another tag—

one inside another—the tags are nested.

<h2>Chapter 2 The
Pool of Tears<h2>

In a nested set, the outer element in this

example (<h2>) is called the parent, and

the inner element () is the child.

The child tag and any children of that child

tag are the parents’ descendents. Two

tags in the same parent are called siblings,

and two tags immediately next to each

other are adjacent siblings A.

■ Parent elements contain other ele-

ments (children). Child elements will

often inherit styles from a parent

element.

■ Descendent elements are any elements

within another element.

■ Child elements are first generation

descendent elements in relation to the

parent. Second generation and higher

elements are sometimes referred to as

grandchildren.

■ Adjacent or preceding sibling elements

are child elements of the same genera-

tion that are immediately next to each

other in the HTML code.

In Chapter 3, you learned ways to specify

the styles of an individual element regard-

less of where it is placed in the HTML

code. However, CSS also lets you specify

the element’s style depending on its con-

text. Using contextual selectors, you can

specify styles based on a tag’s relationship

to other tags, classes, or IDs on the page.

Parent Descendent child

Preceding sibling Adjacent sibling

A The article element is the parent to the

elements created by the paragraph, strong, and

emphasis tags, which are its descendents. Only

the paragraph tag is a direct child. The elements

created by the emphasis and strong tags are

the children of the paragraph tag, and each

other's siblings.

Selective Styling 71

Defining Styles
Based on Context
Contextual styles allow you to specify how

a particular element should appear based

on its parents and siblings. For example,

you may want an emphasis tag to appear

one way when it’s in the main header of

the page and differently when it appears in

the sub-header. You may want still another

appearance in a paragraph of text. These

combinatory selectors (Table 4.1) are

among the most used and useful CSS.

Styling descendents
You can style individual descendent ele-

ments depending on their parent selector

or selectors in a space-separated list. The

last selector will receive the style if and

only if it is the descendent of the preceding

selectors A.

When you want to indicate that the exact

selector does not matter at any given

level, you can use the universal selector (*)

described in Chapter 3 B.

TABLE 4.1 Combinator Selectors

Format Selector Name Elements Are Styled If… Compatibility

a b c Descendent c descendent of b descendent of a IE4, FF1, O3.5, S1, C1, CSS1

a * b Universal b within a regardless of b’s parents IE7, FF1, O4, S1, C1, CSS2

a > b Direct Child b direct child of a IE7 FF1, O3.5, S1, C1, CSS1

a + b Adjacent Sibling sibling b immediately after a IE7, FF1, O5, S1, C1, CSS2

a ~ b General Sibling sibling b anywhere after a IE8, FF1, O5, S1, C1, CSS2

Space-separated
list of selectors Declaration List

A The general syntax for the descendent

selector.

Space seperated
list of selectors

Universal selector

Declaration list

B The general syntax for the descendent selector

using the universal selector.

72 Chapter 4

To style descendent elements:
1. Set up a list of descendent selectors.

Type the HTML selector of the parent

tag, followed by a space, and then the

final child or another parent (Code 4.1).

article.copy h1 em {...}

You can type as many HTML selectors

as you want for as many parents as the

nested tag will have, but the last selec-
tor in the list is the one that receives
all the styles in the rule.

2. Styles will be used if the pattern is

matched.

<article class="copy">
➝ <h1>...</h1></article>

The style will be applied if and only if the

final selector occurs as a descendent

nested within the previous selectors.

Code 4.1 The style is set for the emphasis tag if its parents are the h1 tag and the article tag using the

copy class C.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Alice's Adventures in Wonderland</title>
<style type="text/css" media="all">
 article.copy h1 em {
 color: red;
 font-weight: bold;
 font-style: italic; }
</style>
</head>
<body>
<article class="copy">
 <h1>Alice's Adventures in Wonderland</h1>
 <h2>Chapter 2. The Pool of Tears</h2>
 <p>'Curiouser and curiouser!' cried Alice‚...</p>
 <p>And she went on planning‚...</p>
 <p>Poor Alice!</p>
 <blockquote>ALICE'S RIGHT FOOT, ESQ.</blockquote>
 <p>Oh dear, what nonsense I'm talking!'‚...</p>
</article>
</body>
</html>

C The results of Code 4.1. The only text that

meets the selective criteria is in red, which is only

the emphasis tag in the h1, in this example.

Selective Styling 73

To style descendents universally:
1. Set up a list of descendent selectors

including a universal selector. Type the

HTML selector of the parent tag, fol-

lowed by a space, and then an asterisk

(*) or other selectors (Code 4.2).

article.copy * {...}

2. Styles will be used if the pattern is

matched. Generally, the universal selec-

tor is used at the end of a list of selec-

tors so that the style is applied to all of

a parent’s children.

<article class="copy">
➝ <h1>Alice's Adventures in
➝ Wonderland</h1>
➝ <h2>Chapter 2. The Pool
➝ of Tears</h2>
➝ <p>.........</p>
➝ </article>

 Like grouped selectors, contextual selec-

tors can include class selectors (dependent

or independent), ID selectors in the list, and

HTML selectors.

Code 4.2 The style is set for the emphasis tag with any parent that’s in an article tag using the copy class D.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Alice's Adventures in Wonderland</title>
<style type="text/css" media="all">
 article.copy * em {
 color: red;
 font-weight: bold; }
</style>
</head>
<body>
<article class="copy">
 <h1>Alice's Adventures in Wonderland</h1>
 <h2>Chapter 2. The Pool of Tears</h2>
 <p>'Curiouser and curiouser!' cried Alice‚...</p>
 <p>And she went on planning‚...</p>
 <p>Poor Alice!</p>
 <blockquote>ALICE'S RIGHT FOOT, ESQ.</blockquote>
 <p>Oh dear, what nonsense I'm talking!'‚...</p>
</article>
</body>
</html>

D The results of Code 4.2. The text in red

matches the selective criteria with the universal

selector. In this case, all emphasis tags match.

74 Chapter 4

Styling only the children
If you want to style only a parent’s child

elements (not a grandchild descendent),

you must specify the parent selector and

child selector, separated by a close angle

bracket (>) E.

To define child selectors:
1. Set up a list of direct child selectors.

Type the selector for the parent ele-

ment (HTML, class, or ID), followed by

a right angle bracket (>) and the child

selector (HTML, class, or ID).

article.copy > p > em {...}

You can repeat this as many times as

you want with the final selector being

the target to which you apply the styles

(Code 4.3). You can have one space

between the selector and the greater-

than sign or no spaces.

2. Styles will be used if the pattern is

matched.

<article class="copy"><p>...
➝</p></article>

The styles from step 1 are applied if and

only if the final selector is an immediate

child element nested in the preced-

ing element. Placing the tag within any

other HTML tags will disrupt the pattern.

Selectors

Greater-than sign

Declaration List

E The general syntax of the direct child selector.

Selective Styling 75

Code 4.3 The style is applied to the emphasis tag only if it is a child of a paragraph that is in turn the child of

an article tag using the copy class F.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Alice's Adventures in Wonderland</title>
<style type="text/css" media="all">
 article.copy > p > em {
 color: red;
 font-weight: bold; }
</style>
</head>
<body>
<article class="copy">
 <h1>Alice's Adventures in Wonderland</h1>
 <h2>Chapter 2. The Pool of Tears</h2>
 <p>'Curiouser and curiouser!' cried Alice‚...</p>
 <p>And she went on planning‚...</p>
 <p>Poor Alice!</p>
 <blockquote>ALICE'S RIGHT FOOT, ESQ.</blockquote>
 <p>Oh dear, what nonsense I'm talking!'‚...</p>
</article>
</body>
</html>

F The results of Code 4.3. The text in red

matches the direct child criteria. In this case the

emphasis tags match within the paragraphs but

not within the headers.

76 Chapter 4

Styling siblings
Siblings are elements that have the same

parent. You can style a sibling that is imme-

diately adjacent to another G or occurs

anywhere after that sibling H.

To define adjacent sibling selectors:
1. Set up a list of adjacent sibling selec-

tors. Type the selector for the first

element (HTML, class, or ID), a plus sign

(+), and then the selector (HTML, class,

or ID) for the adjacent element to which

you want the style applied (Code 4.4).

p + p {...}

2. Styles will be used if the pattern is

matched.

<p>...</p><p>...</p><p>...</p>

The styles will be applied to any sibling

that occurs immediately after the pre-

ceding selector with no other selec-

tors in the way. Placing any element

between them (even a break tag) will

disrupt the pattern.

Selectors

Plus sign

Declaration List

G The general syntax for the adjacent

sibling selector.

Selectors

Tilde

Declaration List

H The general syntax for the general

sibling selector.

Selective Styling 77

Code 4.4 The style is applied to the emphasis tag only if it is in a paragraph that is immediately after another

paragraph I.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Alice's Adventures in Wonderland</title>
<style type="text/css" media="all">
 p + p em {
 color: red;
 font-weight: bold; }
</style>
</head>
<body>
<article class="copy">
 <h1>Alice's Adventures in Wonderland</h1>
 <h2>Chapter 2. The Pool of Tears</h2>
 <p>'Curiouser and curiouser!' cried Alice‚...</p>
 <p>And she went on planning‚...</p>
 <p>Poor Alice!</p>
 <blockquote>ALICE'S RIGHT FOOT, ESQ.</blockquote>
 <p>Oh dear, what nonsense I'm talking!'‚...</p>
</article>
</body>
</html>

I The results of Code 4.4. The text in red

matches the adjacent sibling criteria—the emphasis

tags within the second and third paragraphs in this

case—but does not match the fourth paragraph

because a block quote is in the way.

78 Chapter 4

To define general sibling selectors:
1. Set up a list of general sibling selec-

tors. Type the selector for the first

sibling element (HTML, class, or ID), a

tilde sign (~), and then another selector

(HTML, class, or ID) (Code 4.5).

p ~ p {...}

You can repeat this as many times as

necessary, but the last selector in the

list is the one you are targeting to be

styled.

2. Styles will be used if the pattern is

matched.

<p>...</p><p>...</p><p>...</p>
➝ <blockquote>...</blockquote>
➝ <p>...</p>

 The styles will be applied to any siblings

that occur after the first sibling selector, not

just the first one, but any siblings of the same

type until another type of element is encoun-

tered. Child siblings are not supported in IE6,

so you will need to style these separately. See

Chapter 13 for more information on adding

styles specifically for Internet Explorer.

 Although the universal selector shown

in this section is used with the combinatory

selectors, it can be used with any selector

type. Table 4.2 shows how you can apply it.

TABLE 4.2 Universal Selector Examples

Format Elements Are Styled If…

a * b b within a regardless of b’s parents

a > * > b b is the direct child of any element

that is the direct child of a

a + * + b sibling b immediately after any

element that is immediately after a

*:hover mouse pointer over any element

*:disabled any element that is disabled

*:first-child first child of any element

*:lang() any element using specified

language code

*:not(s) any element that is not the using

indicated selectors

*::first-letter any element’s first letter

Selective Styling 79

J The results of Code 4.5. The text in red

matches the general sibling criteria—in this case

the emphasis tags within the second, third, and

fourth paragraphs.

Code 4.5 The style is applied to the emphasis tag if it is in a paragraph with any preceding sibling that is a

paragraph J.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Alice's Adventures in Wonderland</title>
<style type="text/css" media="all">
 p ~ p em {
 color: red;
 font-weight: bold; }
</style>
</head>
<body>
<article class="copy">
 <h1>Alice's Adventures in Wonderland</h1>
 <h2>Chapter 2. The Pool of Tears</h2>
 <p>'Curiouser and curiouser!' cried Alice‚...</p>
 <p>And she went on planning‚...</p>
 <p>Poor Alice!</p>
 <blockquote>ALICE'S RIGHT FOOT, ESQ.</blockquote>
 <p>Oh dear, what nonsense I'm talking!'‚...</p>
</article>
</body>
</html>

80 Chapter 4

Working with
Pseudo-classes
Many HTML elements have special states

or uses associated with them that can be

styled independently. One prime example

of this is the link tag, <a>, which has link

(its normal state), a visited state (when the

visitor has already been to the page repre-

sented by the link), hover (when the visitor

has their mouse over the link), and active

(when the visitor clicks the link). All four of

these states can be styled separately.

A pseudo-class is a predefined state

or use of an element that can be styled

independently of the default state of the

element A.

■ Links (Table 4.3)—Pseudo-classes are

used to style not only the initial appear-

ance of the anchor tag, but also how it

appears after it has been visited, while

the visitor hovers their mouse over it,

and when visitors are clicking it.

■ Dynamic (Table 4.3)—Pseudo-classes

can be applied to any element to define

how it is styled when the user hovers

over it, clicks it, or selects it.

■ Structural (Table 4.4)—Pseudo-classes

are similar to the sibling combinatory

selectors but allow you to specifically

style elements based on an exact or

computed numeric position.

■ Other (Table 4.4)—Pseudo-classes are

available to style elements based on lan-

guage or based on what tag they are not.

SelectorColon

Pseudo-class

Declaration List

colon

A General syntax of a pseudo-class.

Selective Styling 81

TABLE 4.3 Link and Dynamic Pseudo-Classes

Format Name Elements Are Styled If… Compatibility

:link Link the value of href is not in history IE4, FF1, O3.5,

S1, CSS1

:visited Visited Link the value of href is in history IE4, FF1, O3.5,

S1, CSS1

:target Targeted Link a targeted anchor link FF1.3, S1.3, C1,

O9.5 CSS3

:active Active the element is clicked IE7, FF1, O3.5, S1,

CSS1

:hover Hover the pointer is over the element IE4*, FF1, O3.5,

S1, CSS2

:focus Focus the element has screen focus IE7, FF1, O7, S1,

CSS2

* Only available for anchor tags until IE7

TABLE 4.4 Structural/Other Pseudo-Classes

Format Name Elements Are Styled If… Compatibility

:root Root is the top level element in a document FF1.5, O9.5, S3.1,

C3, CSS3

:empty Empty has no children FF1.5, O9.5, S3.1,

C3, CSS3

:only-child Only Child has no siblings FF1.5, O9.5, S3.1,

C3, CSS3

:only-of-type Only of Type has its unique selector among its

siblings

FF1.5, O9.5, S3.1,

C3, CSS3

:first-child First-Child is the first child of another element FF1.5, O9.5, S3.1,

C3, CSS2

:nth-of-type(n) Nth of Type is the nth element with that selector FF1.5, O9.5, S3.1,

C3, CSS3

:nth-last-of-type(n) Nth From Last of Type is the nth element with that selector

from the last element with that selector

FF1.5, O9.5, S3.1,

C3, CSS3

:last-child Last Child is the last child in the parent element FF1.5, O9.5, S3.1,

C3, CSS3

:first-of-type First of Type is the first of its selector type in the

parent element

FF1.5, O9.5, S3.1,

C3, CSS3

:last-of-type Last of Type is the last of its selector type in the

parent element

FF1.5, O9.5, S3.1,

C3, CSS3

:lang() Language has a specified language code defined IE8, FF1.5, O9.5,

S3.1, C3, CSS2.1

:not(s) Negation is not using specific selectors FF1.5, O9.5, S3.1,

C3, CSS3

82 Chapter 4

Styling links
Although a link is a tag, its individual states

are not. To set properties for these states,

you must use the pseudo-classes associ-

ated with each state that a link can have (in

this order):

■ :link lets you declare the appearance

of hypertext links that have not yet

been selected.

■ :visited lets you set the appearance

of links that the visitor selected previ-

ously—that is, the URL of the href attri-

bute in the tag is part of the browser’s

history.

■ :hover lets you set the appearance of

the element when the visitor’s pointer is

over it.

■ :active sets the style of the element

when it is clicked or selected by the

visitor.

For ideas on which styles to use with links,

see the sidebar “Picking Link Styles.”

To set contrasting link appearances:
1. Style the anchor tag.

a {...}

Although not required, it’s best to

first define the general anchor style

(Code 4.6). This differs from setting

the :link pseudo-class in that these

styles are applied to all the link pseudo-

classes. So, you want to declare any

styles that will remain constant or are

changed in only one of the states.

continues on page 84

Link

Visited

Hover

Active

B The results of Code 4.6 show the links styled

for each state to help the user understand what’s

going on.

Selective Styling 83

Code 4.6 The link styles are set for the default and then all four link states, creating color differentiation B.

Notice also that I've turned off underlining with text decoration but added an underline effect using border bottom.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Alice's Adventures in Wonderland</title>
<style type="text/css" media="all">
 a {
 display: block;
 text-decoration: none;
 padding: 5px;
 width: 200px; }
 a:link {
 color: rgb(255,102,102);
 border-bottom: 1px dotted rgb(255,51,5,51); }
 a:visited {
 color: rgb(255,153,153);
 border-bottom: 1px dotted rgb(255,235,235); }
 a:hover {
 color: rgb(255,0,0);
 border-bottom: 1px solid rgb(255,0,0); }
 a:active {
 color: rgb(0,0,255);
 border-bottom: 1px dotted rgb(102,102,102); }
</style>
</head>
<body>
<navigation>
 Chapter 1. Down The Rabbit-Hole
 Chapter 2. The Pool of Tears
 Chapter 3. A Caucus-Race and a Long Tale
 Chapter 4. The Rabbit Sends in a Little Bill
 Chapter 5. Advice from a Caterpillar
 Chapter 6. Pig and Pepper
 Chapter 7. A Mad Tea-Party
 Chapter 8. The Queen's Croquet-Ground
 Chapter 9. The Mock Turtle's Story
 Chapter 10. The Lobster Quadrille
 Chapter 11. Who Stole The Tarts?
 Chapter 12. Alice's Evidence
</navigation>
</body>
</html>

84 Chapter 4

2. Style the default link state. Type the

selector (anchor tag, class, or ID) of the

element you want to style, followed by

a colon (:), and then link.

a:link {...}

You can override styles set for the

anchor tag, but this rule should always

come before the :visited pseudo-class.

3. Style the visited link style. Type the

selector (anchor, class, or ID) of the ele-

ment you want to style, followed by a

colon (:), and then visited.

a:visited {...}

4. Style the hover link state. Type the

selector (anchor, class, or ID) of the ele-

ment you want to style, followed by a

colon (:), and then hover.

a:hover {...}

5. Style the active link state. Type the

selector (anchor, class, or ID) of the ele-

ment you want to style, followed by a

colon (:), and then active.

a:active {...}

6. Style is applied to the link state as

needed.

...

All links on the page will obey the

rules you lay down here when styling

the various link states. You can—and

should—use selective styling to differ-

entiate link types.

Selective Styling 85

 In this example, the pseudo-classes are

applied directly to the anchor tag, but any

class or ID could have been used as long as it

was then applied to an anchor tag.

 You can apply the dynamic pseudo-

classes :hover,:active, and :focus to any

element, not just links.

 The general anchor link styles will be

inherited by the different states and between

states. The font you set for the :link appear-

ance, for example, will be inherited by the

:active, :visited, and :hover states.

 The Web is a hypertext medium, so it

is important that users be able to distinguish

among text, links, and visited links. Because

users don’t always have their Underline Links

option turned on, it’s a good idea to set the

link appearance for every document.

 If you use too many colors, your visitors

may not be able to tell which words are links

and which are not.

 The link styles are set for the entire page

in this example, but links can be used for a

variety of purposes. For example, links might

be used for global navigation, in a list of article

titles, or even as a dynamic control. To that

end, it’s a good idea to style links depending

on their usage:

nav a {...}

nav a:link {...}

nav a:visited {...}

The preceding styles would be applied only to

links in the navigation element.

Picking Link Styles
Most browsers default to blue for unvis-

ited links and red or purple for visited

links. The problem with using two differ-

ent colors for visited and unvisited links

is that visitors may not remember which

color applies to which type of link. The

colors you choose must distinguish links

from other text on the screen and dis-

tinguish among the states (link, visited,

hover, and active) without dominating the

screen and becoming distracting.

I recommend using a color for unvisited

links that contrasts with both the page’s

background color and the text color.

Then, for visited links, use a darker or

lighter version of the same color that

contrasts with the background but is dim-

mer than the unvisited link color. Brighter

unfollowed links will then stand out dra-

matically from the dimmer followed links.

For example, on a page with a white

background and black text, I might use

bright red for links (rgb(255,0,0)) and

pale red (rgb(255,153,153)) for visited

links. The brighter version stands out; the

paler version is less distinctive, but still

obviously a link.

86 Chapter 4

Styling for interaction
Once loaded, Web pages are far from

static. Users will start interacting with the

page right away, moving their pointers

across the screen and clicking hither and

yon. The dynamic pseudo-classes allow

you to style elements as the user interacts

with them, providing visual feedback:

■ :hover—Same as for links, but sets the

appearance of the element when the

pointer is hovering over it.

■ :focus—Applied to elements that can

receive focus, such as form text fields.

■ :active—Same as for links, but sets the

style of the element when it is clicked

or selected.

To define a dynamic pseudo-class:
1. Style the default element.

input {...}

Although optional, it’s generally a

good idea to set the default, nondy-

namic style for the elements receiving

dynamic styles (Code 4.7).

2. Style the hover state of the element.

Type the selector (HTML, class, or ID), a

colon (:), and then hover.

input:hover {...}

As soon as the pointer enters the ele-

ment’s box (see Chapter 10 for details

about the box model), the style change

will occur.

Code 4.7 The input elements are set to change

style when the user interacts with them by

hovering, selecting (focus), or clicking (active) C.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type"
➝ content="text/html; charset=UTF-8" />
<title>Alice's Adventures in Wonderland
➝ </title>
<style type="text/css" media="all">
 input {
 border: 3px solid rgb(153,153,153);
 background-color: rgb(204,204,204);
 color: rgb(153,153,153);
 padding: 0 5px;
 font-size: 2em; }
 input:hover {
 border-color: rgb(204,153,153);
 color: rgb(102,102,102); }
 input:focus {
 border-color: rgb(255,0,0);
 background-color: rgb(255,255,255);
 color: rgb(0,0,0);
 outline: none; }
 input:active {
 color: rgb(255,0,0);
 border-color: rgb(255,0,0);
 background-color: rgb(0,0,0); }
</style>
</head>
<body>
<form>
 <input type="text" value="First Name">
 <input type="text" class="hover" value="Last
Name">
 <input type="text" class="focus"
 ➝ value="eMail">
 <input type="button" class="active"
 ➝ value="Search">
</form>
</body>
</html>

Selective Styling 87

3. Style the focus state of the element.

Type the selector (HTML, class, or ID), a

colon (:), and then focus.

input:focus {...}

As soon as the element receives focus

(is clicked or tabbed to), the style

change occurs and then reverts to the

hover or default style when the element

loses focus (called blur).

4. Style the active state of the element.

Type the selector (HTML, class, or ID), a

colon (:), and then active.

input:active {...}

As soon as the user clicks within the

element’s box (explained in Chapter 10),

the style change will occur and then

revert to either the hover or default

style when released.

5. The styles are applied to the elements’

states as necessary in reaction to the

user.

<input type="button"
➝ value="Search">

All the tags using the specific selector

will have their states styled.

 The order in which you define your

link and dynamic pseudo-classes makes a

difference. For example, placing the :hover
pseudo-class before the :visited pseudo-

class keeps :hover from working after a link

has been visited. For best results, define your

styles in this order: link, visited, hover, focus,

and active.

 One way to remember the pseudo-

element order is the meme LoVe HAte: Link

Visited Hover Active.

 You will want to always set :focus if

you’re setting :hover. Why? Hover is applied

only to nonkeyboard (mouse) interactions with

the element. For keyboard-only Web users,

:focus will apply.

Default

Hover

Focus

Active

C The results of Code 4.7. This shows a simple

form field in the four dynamic states. Providing

this visual feedback can help users know which

form field is ready for use or that they have clicked

a button.

 I recommend caution when changing

some attributes for :hover. Changing type-

face, font size, weight, and other properties

may make the text grow larger or smaller than

the space reserved for it in the layout and

force the whole page to reflow its content,

which can really annoy visitors.

 In this example, input is used to show

the dynamic states. The input has one styling

drawback in that all input types use the same

tag. Later in this chapter, you will see how

to use tag attributes to set styles, which will

allow you to set different styles for text fields

and buttons.

88 Chapter 4

NEW IN CSS3: Styling specific
children with pseudo-classes ★
Designers often want to apply a style to an

element that is the first element to appear

within another element, such as a parent’s

first child.

The first-child pseudo-element has been

available since CSS2; however, CSS3

offers an assortment of new structural

pseudo-elements for styling an element’s

child element exactly (Table 4.4):

■ :first-child—Sets the appearance of

the first instance of a selector type if it

is the first child of its parent.

■ :first-of-type—Sets the appearance

of an element the first time its selector

type appears within the parent.

■ :nth-child(#)—Sets the appearance of

the specific occurrence of the specified

child element. For example, the third

child element of a paragraph would be
p:nth-child(3).

■ :nth-of-type(#)—Sets the appearance

of the specific occurrence of a selector

type within the parent. For example,

the seventh paragraph would be
p:nth-of-type(7).

■ :nth-last-of-type(#)—Sets the

appearance of the specific occurrence

of a selector type within the parent, but

from the bottom. For example, the third

paragraph from the bottom would be
p:nth-last=of-type(3).

■ :last-child—Sets the appearance of

the element of the indicated selector

type if it is the last child of the parent.

■ :last-of-type—Sets the appearance

of the last instance of a particular selec-

tor type within its parent.

Text Decoration:
To Underline or Not
Underlining is the standard way of indi-

cating a hypertext link on the Web. How-

ever, the presence of many underlined

links turns a page into an impenetrable

mass of lines, and the text becomes dif-

ficult to read. In addition, if visitors have

underlining turned off, they cannot see

the links, especially if the link and text

colors are the same.

CSS allows you to turn off underlining for

links, overriding the visitor’s preference.

I recommend this practice and prefer to

rely on clear color choices to highlight

hypertext links or to rely on the alterna-

tive underlining method of border-bot-

tom, which allows you better control over

the style of the underline. See Chapter 14

for more information.

Selective Styling 89

To style the children of an element:
1. Style the children based on their posi-

tions in the parent. Type the selector

(HTML, class, or ID) of the element you

want to style, a colon (:), and one of the

structural pseudo-elements from Table

4.4 (Code 4.8).

li:first-child {...}

li:first-of-type {...}

li:nth-of-type(3) {...}

li:nth-last-of-type(2) {...}

li:last-child {...}

li:last-of-type {...}

2. Elements will be styled if they match

the pattern.

...

Set up your HTML with the selectors

from step 1 in mind.

Styling for a particular language
The World Wide Web is just that, all around

the world, which means that anyone, any-

where can see your pages. It also means

that Web pages are created in many

languages.

The :lang() pseudo-class lets you specify

styles that depend on the language speci-

fied by the language property.

Code 4.8 The list has styles set for it based on

location within the list D.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type"
➝ content="text/html; charset=UTF-8" />
<title>Alice's Adventures in Wonderland
➝ </title>
<style type="text/css" media="all">
 li:first-child { font-size: .875em; }
 li:first-of-type { color: red; }
 li:nth-of-type(3) { font-size: 1.5em }
 li:nth-last-of-type(2) { font-size: 2em; }
 li:last-of-type { color: red; }
 li:last-child { font-size: 2.5em; }
</style>
</head>
<body>

 Alice
 The White Rabbit
 The Mad Hatter
 The Queen of Hearts
 The Door Mouse

</body>
</html>

D The results of Code 4.8 show the items in the

list styled separately. In this case, the first child

and first of type are the same element as the last

element and last of type.

90 Chapter 4

To set a style for a specific language:
1. Style an element based on its language

code. Type the selector (HTML, class,

or ID) of the element you want to style,

a colon (:), lang, and enter the letter

code for the language you are defining

within parentheses (Code 4.9).

p:lang(fr) {...}

2. The element is styled if it has a match-

ing language code. Set up your tag in

the HTML with the language attributes

as necessary.

<p lang="fr">...</p>

If the indicated selector has its lan-

guage attribute equal to the same value

that you indicated in parentheses in

step 1, the style is applied.

 You can use any string as the language

letter code, as long as it matches the value in

the HTML. However, the W3C recommends

using the codes from RFC 3066 or its succes-

sor. For more on language tags, visit www.

w3.org/International/articles/language-tags.

 Language styles can go far beyond

simple colors and fonts. Many languages have

specific symbols for quotes and punctuation,

which CSS can add. In Chapter 9, you will

find information on how to style quotes for a

particular language.

Code 4.9 Styles are set to turn paragraphs red if

they are in French (fr) E.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type"
➝ content="text/html; charset=UTF-8" />
<title>Alice's Adventure's in Wonderland
➝ </title>
<style type="text/css" media="all">
 p:lang(fr) {
 color: red;
 font-style: italic; }
</style>
</head>
<body>
 <p>It sounded an excellent plan‚...</p>
 <p lang="fr">On aurait dit un excellent
 ➝ plan‚...</p>
</body>
</html>

E The results of Code 4.9 show the paragraph in French rendered in red (with my apologies to

French speakers).

www.w3.org/International/articles/language-tags
www.w3.org/International/articles/language-tags

Selective Styling 91

NEW IN CSS3: Not styling
an element ★
So far you’ve looked at ways to style a tag

if it is something. The negation selector,

:not, allows you to not style something for

a particular selector.

To not set a style for a
particular element:
1. Style elements to exclude certain

selectors. Type the selector (HTML,

class, or ID) of the element you want

to style, a colon (:), not, and enter the

selectors you want excluded from this

rule in parentheses (Code 4.10).

p:not(.dialog) {...}

2. The element is not styled if it contains

the indicated selector.

<p class='dialog'>...</p>
➝ <p>...</p>

The styles are applied to elements that

match the initial selector but not the

selector in parentheses.

Code 4.10 If the element is a paragraph that does

not use the dialog class, it will be displayed in red

and italics F.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type"
➝ content="text/html; charset=UTF-8" />
<title>Alice's Adventures in Wonderland</
➝ </title>
<style type="text/css" media="all">
 p:not(.dialog) {
 color: red;
 font-style: italic; }
</style>
</head>
<body>
<p class='dialog'>"Why?" said the
➝ Caterpillar.</p>

<p>Here was another puzzling question‚...</p>

<p class='dialog'>"Come back!" the
➝ Caterpillar‚..."</p>
</body>
</html>

F The results of Code 4.10. This shows that the paragraph that does use the dialog class does not receive

the style.

92 Chapter 4

Working with
Pseudo-elements
A pseudo-element is a specific, unique

part of an element—such as the first letter

or first line of a paragraph—that can be

styled independently of the rest of the ele-

ment. (For a list of other pseudo-elements,

see Table 4.5.)

Working with first letters and lines
You can access the first letter of any block

of text directly using the :first-letter
pseudo-element. The first line of any block

of text can be isolated for style treatment

using the :first-line pseudo-element.

To highlight the beginning
of an article:
1. Style the default version of the

element.

article p {...}

Although not required, it’s generally a

good idea to set the default style of the

selector for which you will be styling

the :first-letter pseudo-element

(Code 4.11).

TABLE 4.5 Pseudo-Elements

Format Name Elements Are Styled If… Compatibility

:first-letter, ::first-letter the first Letter first letter in text IE5.5, FF1, O3.5, S1, CSS1

:first-line, ::first-line the first line of text they are the first line

of text

IE5.5, FF1, O3.5, S1, CSS1

:after, ::after After space immediately

before element

IE8, FF1, O5, S1, CSS2

:before, ::before Before space immediately after

element

IE8, FF1, O5, S1, CSS2

Selectors

Colon

Colon×2

Pseudo-element Declaration List

A The general syntax for pseudo-elements.

Pseudo-elements can have either a single or

double colon, but use a single colon at present for

increased browser compatibility.

Selective Styling 93

2. Style the first letter of the element if it

is the first of its type. Type the selec-

tor you want to style the first letter

of (article p), a colon (:), and then
first-letter.

article p:first-of-type:
➝ first-letter {...}

To affect only the first paragraph in an

article, you can add the :first-of-type
pseudo-class, as in this example.

3. Style the first line of the element’s

text if it is the first of its type. Type the

selector (article p) for which you want

to style the first letter, a colon (:), and

then first-line.

article p:first-of-type:
➝ first-line {...}

In this example, the first-of-type

pseudo-class is added so that only the

first paragraph in an article is styled.

4. The element’s first letter and first line

of text is styled if it is the first of its

type in the parent element. Add the

class attribute to the relevant HTML tag.

<p>...</p>

Although you do not have to use a

class, you generally will want to selec-

tively style the first letter of elements

rather than styling them all universally.

 Drop cap styled letters are a time-hon-

ored way to start a new section or chapter by

making the first letter of a paragraph larger

than subsequent letters and moving several

lines of text to accommodate the larger letter.

Medieval monks used drop caps with illumi-

nated manuscripts. Now you can use them on

the Web.

Code 4.11 Styles are set for the first letter and first

line of the first paragraph in an article B.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type"
➝ content="text/html; charset=UTF-8" />
<title>...</title>
<style type="text/css" media="all">
 article p {
 font-size: 16px;
 line-height: 24px;
 color: rgb(102,102,102) }
 article p:first-of-type:first-letter {
 color: red;
 font-size: 3em;
 float: left;
 margin-right: 5px; }
 article p:first-of-type:first-line {
 font-size: 1.25em;
 font-weight: bold;
 color: rgb(0,0,0); }
</style>
</head>
<body>
<article>
<h1>Alice's Adventures in Wonderland</h1>
 <p>The moment Alice appeared‚...</p>
 <p>The executioner's argument was‚...</p>
 <p>The King's argument was‚...</p>
</article>
</body>
</html>

B The results of Code 4.11. A common

typographic trick to draw the reader’s eye to the

beginning of a paragraph is to use a drop cap and

to bold the first line of text, as shown here.

94 Chapter 4

Setting content before
and after an element
The :before and :after pseudo-elements

can be used to generate content that

appears above or below a selector. Gener-

ally, these pseudo-classes are used with

the content property. (See “Adding Con-

tent Using CSS” in Chapter 9.) The pseudo-

elements let you add and style repetitive

content to the page in a consistent way.

To set content before and
after an element:
1. Style the element.

h1 {...}

Although not required, it’s generally a

good idea to set the default style of the

selector for which you will be styling the

:before and:after pseudo-elements.

(See Code 4.12.)

2. Add content before the element. Type

the selector (HTML, class, or ID) you

want to add content before, a colon (:),

and then the keyword before.

h1:before { content:... }

Next, declare the content property and

define what generated content goes

before the element and how it should

be styled.

3. Add content after the element. Type

the selector (HTML, class, or ID) you

want to add content after, a colon (:),

and then the keyword after.

h1:after { content:... }

Next, declare the content property

and define what generated content

goes after the element and how it

should be styled.

Code 4.12 Before and after pseudo-elements are

used to add content—images C, in this case—

to the page header D.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type"
➝ content="text/html; charset=UTF-8" />
<title>...</title>
<style type="text/css" media="all">
 h1 {
 font-size: 2em;
 color: red;
 font-style: italic; }
 h1:before {
 content: url('../_images/bullet-01.png'); }
 h1:after {
 content: url('../_images/bullet-02.png'); }
</style>
</head>
<body>
<h1>Alice's Adventures in Wonderland</h1>
 <p>The moment Alice appeared‚...</p>
 <p>The executioner's argument was‚...</p>
 <p>The King's argument was‚...</p>
</article>had a head could be beheaded,
➝ and that you weren't to talk nonsense.</p>
</article>
</body>
</html>

Selective Styling 95

 The pseudo-elements syntax in CSS3

has undergone a slight change from the CSS2

syntax (which is rare). Pseudo-elements now

have a double colon to distinguish them from

pseudo-classes. Existing pseudo-elements can

use either single or double colons. New and

future pseudo-elements should use double

colons, but will work with a single colon.

 Since IE8 does not support double colon

syntax for CSS2 pseudo-elements, it’s a good

idea to use single colon syntax for now until all

browsers have adopted the syntax.

 Be careful when using before and after

to add content to your page. This content will

not appear to search engines or screen read-

ers, so do not rely on it for anything vital.

C bullet-01.png &

bullet-02.png will be

used as flourishes

around titles.

D The header now has a bit of flourish added

before and after by the CSS. These images take

up space as if they were in an image tag, but do

not show up in the HTML code.

Coming Soon!
Styling the Selection
Although not implemented in enough

(or any) browsers to make it worth

even thinking about yet, a great new

pseudo-element is coming to CSS3,

::selection, which will style any ele-

ment selected by the user.

96 Chapter 4

Defining Styles Based
on Tag Attributes
Although style attributes should all be

handled by CSS, many HTML tags still have

attributes that define how they behave.

For example, the image tag, img, always

includes the src attribute to define the

source for the image file to be loaded.

Styles can be assigned to an HTML element

based on an attribute or an attribute value,

allowing you to set styles if the attribute

has been set, is or is not a specific value, or

contains a specific value (Table 4.6).

To set styles based on an
element’s attributes:
1. Set styles if the element has a spe-

cific property. To set styles based on

the existence of an attribute, type the

selector you want to style (HTML, class,

or ID), a left bracket ([), the name of the

attribute you want to check for, and a

right bracket (]) (Code 4.13) A.

a[title] {...}

TABLE 4.6 Attribute Selectors

Format Name Elements Are Styled If That Element: Compatibility

[attr] Attribute has specified attribute IE7, FF1.5, O5, S2, CSS2

[attr="value"] Exact value has specified attribute equal to exact value IE7, FF1.5, O5, S2, CSS2

[attr~="value"] Spaced List has specified attribute equal to exact value

within space-separated list

IE7, FF1.5, O5, S2, CSS2

[attr|="value"] Hyphenated List has specified attribute equal to exact value

within hyphen-separated list

IE7, FF1.5, O5, S2, CSS2

[attr^="value"] Begins with has specified attribute equal to exact value

at beginning

CSS3

[attr$="value"] Ends With has specified attribute equal to exact value

at end

CSS3

[attr*="value"] Contains has specified attribute equal to exact value

anywhere

CSS3

Selector

Square brackets

Attribute Declaration

A The general syntax of an attribute selector.

Selective Styling 97

B The results of Code 4.13. This shows how

styles are applied to elements based on their

properties.

This will assign the styles you declare

only if the tag has this attribute

assigned to it regardless of the value.

2. Set styles if a string exactly matches

the property’s value. To set styles

based on an attribute’s exact value,

type the selector you want to style

(HTML, class, or ID), a left bracket ([), the

name of the attribute you want to check

for, an equals sign (=), the value you are

testing for in quotes ('...'), and a right

bracket (]). The value is case sensitive.

a[title='home'] {...}

This will assign the styles you declare

only if the tag has this attribute assigned

to it with the exact assigned value.

continues on next page

Code 4.13 HTML tags can have different

attributes, and you can add styles to an element

based on its attributes B.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type"
➝ content="text/html; charset=UTF-8" />
<title>Alice's Adventures in Wonderland</
➝ title>
<style type="text/css" media="all">
 a[title] { display: block; color: rgb(0,0,0);
 ➝ font-size: .8em; }
 a[title="Home"] {color: rgb(51,0,0);
 ➝ font-size: 1em;}
 a[title~="email"] { color:rgb(102,0,0);
 ➝ font-size: 1.2em; }
 a[title|="resume"] { color: rgb(153,0,0);
 ➝ font-size: 1.4em;}
 a[href^="http://"] {color: rgb(204,0,0);
 vfont-size: 1.6em;}
 a[href$=".info"] {color: rgb(235,0,0);
 ➝ font-size: 1.8em;}
 a[href*="speakinginstyles"]
 ➝ {color: rgb(255,0,0); font-size: 2em;}
</style>
</head>
<body>
<navigation>
 <h2>About the Author</h2>
 Portfolio
 Home
 ➝ Page
 <a href="" title="contact email
 ➝ link">Email
 R√©sum√©
 <a href="http://www.jasonspeaking.com"
 ➝ title="blog">JasonSpeaking
 <a href="http://www.fluidwebtype.info"
 ➝ title="book">Fluid Web Typography
 <a href="http://www.speakinginstyles.com"
 ➝ title="book">Speaking In Styles
</navigation>
</body>
</html>

98 Chapter 4

3. Set styles if a string is in a space-

separated list of values. To set styles

based on an attribute’s value that is

within a list of space-separated values

(for example, a particular word in a

sentence), type the selector you want to

style (HTML, class, or ID), a left bracket

([), the name of the attribute you want to

check for, a tilde (~), an equals sign (=),

the value you are testing for in quotes

('...'), and a right bracket (]).

a[title~="email"] {...}

This will assign the styles you declare

only if the tag has the attribute assigned

to it with a value that contains the

string as part of a space-separated list.

Generally, this means that it is a word in

a sentence. Partial words do not count.

So in this example, testing for 'mail'

would not work.

4. Sets the style if the string is in a

hyphenated list of values assigned to

the property. To set styles based on

an attribute’s value being the first in

a list separated by hyphens, type the

selector you want to style (HTML, class,

or ID), a left bracket ([), the name of the

attribute you want to check for, a bar

(|), an equals sign (=), the value you are

testing for in quotes ('...'), and a right

bracket (]).

a[title|="resume"]

This will assign the styles you declare

only if the tag has this attribute

assigned to it with a value that contains

the string at the beginning of a hyphen-

separated list. Generally, this is used for

styling languages as an alternative to

using the language pseudo-class.

Selective Styling 99

5. NEW IN CSS3 ★: Set styles if a string

is the value’s prefix. To set styles based

on the value at the beginning of an

attribute, type the selector you want to

style (HTML, class, or ID), a left bracket

([), the name of the attribute you want to

check for, a carat (^), an equals sign (=),

the value you are testing for in quotes

('...'), and a right bracket (]).

a[href^="http://"]

This will assign the styles you declare

only if the value string occurs exactly

as it is in the quotes at the beginning of

the attribute value.

6. NEW IN CSS3 ★: Set styles if a string

is the property value’s suffix. To set

styles based on an attribute’s value

being the first in a hyphen-separated

list, type the selector you want to style

(HTML, class, or ID), a left bracket ([), the

name of the attribute you want to check

for, a dollar sign ($), an equals sign (=),

the value you are testing for in quotes

('...'), and a right bracket (]).

a[href$=".info"]

This will assign the styles you declare

only if the value occurs at the end of the

attribute’s value.

7. Set styles if a string is anywhere in the

property value. To set styles based on

an attribute’s value being the first in a

hyphen-separated list, type the selector

you want to style (HTML, class, or ID), a

left bracket ([), the name of the attribute

you want to check for, an asterisk (*), an

equals sign (=), the value you are testing

for in quotes ('...'), and a right bracket (]).

a[href*="speakinginstyles"]

This will assign the styles you declare

if the value occurs anywhere in the

attribute’s value.

 Values are case sensitive. In other words,

‘Alice’ and ‘alice’ are two different values.

100 Chapter 4

NEW IN CSS3:
Querying the Media ★
In Chapter 3 you learned how to specify

style sheets for a particular media type,

allowing you to set styles depending on

whether the HTML is output to a screen,

print, TV, or a handheld or other device

(Table 4.7). CSS3 adds an important new

capability that allows you to set styles

based on common interface properties

such as width, height, aspect ratio, and

number of available colors.

Media queries and the @media rule can be

used to tailor your page, not just to a gen-

eral device type but to the specific device

your site visitor is using. This includes siz-

ing for print, for mobile devices, or to best

fit the size of the open browser window.

Media queries
If you want to know the current size of

the browser window, why not just ask the

browser? JavaScript gives you the ability to

do this, but it’s a cumbersome way to get

some basic facts about the Webbed envi-

ronment your design is trying to fit into.

Media queries provide you with several

common media properties that you can

test A and then delivers the style sheet

that best suits the environment.

Although media queries have many proper-

ties (Table 4.8), they come in five basic flavors:

■ Aspect-ratio looks for the relative

dimensions of the device expressed as

a ratio: 16:9, for example.

■ Width and height looks for the dimen-

sions of the display area. These can

also be expressed as maximum and

minimum values.

continues on page 102

TABLE 4.7 Media Values

Value Intended for

screen Computer displays

tty Teletypes, computer terminals,

and older portable devices

tv Television displays

projection Projectors

handheld Portable phones and PDAs

print Paper

braille Braille tactile readers

speech Speech synthesizers

all All devices

A The general syntax for media queries.

Selective Styling 101

TABLE 4.8 Media Query Properties

Property Value Compatibility

aspect-ratio <ratio> FF3.5, S1, C1, O9.5, CSS3

max-aspect-ratio <ratio> FF3.5, S1, C1, O9.5, CSS3

min-aspect-ratio <ratio> FF3.5, S1, C1, O9.5, CSS3

device-aspect-ratio <ratio> FF3.5, S1, C1, O9.5, CSS3

max-device-aspect-ratio <ratio> FF3.5, S1, C1, O9.5, CSS3

min-device-aspect-ratio <ratio> FF3.5, S1, C1, O9.5, CSS3

color <integer> FF3.5, S1, C1, O10, CSS3

max-color <integer> FF3.5, S1, C1, O10, CSS3

min-color <integer> FF3.5, S1, C1, O10, CSS3

color-index <integer> FF3.5, S1, C1, O10, CSS3

max-color-index <integer> FF3.5, S1, C1, O10, CSS3

min-color-index <integer> FF3.5, S1, C1, O10, CSS3

device-height <length> FF3.5, S1, C1, O9.5, CSS3

max-device-height <length> FF3.5, S1, C1, O9.5, CSS3

min-device-height <length> FF3.5, S1, C1, O9.5, CSS3

device-width <length> FF3.5, S1, C1, O9.5, CSS3

max-device-width <length> FF3.5, S1, C1, O9.5, CSS3

min-device-width <length> FF3.5, S1, C1, O9.5, CSS3

height <length> FF3.5, S1, C1, O9.5, CSS3

max-height <length> FF3.5, S1, C1, O9.5, CSS3

min-height <length> FF3.5, S1, C1, O9.5, CSS3

monochrome <integer> FF3.5, S1, C1, O10, CSS3

max-monochrome <integer> FF3.5, S1, C1, O10, CSS3

min-monochrome <integer> FF3.5, S1, C1, O10, CSS3

orientation portrait, landscape FF3.5, S1, C1, CSS3

resolution <resolution> FF3.5, S1, C1, O10, CSS3

max-resolution <resolution> FF3.5, S1, C1, O10, CSS3

min-resolution <resolution> FF3.5, S1, C1, O10, CSS3

scan progressive, interlaced FF3.5, S1, C1, O10, CSS3

width <length> FF3.5, S1, C1, O9.5, CSS3

max-width <length> FF3.5, S1, C1, O9.5, CSS3

min-width <length> FF3.5, S1, C1, O9.5, CSS3

102 Chapter 4

■ Orientation looks for landscape (height

greater than width) or portrait (width

greater than height) layout. This allows

you to tailor designs for devices that

can flip.

■ Color, Color-index, and monochrome

finds the number of colors or bits per

color. These allow you to tailor your

design for black and white mobile

devices.

■ Resolution looks at the density of pixels

in the output. This is especially useful

when you want to take advantage of

display devices that have a higher reso-

lution than 72 dpi.

By default, media queries are for the

viewport (see Chapter 11 for details on the

viewport) with the exception of those that

specify device, in which case they are

for the entire screen or output area. For

example, width is the width of the vis-

ible browser viewport within the screen,

whereas device-width is the width of the

entire screen.

Selective Styling 103

Using media queries
to specify styles:
1. Create your style sheets. Create a

default media style sheet that captures

all the general styles for your design

and save it. I like to call mine default.

css (Code 4.14).

Create style sheets for the various

media or specific devices for which

you will be designing. Print is generally

good to include (Code 4.15). You can

call the sheet print.css, but you might

also want to create style sheets specifi-

cally for popular mobile devices such as

the iPhone (Code 4.16), which you could

name iphone.css.

continues on next page

Code 4.14 default.css—These styles are applied

regardless of the media type and include sans-

serif fonts, a dark background, and light text.

/*** Default Styles ***/

body {
 background: black url('../_images/AAIW-illos/
 ➝ alice23b.gif') no-repeat 0 0;
 margin: 0 0;
 padding: 200px 0 0 175px; }
h1 {
 color: white;
 font-style: italic; }
h2 {
 color: rgb(153,153,153); }
p {
 font: normal 100%/1.5 Corbel, Helvetica,
 ➝ Arial, Sans-serif;
 color: rgb(204,204,204); }

Code 4.15 print.css—These styles are tailored

for the printed page, changing the background

to white (assuming white paper), serif fonts, black

text, and a different background image to match.

/*** For Print ***/

body {
 background: white url('../_images/AAIW-illos/
 ➝ alice23a.gif') no-repeat 0 0;
 padding: 200px 0 0 175px;
 }
h1 {
 color: black; }
p {
 font: normal 12pt/2 Constantia, palatino,
 ➝ times, "times new roman", serif;
 color: rgb(0,0,0); }

Code 4.16 iphone.css—These styles are specific

for use on an iPhone and are loosely based on

that mobile device’s look and feel.

/*** iPhone Styles ***/

body {
 -webkit-text-size-adjust:none;
 background: rgb(102,102,102) url('../_images/
 ➝ AAIW-illos/alice23c.gif') no-repeat
 ➝ center 0;
 padding: 120px 20px 20px 20px; }
h1 { color: rgb(153,125,125);
 text-shadow: 0 0 5px rgb(0,0,0); }
p {
 font: normal 1em/1.25em "helvetica neue",
 ➝ Helvetica, Arial, Sans-serif;
 color: rgb(255,255,255); }

104 Chapter 4

2. Add the viewport meta tag. In the head

of your HTML document (Code 4.17),

add a meta tag with a name equal to

viewport and content, as shown.

<meta name="viewport"
➝ content="width=device-width;
➝ initial-scale=1.0;
➝ maximum-scale=1.0;
➝ user-scalable=0;">

This will prevent devices with smaller

screens, most notably the iPhone, from

resizing the page, overriding your styles

to be set in step 5.

Code 4.17 The HTML code links to all three of the style sheets, which are displayed in default B, Print C,

and in the iPhone D. The iPhone style sheet uses media queries to set a device’s width range in keeping

with the iPhone. Notice that I used screen for the media type because the iPhone indentifies itself as a

screen, not a handheld device.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-scale=1.0;
➝ user-scalable=0;">
<title>Alice's Adventure's In Wonderland</title>
<link rel="stylesheet" media="all" href="default.css" >
<link rel="stylesheet" media="print" href="print.css">
<link rel="stylesheet" media="screen and (max-device-width: 480px) and (min-device-width: 320px)"
➝ href="iphone.css" >
</head>
<body>
<h1>Alice’s Adventures In Wonderland</h1>
<p class="byline">by Lewis Carroll</p>
<article><!-- Article -->
<header>
<h2>Chapter I. Down the Rabbit-Hole</h2>
</header>
<p>
Alice was beginning to get very tired of sitting by her sister‚...</p>
</article>
</body>
</html>

B Code 4.17 output to a computer screen. This

version uses a dark background and an inverted

version of the Alice’s Adventures in Wonderland

illustration. On an LCD screen, the lightly colored

text will look fine.

Selective Styling 105

3. Link to your default style sheet. In the

head of your HTML document, type a

<link> tag that references the default

version of the CSS and define media

as all.

<link rel="stylesheet"
➝ media="all" href="default.css" >

4. Link to your print style sheet. Immedi-

ately after the <link> tag, add another

<link> tag that references the print

version of the CSS and define media

as print.

<link rel="stylesheet"
➝ media="print" href="print.css">

5. Use a media query to link to a style

sheet. Immediately after the previous

<link> tag, add another <link> tag that

references the style sheet for a specific

media type and then add media queries

(Table 4.8) in parentheses connecting

multiple queries with and.

<link rel="stylesheet"
➝ media="screen and
➝ (max-device-width: 480px)
➝ and (min-device-width: 320px)"
➝ href="iphone.css" >

 Before media queries were introduced,

Web developers used JavaScript to detect

browser dimensions and colors. Media queries

render those techniques obsolete, at least for

styling purposes.

 In this example, media queries are applied

to the media property value of the <link> tag,

but you can just as easily apply them to the

media property of the <style> tag.

C Code 4.17 output to a printer. The background

is white, and the background image is no longer

inverted. This works better in print.

D Code 4.17

on an iPhone.

A specially

tailored version

to fit the width

of an iPhone

uses a custom

header of the

Cheshire cat.

106 Chapter 4

Using the @media rule
Media queries allow you specify styles in the

media property of <link> and <style> tags,

but the @media rule E allows you to embed

media queries directly into a style sheet.

Using @media to specify styles:
1. Create your style sheets. Create an

external style sheet or embed a style

sheet in the body of your document

(Code 4.18).

2. Use the @media rule to specify styles

with media queries. In the head of your

HTML document, type @ and media.

Then specify the media type (Table 4.7)

and any media queries (Table 4.8) for

the styles.

@media screen and
➝ (max-device-width: 480px) and
➝ (min-device-width: 320px) {...}

For example, you might specify that

these styles are for screens with a width

between 320px and 480px. Finish with

curly brackets. Add any media-specific

styles between the curly brackets.

3. Add other styles as necessary.

h2 strong {...}

You can add more @media rules or

other nonmedia-specific rules. How-

ever, all CSS rules that are not in @rules

(@media, @font-face, @import, and so

on) must come after the @rules.

4. Link to the style sheet from your HTML

document. Place a link tag to add the

external CSS file (Code 4.19).

 Remember that @media rules can go in

external or embedded style sheets.

@media rule Media queries

CSS rules

E The general syntax of the @media rule.

Code 4.18 screen.css—The iPhone code from

Code 4.15 has been combined with more generic

screen CSS.

/*** Screen Styles ***/

@media screen and (max-device-width: 480px)
➝ and (min-device-width: 320px) {

 /*** iPhone Styles ***/

 body {
 -webkit-text-size-adjust:none; color: red;
 background: rgb(102,102,102) url('../_images/
 ➝ AAIW-illos/alice23c.gif') no-repeat
 ➝ center 0;
 padding: 120px 20px 20px 20px; }
 h1 {
 color: rgb(153,125,125);
 text-shadow: 0 0 5px rgb(0,0,0); }
 p {
 font: normal 1em/1.25em "helvetica neue",
Helvetica, Arial, Sans-serif;
 color: rgb(255,255,255); }
}

h2 strong {
 display: block;
 color: red;
 font-size: .75em;
 font-style: italic; }

Selective Styling 107

Code 4.19 The HTML code links to the various style sheets for different media types. The big difference

between this version and Code 4.16 is that the iPhone-specific code is now embedded in screen.css, so I’m

not including media queries F.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-scale=1.0;
➝ user-scalable=0;">
<title>Alice's Adventures In Wonderland</title>
<link rel="stylesheet" media="all" href="default.css" >
<link rel="stylesheet" media="print" href="print.css">
<link rel="stylesheet" media="screen" href="screen.css">
</head>
<body>
<h1>Alice’s Adventures In Wonderland</h1>
<p class="byline">by Lewis Carroll</p>
<article><!-- Article -->
<header>
<h2>Chapter I. Down the Rabbit-Hole</h2>
</header>
<p>
Alice was beginning to get very tired of sitting by her sister‚...</p>
</article>
</body>
</html>

F Code 4.18 on

an iPhone. This

looks the same

as D, but the

code is now in

an @media rule.

108 Chapter 4

Styling for Print
With the advent of laser and inkjet printers, we seem to be buried under mounds of perfectly

printed paper. Even the Web seems to have increased the amount of paper we use. If an article on

the Web is longer than a couple of scrolls, many people print it.

But the Web was created to display information on the screen, not on paper. Web graphics look

blocky when printed, and straight HTML lacks much in the way of layout controls. That said, you

can take steps to improve the appearance of printed Web pages. Looking good in print and on the

Web may take a little extra effort, but your audience will thank you in the long run.

Here are six simple things you can do to improve the appearance of your Web page when it

is printed:

 . Use page breaks before page headers to keep them with their text.

 . Separate content from navigation. Try to keep the main content—the part your audience is

interested in reading—in a separate area of the design from the site navigation. You can then

use CSS to hide navigation in the printed version with a

nav { display: none }

included in the print style sheet.

 . Avoid using transparent colors in graphics. This is especially true if the graphic is on a back-

ground color or a graphic other than white. The transparent area of a GIF image usually prints

as white regardless of the color behind it in the window. This situation is not a problem if the

graphic is on a white background to begin with, but the result is messy if the graphic is sup-

posed to be on a dark background.

 . Avoid using text in graphics. The irony of printing content from the Web is that text in graphics,

which may look smooth in the window can look blocky when printed; but regular HTML text,

which may look blocky on some PC screens, can print smoothly on any decent printer. Try to

stick with HTML text as much as possible.

 . Avoid dark-colored backgrounds and light-colored text. Generally you want to keep white as

your background color for most of the printed page, and black or dark gray for the text.

 . Do not rely on color to convey your message when printed. Although color printers are quite

common these days, many people are still printing with black-and-white printers or printing in

black and white on color printers to save money.

Selective Styling 109

Inheriting Properties
from a Parent
No, this book hasn’t suddenly become the

Visual QuickStart Guide to Real Estate.

Child and descendent HTML tags generally

assume the styles of their parents—inherit
them—whether the style is set using CSS

or is inherited from a browser style. This is

called inheritance of styles.

For example, if you set an ID called copy

and give it a font-family value of Times, all of

its descendents would inherit the Times font

style. If you set a bold tag to red with CSS,

all of its descendents will inherit both the

applied red and the inherent bold style A.

A The final result of the styles applied and inherited is bold, red, and italicized

text in Times font.

110 Chapter 4

In some cases, a style property is not inher-

ited from its parent—obvious properties

such as margins, width, and borders. You

will probably have no trouble figuring out

which properties are inherited and which

are not. For example, if you set a padding

of four pixels for the paragraph tag, you

would not expect bold tags within the para-

graph to also add a padding of four pixels.

If you have any doubts, see Appendix A,

which lists all of the CSS properties and

how they are inherited.

If you did want to force an element to inherit

a property of its parent, many CSS properties

include the inherit value. So, in the previ-

ous example, to force all the bold tags in a

paragraph to take on the 4px padding, you

could set their padding value to inherit.

Managing existing or
inherited property values
When defining the styles for a selector, you

do not cause it to lose any of its inherited

or inherent attributes unless you specifi-

cally override those styles. All those prop-

erties are displayed unless you change the

specific existing properties that make up its

appearance.

In addition to overriding the relevant prop-

erty with another value, many CSS proper-

ties have values that allow you to override

inheritance:

■ inherit—Forces a property to be inher-

ited that would normally not be inher-

ited, or overrides other applied style

values and inherits the parent’s value.

■ none—Hides a border, image, or other

visual element.

■ normal—Forces no style to be applied.

■ auto—Allows the browser to determine

how the element should be displayed

based on context.

Selective Styling 111

Making a Declaration
!important
You can add the !important declaration

to a property-value declaration to give it

the maximum weight when determining the

cascade order A. Doing so ensures that

a declaration is applied regardless of the

other rules in play. (See “Determining the

Cascade Order” in this chapter.)

To force use of a declaration:
1. Add your CSS rule (Code 4.20).

h1 {...}

You can use an HTML, class, or ID

selector. CSS rules can be defined

within the <style> tags in the head of

your document (see “Embedded: Add-

ing Styles to a Web Page” in Chapter 3)

or in an external CSS file that is then

imported or linked to the HTML docu-

ment (see “External: Adding Styles to a

Web Site” in Chapter 3).

2. Make it important. Type a style dec-

laration, a space, !important, and a

semicolon (;) to close the declaration.

color: red !important;

3. Add other styles.

font-size: 1em;

Add any other declarations you wish for

this rule, making them !important or

not, as you desire.

!important is a powerful tool, second

only to inline styles for determining

style cascade. !important is great for

debugging your CSS; but, because it

can interfere with making changes later,

it should never be used in the final Web

site code.

Selector !importantDeclaration

A The general syntax for !important.

Code 4.20 The !important value has been

added to the color property in the first h1, but not

in the second B. Typically, the second h1 would

override the first, but not in this case.

<!-- HTML5 -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type"
➝ content="text/html; charset=UTF-8" />
<title>Alice's Adventures in Wonderland
➝ </title>
<style type="text/css" media="all">
 h1 {
 color: red !important;
 font-size: 3em; }...
 h1 {
 color: black;
 font-size: 2em; }
</style>
</head>
<body>
<article>
 <h1>Alice's Adventures in
 ➝ Wonderland</h1>
</article>
</body>
</html>

B The result of Code 4.20. The style that is most

important wins the day, so the text is red rather

than black.

112 Chapter 4

 Setting a shorthand property to
!important (background, for example) is the

same as setting each sub-property (such as

background-color) to be !important.

 A common mistake is to locate !impor-
tant after the semicolon in the declaration.

This causes the browser to ignore the declara-

tion and, possibly, the entire rule.

 If you are debugging your style sheet

and can’t get a particular style to work, try

adding !important to it. If it still doesn’t

work, the problem is most likely a typo rather

than another overriding style.

 Many browsers allow users to define

their own style sheets for use by the browser.

Most browsers follow the CSS 4.1 specification

in which a user-defined style sheet overrides

an author-defined style sheet.

Selective Styling 113

Determining the
Cascade Order
Within a single Web page, style sheets may

be linked, imported, or embedded. Styles

may also be declared inline in the HTML.

In addition, many browsers allow visitors

to have their own style sheets that can

override yours. It’s guaranteed, of course,

that simultaneous style sheets from two or

more sources will have conflicting declara-

tions. Who comes out on top?

The cascade order refers to the way styles

begin at the top of the page and, as they

cascade down, collect and replace each

other as they are inherited. The general

rule of thumb is that the last style defined

is the one that is used.

However, at times, two or more styles will

conflict. Use the following procedure to

determine which style will come out on top

and be applied to a given element.

To determine the cascade-
order value for an element:
Collect all styles that will be applied to the

element. Find all the inherent, applied, and

inherited styles that will be applied to the

element, and then use the following criteria

to determine which styles are applied in

the cascade order, with the criteria at the

top being most important A.

1. User styles

Most Web browsers allow users to

specify their own default style sheet.

In principle, these always have prece-

dence over other styles.

continues on next page

A The cascade order from most important to least

important.

114 Chapter 4

2. Inline styles

If the style is inline (see Chapter 3), it is

always applied regardless of all other

factors. That’s why you should never
use them in your final HTML code.

3. Media type

Obviously, if the media type is set for

a style and element that is not being

displayed in that media type, the style

will not be used.

4. Importance

Including !important with a declaration

gives it top billing when displayed. (See

“Making a Declaration !important” in

this chapter.)

Many browsers let users define their

own style sheets for use by the browser.

If both the page author and the visitor

have included !important in their dec-

larations, the user’s declaration wins.

In theory, an author’s style sheets over-

ride a visitor’s style sheets unless the

visitor uses the !important value. In

practice, however, most browsers favor

a user’s style sheet when determining

which declarations are used for a tag.

Selective Styling 115

5. Specificity

The more contextually specific a rule is,

the higher its cascade priority. So the

more HTML, class, and ID selectors a

particular rule has, the more important it

is. In determining this priority, ID selectors

count as 100, classes count as 10, and

HTML selectors are worth only 1. Thus,

#copy p b { color: red; }

is worth 102, whereas

b { color : lime; }

is only worth 1. So, the first rule would

have higher specificity and the color

would be red.

This priority setting may seem a bit silly

at first, but it allows context-sensitive

and ID rules to carry more weight,

ensuring that they will be used.

6. Order

If the conflicting declarations applied

to an element are equal at this point,

CSS gives priority to the last rule listed,

in order. Remember that inline styles

always win.

7. Parent inherited styles

These styles are inherited from the parent.

8. Browser default styles

These styles are applied by the browser

and are the least important.

116 Chapter 4

Putting It All Together
1. Using the HTML code you created in

Chapter 3, style all descendents of the

paragraph tag to bold. This requires

using the universal selector.

2. Style all paragraph siblings. Turn all

paragraphs that follow another para-

graph to gray.

3. Add hypertext links to your page, and

then use the link pseudo-classes to

style them. Remember to style all four

link states.

4. Style the first letter and first line of text

of the first paragraph in your page.

Start by styling the first line of all para-

graphs and then use pseudo-classes to

focus on the first paragraph.

5. Style images with an alt tag value with

a black rule and images that do not

have a value with a red rule. This is

useful for highlighting images you need

to add alt values to.

6. Style your page for print by hiding

navigation and using a white back-

ground and dark text. You want to

consider media other than screen for

your designs.

7. Play around with adding more styles

and then changing the order to see

how the order affects which styles

are applied. Pay careful attention to

the cascade order and how specificity

affects that.

8. Play around with adding !important to

different styles to see how it affects

which styles are applied. Remember,

the !important property is very power-

ful and should only be used to help you

style your page while working. The final

design should be able to work without it.

Index 413

Index

Symbols
: (colon)

CSS tips, 37

pseudo-element syntax, 95

. (period), defining classes, 51, 54

; (semicolon)

character entities and, 123

troubleshooting CSS code, 373

‘…’ (single quotes)

CSS tips, 37

specifying style, 238–239

/ (slash), adding comments to CSS, 66–67

, (comma), for grouping selectors, 62

“…” (double quotes)

adding generated content, 235

CSS tips, 37

specifying style, 238–240

:: (double colon), pseudo-element syntax, 95

= (equals sign), CSS tips, 37

(pound), defining ID selectors, 55

& (ampersand), as character entity, 123

* (asterisk)

adding comments to CSS, 66–67

defining universal selectors, 59

styling descendants, 71

[] (square brackets), in attribute selector

syntax, 96

{ } (curly brackets)

in declarations, 48

troubleshooting CSS code, 373

~ (tilde sign), defining general sibling selectors,

78

> (close angle bracket), styling children, 74

Numbers
2D transformations, 308–311

3D

stacking objects in, 292–293

transformations, 311–315

A
absolute font sizes, 135

absolute positioning

defined, 286

setting, 288

tip, 289

accessibility

access keys for, 350

color and, 195

counter-reset and, 237

accesskey attribute, 350

:active

defined, 82

setting contrasting appearances with,

84–85

styling for interaction, 86–87

adjacent sibling elements

defined, 70

styling based on context, 76–77

:after

counters, 237

defined, 94

defining generated content, 234

Aggregate method, as style sheet strategy,

370–371

alignment

floating elements and, 258–259

horizontal text, 162–163

vertical text, 164–166, 339

414 Index

alpha values, 183–184

alphabetical organization, 365

ampersand (&), as character entity, 123

analogic color, 195

anchor tags, styling with pseudo-classes, 82

angle

Mozilla gradient value, 188

transform values, 307

animation, 276

appearance, of mouse pointer, 232–233

articles (<article>)

defined, 26

using HTML5 structure, 29

asides (<aside>)

defined, 26

using HTML5 structure, 29

aspect-ratio, 100

associations, color, 191

asterisk (*)

adding comments to CSS, 66–67

defining universal selectors, 59

styling descendants, 71

attachment, setting background image, 200,

204

attributes

adding class, 54

adding generated content, 235

adding id to HTML tag, 56

changing :hover, 87

defining styles based on tag, 96–99

list-style, 219

vs. selectors, 12

Audio and Video Timed media playback, 25

B
backface-visibility, 3D transformations, 313

background, 208–211

background-attachment, 204

background-clip, 206

background-color, 198–199

background-image, 201, 390

background-origin, 207

background-position, 204–205

background-repeat, 203

backgrounds

box properties, 246

color gradients in, 187–190

color palette for, 192–193

gradients in, 391

link styles and, 352

new in CSS3, 13

putting it all together, 212

setting border image, 271–273

setting color, 198–199

setting image, 200–207

shorthand, 208–211

styling for print, 108

background-size, 205

:before

counters, 237

defined, 94

generated content and, 234

best practices, CSS, 385–392

blink, 174

block, 248

block-level elements

creating multicolumn layout, 346

HTML selectors for, 20

redefining HTML tags, 50

Blueprint, CSS Frameworks, 367

blur

drop shadow, 160

setting element shadow, 300

body (<body>)

adding unique class name or ID to body tag

of every page, 387

defined, 17

HTML5 structure for, 28

not placing style links in, 386

redefining HTML tags, 50

setting background color, 192

setting margins, 262

bolding

fonts, 142–143

link styles and, 352

border-bottom, 174

border-collapse, 223

border-radius, 268–270

Index 415

borders

adding color with, 184

box properties, 246

clipping element, 297

collapsing between cells, 223–224

color palette for, 193

CSS resets for, 339

new in CSS3, 13

rounding corners, 268–270

setting background-clip, 206

setting background-origin, 207

setting element, 265–267

setting image, 271–273

setting space between table cells, 222

border-spacing, 222

bottom, setting element position, 290–291

box properties

coming soon, 276

controlling overflowing, 254–256

displaying element, 248–250

floating elements in window, 257–259

overview, 241–244

putting it all together, 277

rounding border corners, 268–270

setting border image, 271–273

setting element border, 265–267

setting element height and width, 251–253

setting element margins, 260–262

setting element outline, 263–264

setting element padding, 274–275

understanding element’s, 245–247

boxes

CSS fixes for IE6 box model, 333–334

new in CSS3, 13

box-shadow, 300–301, 316

box-sizing, 276

break tag clear fix, for floating elements,

340–341

browsers

2D transformations, 308–311

3D transformations, 314

attribute selector compatibility, 96

background color settings, 198–199

background shorthand support, 211

cascade order of, 115

color gradients, 187–190

color value compatibility, 181

combinatory selector compatibility, 71

CSS extensions, 11–12

CSS resets for creating consistent browser

styles, 336

CSS support, 324

CSS3 and, 14

custom pointer support, 233

default margins, 262

designing for enhanced features of, 325

downloadable Webfonts and formats,

127–128

evolution of CSS and, 6–7

font size for screen vs. print, 135

font-family values, 127

HTML5 work in IE, 30–31

inherited styles, 18

inline styles, 37

link style settings, 85

media querying, 100–102

positioning and, 289

pseudo-class compatibility, 81

pseudo-element compatibility, 92

pseudo-element syntax support, 95

specifying styles with media queries,

103–105

teaching to count, 236–237

transitions, 318

troubleshooting code on different, 375

understanding window and document,

283–284

bullets

creating, 217

positioning, 218

setting style, 216

buttons, dynamic styles for, 388

C
Camino, CSS extension, 12

Canvas element, new in HTML5, 25

capitalization

small caps, 144–145

text properties, 158–159

416 Index

clipping

element’s visible area, 296–297

positioning type and, 285

close angle bracket (>), styling children, 74

code

creating minified version of CSS code,

382–384

debugging with Firebug, 376–378

debugging with Web Inspector, 379–380

troubleshooting CSS code, 372–375

validating CSS code, 381

collapsing borders, between table cells,

223–224

collapsing margins, 262

colon (:)

CSS tips, 37

pseudo-element syntax, 95

color, 102, 196–197

color alpha values, 183–184

Color Palette Generator, 195

color wheel, 194–195

Color Wheel Selector, 195

color-index, 102

colors

background, 198–199, 209

border, 266–267

drop shadows and, 161

element shadow and, 301

glossary of colors used, 362–363

gradients in backgrounds, 187–190

keywords, 185–187

link styles and, 85

new in CSS3, 13

overview, 179–180

palette of, 190–195

putting it all together, 212

RGB color values, 390

styling for print, 108

text, 196–197

values of, 181–184

columns, multicolumn layout, 346–349

combinatory selectors

defining styles based on context, 72–79

overview, 71

caption:, mimicking visitor styles, 149

captions, positioning in table, 226

caption-side, 226

cascade

determining cascade order, 113–115

making declarations !important, 111–112

case, setting text, 158–159

cells

collapsing borders between, 223–224

dealing with empty, 225

setting space between, 222

centering element, 262

character entities, 123

character sets, specifying, 119–120

child elements

box properties, 245–246

floating, 258

inheriting properties from parent, 111–112

opacity, 299

positioning, 291

styling based on context, 74–75

styling specific with pseudo-classes, 88–90

text decoration properties, 174

choke, 301

Chrome

3D transformations, 311

CSS extension, 12

testing code in, 391

tools for analyzing/editing code, 376

Web Inspector, 379–380

Webkit gradients, 189–190

class selectors

basics, 34

defining, 51–54

overview, 9

styling with pseudo-classes, 85

troubleshooting CSS code, 373

classes

defining reusable, 51–54

mixing and matching, 388

using generic names for, 387

clear, 258–259

clear fix, for floating elements, 340–341

clip, setting background image, 200, 206

Index 417

cropped content, for preventing overflow,

254–256

CSS (Cascading Style Sheets), basics

best practices, 385–392

comments, 66–67

defined, 3–5

embedded styles, 38–40

evolution of, 6–7

external styles, 41–47

grouping, 62–65

HTML and, 18

HTML selectors for elements, 19–21

inline styles, 35–37

overview, 33

properties with transitions, 317

putting it all together, 68

Quirks mode and Standards mode, 324

redefining HTML tags, 48–50

reusable classes, 51–54

selectors, 34

unique IDs, 55–58

universal styles, 59–61

CSS (Cascading Style Sheets) fixes

clear fix for float problem, 340–341

correcting box model in IE6, 333–334

floating elements and, 340

IE6 and, 324

overflow fix for float problem, 342

setting up conditional styles in IE, 328–332

underscore hack for IE6, 325–327

CSS (Cascading Style Sheets) resets

Eric Meyer’s reset, 338

overview, 335–336

simple example, 336–337

starting with clean slate, 391

what you should reset, 339

Yahoo!’s YUI2 reset, 337

CSS (Cascading Style Sheets), techniques

drop-down menus, 356–359

image rollovers added to Web pages,

354–356

multicolumn layout, 346–349

overview, 343–345

sprite technique, 354

styling navigation and links, 350–353

commas (,) for grouping selectors, 62

comments

adding to CSS, 66–67

best practices for, 392

troubleshooting CSS code, 373

compact, 251

compatibility

attribute selectors, 96

child siblings in IE, 78

color values, 181

combinatory selectors, 71

custom pointers, 233

font family, 124

font-size-adjust values, 136

media queries, 101

pseudo-classes, 81

pseudo-elements, 92

complementary colors, 194

conditional styles, setting up for IE, 328–332

content

adding with CSS, 234–235

box properties, 246

choosing color palette based on, 193

controlling overflowing, 254–256

new in CSS3, 14

setting background-clip, 206

setting background-origin, 207

styling before and after, 94

styling for print, 108

styling links based on, 350

contextual selectors

defining styles based on, 71–79

overview, 70

contrast

color and, 195

links and, 82–85

copying

from color palette, 193

converting quotes during, 37

corners, rounding, 268–270

counter-increment, 236–237

counter-reset, 236–237

counters, 235

counting, browser, 236–237

418 Index

tools for turning on/off, 376

Web Inspector for turning off, editing,

or adding, 380

decoration, text property, 172–174

default background, 211

default design, eliminating, 335

default font values, 147

default link state, 84

default margins, 262

default styles

determining cascade order, 115

media queries and, 103

delay, setting transition, 319

deletion, line-through text property for, 174

dependent classes, 51–52

dependent IDs, 56

descendant elements

defined, 70

styling based on context, 71–73

design enhancement

CSS for, 14

eliminating design by default, 335

notes on, 315

devices

media queries for, 102

specifying styles for, 103–105

dialogs (<dialog>), 26

dingbats, 122

display

display vs. visibility, 295

element, 248–250

overflow, 255

understanding window and document,

283–284

<div> tags, HTML, 54

Divide and Conquer method, style sheet

strategy, 369–370

doctypes (<!DOCTYPE>)

defined, 17

HTML5 structure and, 27

reasons for using, 30

specifying, 385

documents

editing in HTML5, 25

HTML structure (basic), 17

CSS Frameworks, 367

CSS libraries, 367

CSS1 (Cascading Style Sheets Level 1), 7

CSS2 (Cascading Style Sheets Level 2), 7

CSS3 (Cascading Style Sheets Level 3)

CSS defined, 3–5

evolution of, 6–7

HTML and, 8

new in, 13–14

overview, 1

rule parts, 11–12

rules, 9–10

style defined, 2

W3C and, 10

CSS-Positioning, 7

curly brackets ({ })

in declarations, 48

troubleshooting CSS code, 373

currentcolor

defined, 182

setting background color, 198

cursive fonts, 121

cursor, 232

D
debugging CSS code

with Firebug, 376–378

with Web Inspector, 379–380

decimal color values

color keywords, 184

defined, 181–182

vs. hex color values, 184

declarations

adding for selector grouping, 63

adding to classes, 52

adding to ID, 56

adding to universal selectors, 59

defined, 11

defining HTML selectors, 48–50

Firebug for turning off, editing, or adding,

378

!important, 111–112, 375

inline styles, 35–37

position, 287

Index 419

inspecting with Web Inspector, 380

not styling, 91

pseudo, 92–95

small cap settings, 144–145

styling based on attributes, 96–99

styling based on context, 71–79

styling before and after, 94

styling children of, 89

tools for highlighting when rolling over, 376

transformation, 307–315

transitions between element states,

316–320

types in HTML, 19–21

types new in HTML5, 25

visual formatting properties. Seevisual

formatting properties

elliptical corners, 269

Emastic, CSS Frameworks, 367

Embedded OpenType (EOT), 127, 129

embedded styles, adding to Web page, 38–40

emotions, color association and, 191

empty cells, dealing with, 225

end point, Webkit gradient value, 189

End User License Agreements (EULA), for

fonts, 131

entities, character, 123

EOT (Embedded OpenType), 127, 129

equals sign (=), CSS tips, 37

errors

troubleshooting CSS code, 372–375

viewing, 376

EULA (End User License Agreements), for

fonts, 131

evolution

of CSS, 6–7

of HTML5, 22–24

extensions

2D transformations, 308–311

3D transformations, 314

CSS browser, 11–12

Mozilla gradient, 188

transition, 318

Webkit gradients, 189–190

HTML5 structure, 27–31

understanding, 283–284

double colon (::), pseudo-element syntax, 95

double quotation marks (“ ”), CSS tips, 37

double quotes (“ ”), for specifying style,

238–239

double-spacing text, 157

drag-and-drop, new in HTML5, 25

drop cap styled letters, 93

drop shadow

adding to text, 160–161

setting element, 300–301

drop-down menus, 356–359

duration, setting transition, 319

Dynamic method, style sheet strategy, 371

dynamic pseudo-classes

overview, 80–81

setting contrasting appearances with,

82–85

styling for interaction, 86–87

dynamic styles, for form elements, button,

and interface elements, 388

E
edge, element, 284

editing, new in HTML5, 25

effects, transition, 316–320

elements

alignment of, 166

background color settings, 198–199

box properties. Seebox properties

cascade order of, 113–115

default styles for HTML elements, 387

defined, 16

defining using same styles, 62–65

dynamic styles and, 388

edge, 284

family tree, 70

font definition for Web, 128–130

font family definition, 124–125

font size adjustments, 136–138

font size settings, 133–135

font-style definition, 139–141

inspecting with Firebug, 378

420 Index

overflow fix, 342

overview, 257–259

:focus, styling for interaction, 86–87

font families

defining fonts for Web, 129

defining multiple font values, 147

generic, 120–122

overview, 119

setting font stack, 124–125

font properties

adjusting size for understudy fonts, 136–138

bolding, 142–143

finding fonts, 126–130

Font Squirrel, 131

italicizing, 139–141

multiple values, 146–149

overview, 117–118

putting it all together, 150

setting font stack, 124–125

setting size, 133–135

small caps, 144–145

typography on Web, 119–123

Webfont, 132

Font Squirrel, 131

@font-face, 128, 364

fonts

creating glossary of fonts used, 362–363

new in CSS3, 14

quoting names, 37

relative sizing, 389

font-size

defining multiple font values, 148

scientific notation, 166

setting, 133–135

font-size-adjust, 136–138

font-stretch, 139

font-style, 139–141, 146, 148

font-variant, 144–146, 148

font-weight, 142–143, 146, 148

footers (<footer>)

overview, 26

using HTML5 structure, 29

external CSS

adding to Web site, 41–47

always locating final styles in external files,

386

keeping number of external style sheets to

minimum, 386

F
fantasy fonts, 122

figures (<figure>), 26

file formats, downloadable Webfonts and,

127–128

file size, style sheet strategies and, 368

files, creating external CSS, 41–47

filter

opacity, 298

radial gradient, 187

Firebug

debugging CSS code in Firefox, 377–378

tools for analyzing/editing code, 376

Firefox

color gradients, 188

CSS extension, 12

CSS support, 324

sizing elements, 253

testing code in, 391

tools for analyzing/editing code, 376

using Firebug add-on, 377

W3C box standard, 334

:first-child, 88–89

:first-letter, 92–93

:first-line, 92–93

:first-of-type, 88–89

fixed, table layout, 220–221

fixed backgrounds, 211

fixed positioning

defined, 287

setting, 288

tip, 289

floating elements (float)

box properties and, 257–259

break tag clear fix, 340–341

creating multicolumn layout, 346–349

CSS fixes for, 340

Index 421

height

adjusting line, 156–157

box properties, 246–247

height property, 100

setting element, 251–253

window and document, 283–284

hex color values

color keywords, 185–187

defined, 181–182

vs. decimal color values, 184

hiding

cursor, 232

elements, 250–251, 294–295

empty table cells, 225

overflow, 255

hierarchy, organizing based on CSS rules, 366

horizontal alignment, of text, 162–163

:hover

overview of, 82

setting contrasting appearances with, 84–87

HSL values, 183–184

HTML (HyperText Markup Language)

box properties. Seebox properties

character entities, 123

class attributes added to, 54

CSS and, 8

defined, 16–18

id added to, 56

inline styles added to, 35–37

redefining tags, 48–50

text control, 119

HTML selectors

basics, 34

defining, 48–50

overview of, 9

HTML5

applying structure, 27–31

basic HTML defined, 16–18

elements, 19–21

evolution of, 22–24

new in, 25

overview, 15

putting it all together, 32

structure, 26

formats

custom pointer, 233

font difficulties, 131

font file, 127–128

pseudo-classes, 81

visual properties. Seevisual formatting

properties

forms

color palette options for, 193

dynamic styles for, 388

frame tags, in HTML5, 25

frameworks, CSS Frameworks, 367

from, Webkit gradient value, 190

G
generated content

CSS for, 234–235

putting it all together, 240

generic font families

overview, 120–122

setting font stack, 125

glyph, 119

gradients

in backgrounds, 187–190, 391

color values, 184

graphics

adding mouse pointer, 233

as bullets, 217

styling for print, 108

grids, multicolumn layout, 346

grouping, elements using same styles, 62–65

H
hacks, 325

hanging-punctuation, 176

head (<head>)

overview of, 17

placing style links in, 386

using HTML5 structure, 28

header (<header>)

choosing color palette, 193

defined, 17

overview of, 26

using HTML5 structure, 28

422 Index

element display, 250

element opacity, 299

element visibility, 294

generated content and, 235

position type, 288–289

of properties from parent, 109–110

setting space between table cells, 222

inline elements

displaying, 248

HTML selectors for, 19–20

inline styles

adding to HTML tag, 35–37

cascade order of, 114

inline-block, 250

insetting element shadow, 301

inside, bullet positioning, 218

interface chrome, background images or styles

for, 390

interface elements, dynamic styles for, 388

Internet Explorer (IE)

box model and, 247

child sibling support, 78

color gradients, 187

CSS extensions, 12

CSS3 support in IE 9, 14, 324

element opacity settings, 298–299

fixing code in, after testing in other

browsers, 391

HTML5 in, 30–31

pseudo-element syntax support, 95

universal selector support, 59

Internet Explorer (IE), CSS fixes for

correcting box model in IE6, 333–334

overview, 324

setting up conditional styles in IE, 328–332

underscore hack, 325–327

introduction section, adding at top of CSS, 362

iPhone, styles tailored for, 103–105

ISO 8859-1 character set, 120

italics

fonts, 139–141

link styles and, 352

hue, 183

hypertext links. Seelinks

I
icon:, mimicking visitor styles, 149

ID selectors

basics, 34

defining, 55–56

overview of, 10

styling with pseudo-classes, 85

troubleshooting CSS code, 373

IDs

defining unique, 55–58, 387

rules, 10

iframes, 283

image rollovers, added to Web pages,

354–356

images

custom pointer, 233

resizing, 253

setting background, 200–207, 209–210

setting border, 271–273

using as bullets, 217

@import

Aggregate method and, 370

Dynamic method and, 371

favoring <link> over, 392

importing external CSS files, 46

placing at top of CSS, 364

!important

adding to declarations, 375

cascade order of, 114

making declarations, 111–112

removing before site goes live, 389

importing

CSS files, 42

external CSS files, 46

external CSS to Web pages, 43

style sheet strategies and, 368

indentation, text paragraphs, 167–168

inheritance

anchor link styles, 85

bullet positioning, 218

cascade order and, 115

Index 423

line height

adjusting, 156–157

CSS resets for, 339

font values, 147

linear gradients, 187, 189

lines

styling first, 92–93

text decoration, 176

line-through, 172

:link

overview, 82

setting contrasting appearances with,

84–85

links (<link>)

adding styles to HTML documents, 386

color palette options for, 193

to external CSS, 43–45

external CSS to HTML files, 44–45

external CSS to Web pages, 43

favoring link over @import, 392

media queries and, 105

pseudo-classes, 80

style sheet strategies and, 368

style sheets to HTML files, 44

styling, 350–353

styling link state, 391

styling with pseudo-classes, 82–85

troubleshooting CSS code, 373–374

underlining, 88, 174

list properties

bullet style, 216, 218

creating bullets, 217

putting it all together, 227

setting multiple styles, 219

list-item, element display, 250

lists

color palette for, 193

links, 352

list-style, 219

list-style-image, 217

list-style-position, 218

list-style-type, 216

local source decoys, 129

lowercase text, 158

J
JavaScript

CSS and, 8

making HTML5 work in IE, 30–31

justifying text, 175

K
kerning

text properties that are coming soon, 176

vs. tracking, 154

keywords, color, 181–182, 185–187

kludges, 153

Kuler, 195

L
:lang(), 89–90

languages

specifying character sets, 119–120

styling for, 89–90

:last-child, 88–89

:last-of-type, 88–89

layout

bullets, 217

multi-column boxes, 276

tables, 220–221

leading

adjusting, 156–157

overview of, 153

left, setting element position, 290–291

left alignment, of floating elements, 258–259

legal issues, fonts and, 131

length

of background position, 204

of element shadow, 300–301

of indentation, 167

transform values and, 307

letterforms, 117

letters

spacing, 153–154

styling first, 92–93

letter-spacing, 153–154

libraries, CSS libraries, 367

licensing fonts, 131

lightness, as color value, 183

424 Index

multicolumn layout

boxes for, 276

overview, 346–349

multiline comment tags, 373

N
naming

classes, 52, 56

ID selectors, 55

IDs, 56

navigation (<nav>)

color palette for, 193

defined, 26

displaying, 295

preventing navigation noise, 359

styling, 350–353

styling for print, 108

using HTML5 structure, 28

navigation links, styling, 352

negation selector, 91

negative margins, setting, 260

negative values, setting element position, 291

nested tags

box properties, 245

overview of, 70

nesting comments, 67

newspaper style, 162

normal flow, 284

normal white-space, 169–170

:not, 91

nowrap white-space, 169–170

:nth-child(#), 88–89

:nth-last-of-type(#), 88–89

:nth-of-type(#), 88–89

number, transform values, 307

numbering, counting with browsers, 236–237

O
objects, stack in 3D, 292–293

oblique fonts, 139–141

offsetting outlines, 264

One For All method, style sheet strategy,

368–369

M
margins

box properties, 247

clipping element, 297

CSS resets for, 339

favoring over padding, 391

positioning and, 289

setting element, 260–262

markup languages, 17

matrix()

2D transformations, 310

3D transformations, 315

max-height, 253

max-width, 253

media

determining cascade order, 114

new in CSS3, 14

@media

placing @ rules at top of CSS, 364

tailoring Web pages to devices, 388

media query

overview, 100–107

tailoring Web pages to devices, 388

menu:, mimicking visitor styles, 149

menus, drop-down, 356–359

message-box:, mimicking visitor styles, 149

Meyer, Eric, 338

min-height, 253

mini-caps, 144–145

Minify CSS

applying before launch, 392

CSS Compressor & Minifier, 382

minifying CSS code with, 383–384

min-width, 253

monochrome, 102, 194

monospace fonts, 121

mouse pointer, styling appearance of,

232–233

Mozilla

color gradients, 188

CSS extensions, 12

rounding border corners, 270

Index 425

palette, color, 190–195

Color Palette Generator, 195

overview of, 190–192

selecting, 192–194

paragraphs

indentation, 167–168

links, 352

parent elements

box properties, 245

defining styles based on context, 71–79

determining cascade order, 115

floating, 258

inheriting properties from, 109–110

overview of, 70

pasting, converting quotes when, 37

percentage values

background position settings, 205

color settings, 183

period (.), defining classes, 51, 54

perspective, 3D transformations, 312, 314

perspective-origin, 3D transformations, 313

point

Mozilla gradient, 188

overview of, 135

position

Mozilla gradient value, 188

setting background image, 200, 204–205

positioning

background images, 200, 204–205, 210–211

bullets, 218

captions in table, 226

elements, 290–291

objects in 3D, 292–293

type, 285–289

pound (#), defining ID selectors, 55

pre white-space, 169–170

preceding sibling elements, 70

prefixes, browser, 12

presentation, focusing on structure prior to

presentation, 385

presentation tags, in HTML5, 25

Presto, CSS extension, 12

primary fonts, 124

opacity

color, 184

element settings, 298–299

new in CSS3, 14

OpenType fonts (OTF), 127, 130

Opera

CSS extension, 12

CSS support, 324

W3C box standard, 334

operating system, troubleshooting code on

different, 375

order, determining cascade, 113–115

organization scheme, choosing consistent

pattern for CSS, 365

orientation, 102

origin, setting background image, 200, 207

OTF (OpenType fonts), 127, 130

outline-offset, 264

outlines

adding color with, 184

box properties, 247

CSS resets for, 339

setting element, 263–264

text, 175

outside, bullet positioning, 218

overflow

controlling element, 254–256

fix for floating elements, 342

tip, 253

overlapping text, 260

overline, 172

P
padding

box properties, 246, 274–275

clipping element, 297

CSS resets for, 339

favoring margins over, 391

setting background-clip, 206

setting background-origin, 207

page breaks, styling for print, 108

page structure, organization based on, 365

426 Index

punctuation-trim, 176

purpose, organization based on, 365

Q
querying media. Seemedia query

Quirks mode

CSS support and, 324

overview of, 30

quotation marks (“ ”)

adding generated content, 235

CSS tips, 37

specifying style, 238–240

R
radial gradients

overview of, 187

Webkit, 189

radius, Webkit gradient value, 189

readability, creating readable style sheets,

362–366

rectangular clipping, 296–297

relative font sizes, 135, 389

relative positioning, 286, 288

rendering engines, 4

repeat

background image, 200, 203

border image, 273

repertoire of characters, 119

repetition, avoiding unnecessary, 389

resets, CSS

Eric Meyer’s reset, 338

overview, 335–336

simple example, 336–337

what you should reset, 339

Yahoo!’s YUI2 reset, 337

resize, 276

resolution, 102

reusable classes, 51–54

RGB color values, 181–182, 390

right alignment

floating elements, 258–259

setting element position, 290–291

rotate()

2D transformations, 310

3D transformations, 314

print

font size for, 135

paragraph indentation, 167–168

selective styling for, 108

styles tailored for, 103

progressive enhancements, designing for

enhanced browser features, 325

properties

applying CSS to HTML elements, 21

box. Seebox properties

color. Seecolors

CSS, 4

CSS rules, 11–12

font. Seefont properties

grouping selectors, 63

HTML, 17–18

HTML selector, 48–50

inheriting, 109–110

inline style, 35

language, 89–90

link state, 82

list. Seelist properties

making declarations !important, 111–112

media query, 100–102

shorthand, 390

style, 2, 96–99

styling before and after content, 94

table. Seetable properties

text. Seetext properties

transformation. Seetransformation

properties

transition. Seetransition properties

troubleshooting CSS code, 373

user interface. Seeuser interface properties

visual formatting. Seevisual formatting

properties

pseudo-classes

counters, 237

defining generated content, 234

styling for interaction with, 86–87

styling links with, 82–85

styling specific children with, 88–90

working with, 80–81

pseudo-elements, 92–95

punctuation, hanging, 176

Index 427

sections (<section>)

for keeping CSS organized, 364

overview of, 26

::selection, 95

selective styling

cascade order in, 113–115

context determining, 71–79

element family tree, 70

!important declarations, 111–112

inheritance and, 109–110

media query and, 100–107

not styling an element, 91

overview, 69

for print, 108

pseudo-class interactions, 86–87

pseudo-class links, 82–85

pseudo-elements and, 92–95

putting it all together, 116

specific children with pseudo-classes,

88–90

tag attributes determining, 96–99

working with pseudo-classes, 80–81

selector lists, combining rules into, 388

selectors

attribute, 96

basic CSS, 34

class, 51–54

combinatory, 71–79

in CSS rules, 11

grouping, 62–63

HTML, 48–50

HTML for block-level elements, 20

HTML for inline elements, 19

ID, 55–56

negation, 91

organization based on selector type, 365

overview, 9–10

universal, 59

semicolon (;)

character entities, 123

troubleshooting CSS code and, 373

serif fonts, 120

service bureaus, Webfont, 132

round, setting border image, 273

rules

adding to text files, 42–43

background, 208–211

combining into selector lists, 388

CSS, 11–12, 34

CSS3, 9–10

deleting and retyping when troubleshooting,

375

@font-face, 128

@media, 106–107

organizational hierarchy based on, 366

placing at top of CSS, 364

<style>, 40

tools for viewing, 376

troubleshooting CSS code, 374

run-in, element display, 250

S
Safari

3D transformations, 311

CSS extension, 12

CSS support, 324

testing code in, 391

tools for analyzing/editing code, 376

W3C box standard, 334

Web Inspector, 379–380

Webkit gradients, 189–190

sans-serif fonts, 121

saturation, color values, 183

Scalable Vector Graphics (SVG)

defined, 18

defining source, 130

fonts and file formats, 128

scale()

2D transformations, 310

3D transformations, 315

scientific notation, text alignment, 166

screen, font size for, 135

scrolling

background images, 210

overflow, 256

searches, finding fonts, 126–130

428 Index

square brackets ([]), in attribute selector

syntax, 96

stack, font, 124–125

stacking objects in 3D, 292–293

stacking order, setting positioning type, 285

Standard Generalized Markup Language

(SGML), 17

standards, evolution of CSS and, 6–7

Standards mode, CSS support and, 324

start point, Webkit gradient value, 189

states

pseudo-class, 80

transitions between element, 316–320

static positioning, 285, 288

status-bar:, mimicking visitor styles, 149

stop

Mozilla gradient value, 189

Webkit gradient value, 190

strategies, style sheet

Aggregate method, 370–371

Divide and Conquer method, 369–370

Dynamic method, 371

One For All method, 368–369

overview, 368

stretch, to fill borders, 273

stretching fonts, 139

stretching images, 271–273

Strict mode, CSS support and, 324

strings, defining styles based on attributes,

97–99

structural pseudo-classes, 80–81

structure

applying HTML5 now, 27–31

focusing on structure prior to presentation,

385

HTML, 16–17

HTML5, 25–26

style sheets

Aggregate method, 370–371

best practices, 385–392

comments in, 66–67

creating minified version of CSS code,

382–384

creating readable, 362–366

CSS Libraries and Frameworks and, 367

SGML (Standard Generalized Markup

Language), 17

shadows

adding to text, 160–161

visual formatting properties, 300–301

shape, Mozilla gradient value, 188

shorthand

background, 208–211

properties, 390

setting multiple list styles, 219

sibling elements

defined, 70

opacity of, 299

styling based on context, 76–79

single quotes (‘ ’)

CSS tips, 37

specifying style, 238–239

size

Mozilla gradient value, 189

setting background image, 200, 205

sizing

adjusting understudy fonts, 136–138

background images, 200, 205

boxes, 276

choosing fonts with similar size, 125

defining multiple font values, 147–148

setting elements, 252–253

setting fonts, 133–135

skew(), 2D transformations, 310

slash (/), adding comments to CSS, 66–67

small caps, 144–145

small-caption:, mimicking visitor styles, 149

spacing

between cells, 222

text, 153–157

 tags, creating HTML tags, 54

specificity

best practices for, 388–389

determining cascade order, 115

organization of code and, 392

spread, setting element shadow, 301

sprite technique

best practices for, 390

overview of, 354

Index 429

T
table of contents (TOC), 362–363

table properties

bullet positions, 218

bullet style, 216

caption positioning, 226

collapsing borders between cells, 223–224

creating bullets, 217

dealing with empty cells, 225

layout, 220–221

overview, 213–215

putting it all together, 227

space between cells, 222

table-layout property, 220–221

tables

color palette, 193

element display, 250

links, 352

separating borders between table cells,

223–224

showing/hiding empty table cells, 225

tags

adding inline styles to HTML, 35–37

applying HTML5 structure, 27–31

defining styles based on attributes, 96–99

embedding styles, 38–40

HTML, 16–18

HTML5, 26

language, 90

redefining HTML, 48–50

styling anchor tags with pseudo-classes, 82

sub and sup, 166

tetrad color, 194

tex-overflow, 276

text

bulleting. Seebullets

color palette for, 193

color settings, 196–197

CSS resets for underlines, 339

external CSS and, 42

font settings. Seefont properties

negative margins, 260

new in CSS3, 13

overflow, 256

debugging with Firebug, 376–378

debugging with Web Inspector, 379–380

Divide and Conquer method, 369–370

Dynamic method, 371

keeping number of external style sheets to

minimum, 386

One For All method, 368–369

overview, 361

strategies for, 368

troubleshooting CSS code, 372–375

validating CSS code, 381

styles (<style>)

3D transformations, 312

browser inherited, 18

bullets, 216

embedding, 38–40

font, 139–141

for interface chrome, 390

link state, 391

media queries for specifying, 105

multiple font values, 146

multiple lists, 219

navigation and links, 350–353

overview of, 2

placing style links in <head> section, 386

resetting CSS to reduce bad styles, 335

selective. Seeselective styling

troubleshooting CSS code, 374

universal, 59–61

subscript, 166

superscript, 166

SVG. SeeScalable Vector Graphics (SVG)

syntax

attribute selector, 96

child selector, 74

CSS rule, 11

descendant selector, 71

HTML5, 26

!important, 111

@media, 106

media query, 100

pseudo-class, 80

pseudo-element, 92

sibling selector, 76

430 Index

translate()

2D transformations, 310

3D transformations, 315

transparent

overview of, 182

setting background color, 198–199

transparent colors, styling for print, 108

triad color, 194

Trident, CSS extension, 12

troubleshooting CSS code, 372–375

TrueType fonts (TTF)

defining source, 130

fonts and file formats, 127

TTF (TrueType fonts)

defining source, 130

fonts and file formats, 127

type family, 119

typefaces

adding overrides, 125

creating glossary of fonts used, 362–363

typography

Eric Meyer’s reset for, 338

overview of, 117

text and, 151

on Web, 119–123

Typogridphy, CSS Frameworks, 367

typos, troubleshooting CSS code, 373

U
underlining

CSS resets for, 339

link styles and, 352

text decoration properties, 172, 174

text tip, 88

vs. italicizing, 141

underscore hack

overview of, 325–326

using the IE underscore hack, 325–326

understudy fonts

adjusting size for, 136–138

overview of, 125

Unicode Transformation Format-8 bit (UTF-8),

120

text (continued)

styling for print, 108

underlining tip, 88

text properties

case, 158–159

decoration, 172–174

drop shadow, 160–161

features coming soon, 175–176

horizontal alignment, 162–163

overview, 151–152

paragraph indentation, 167–168

putting it all together, 177

spacing, 153–157

vertical alignment, 164–166

white space, 169–171

text-align, 162–163

text-decoration, 172–174

text-indent, 167–168

text-justify, 175

text-outline, 175

text-shadow, 160–161, 184

text-transform, 158–159

text-wrap, 175

tilde sign (~), defining general sibling

selectors, 78

tiling images, to fill borders, 271–273

timing, transition values, 319–320

to, Webkit gradient value, 190

TOC (table of contents), 362–363

top, setting element position, 290–291

tracking

overview of, 153

vs. kerning, 154

transformation properties

element, 307–315

overview of, 303–306

putting it all together, 320

transformations, new in CSS3, 13

transition properties

between element states, 316–320

overview, 303–306

putting it all together, 320

transitions, new in CSS3, 13

Index 431

content, 234

counter, 236

in CSS rules, 11

cursor, 232

defining styles based on attributes, 96–99

display, 247

element width and height, 252–253

empty-cells, 225

float and clear, 258

font-size-adjust, 136

font-weight, 142

inherit, 110

letter-spacing, 153

line-height, 156

list-style, 219

list-style-image, 217

list-style-position, 218

list-style-type, 216

margin, 260

media, 100

Mozilla gradient, 188

opacity, 298

outline, 263

outline-offset, 264

overflow, 255

padding, 274

perspective and transform-style, 312

positioning, 285

quotes, 238

setting multiple font, 146–149

specifying units for, 385

table-layout, 220

text-align, 162

text-decoration, 172

text-indent, 167

text-shadow, 160–161

text-transform, 158–159

top, left, bottom, right, 290

transformation, 307

transition, 318–319

vertical-align, 164

visibility, 294

white-space, 169–171

word-spacing, 155

z-index, 292

universal selectors

defining, 59

sibling selectors, 78

simple CSS reset, 336

styling descendants, 71, 73

universal styles, 59–61

uppercase text, 158

URLs, adding generated content, 235

user interface properties

generated content, 234–235

mouse pointer appearance, 232–233

overview, 229–231

putting it all together, 240

specifying quotation style, 238–239

teaching browsers to count, 236–237

user styles, cascade order of, 113

UTF-8 (8-bit Unicode Transformation Format),

120

V
validating CSS code, 381

values

3D transformation, 314

backface-visibility and

perspective-origin, 313

background, 208

background-attachment and

background-position, 204

background-clip, 206

background-color, 199

background-image, 201

background-origin, 207

background-repeat, 203

background-size, 206

border, 265

border-collapse, 223

border-image, 271

border-radius, 268

border-spacing, 222

border-style, 267

box-shadow, 300

caption-side, 226

choosing color values, 181–184

clip, 296

color, 197

432 Index

Web

defining fonts for, 128–130

safe fonts for, 126–127

typography on, 119–123

Web fonts, new in CSS3, 14

Web forms, new in HTML5, 25

Web HyperText Application Technology

Working Group (WHATWG), 23

Web Inspector

debugging CSS code with, 379–380

tools for analyzing/editing code, 376

Web Open Font Format (WOFF), 128, 130

Web pages

CSS in, 3–5

embedded styles on, 38–40

image rollovers added to, 354–356

understanding window and document,

283–284

Web sites

adding styles to, 41–47

danger of using inline styles, 37

Webfonts

defined, 123

defining for element, 128–130

downloadable, 127–128

overview of, 117

service bureaus, 132

Webkit

CSS extension, 12

rounding border corners, 270

weight, font values, 142–143, 146

Western color associations, 191

WHATWG (Web HyperText Application

Technology Working Group), 23

white space, controlling text, 169–171

width

border, 265–267

box properties, 246

column, 349

element, 251–253

width property, 100

window and document, 283–284

variants

defining multiple font values, 146

setting small caps, 144–145

versions, CSS, 7

vertical alignment

CSS resets for, 339

of text, 164–166

vertical-align, 164–166

viewports

media queries for, 102, 104

understanding, 283–284

visibility

adding backface-visibility, 313

overflow, 255

setting element, 294–297

setting positioning type, 285

vs. display, 251

:visited

overview of, 82

setting contrasting appearances with,

84–85

visitors, mimicking styles, 149

visual formatting properties

clipping element’s visible area, 296–297

element opacity, 298–299

element position, 290–291

element shadow, 300–301

element visibility, 294–295

overview, 279–282

positioning type, 285–289

putting it all together, 302

stacking objects in 3D, 292–293

understanding window and document,

283–284

W
W3C (World Wide Web Consortium)

boxes and, 333–334

CSS validator, 381

evolution of CSS, 6–7

evolution of HTML5, 22–24

overview of, 10

Index 433

Y
Yahoo!

YUI grids, 367

YUI2 reset, 337

YUI grids, CSS Frameworks, 367

YUI2 reset, 337

Z
zebra striping, 193

z-index, 292–293

window

floating elements in, 257–259

understanding, 283–284

WOFF (Web Open Font Format), 128, 130

word-spacing, 155

wrapping text, 175

X
XHTML, 22

XHTML2, 23

XHTML5, 24

	Table of Contents
	Introduction
	Chapter 4 Selective Styling
	The Element Family Tree
	Defining Styles Based on Context
	Styling descendents
	Styling only the children
	Styling siblings

	Working with Pseudo-classes
	Styling links
	Styling for interaction
	NEW IN CSS3: Styling specific children with pseudo-classes
	Styling for a particular language
	NEW IN CSS3: Not styling an element

	Working with Pseudo-elements
	Working with first letters and lines
	Setting content before and after an element

	Defining Styles Based on Tag Attributes
	NEW IN CSS3: Querying the Media
	Media queries
	Using the @media rule

	Inheriting Properties from a Parent
	Managing existing or inherited property values

	Making a Declaration !important
	Determining the Cascade Order
	Putting It All Together

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

