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Abstract

A deep-learning-based visual recommender system was
built in an unsupervised fashion. The system uses Adver-
sarial Generative-Encoder Network[14] to learn embed-
dings for images and then K-nearest neighboring images
of the query image in the embedding space is output as rec-
ommendation results. Such system will be most useful for
E-commerce companies where visual recommendation can
be used to alleviate cold start issue of common non-deep-
learning-based recommender system.

1. Introduction
Convolution neural network has so far done a great job

in image classification and recognition[9][11][12]. This
technology has been introduced to many industrial areas,
where the demand in computer vision is growing higher and
higher, especially in E-commerce. Scientists and engineers
used new technologies to assist customers with product rec-
ommendations. For instance, we can use Mobile Taobao or
Amazon Rekognition to find the ideal product by uploading
photos or pictures from Internet.

However, currently most such recommendation systems
are built in a supervised way. In this project, We seek to
build a deep-learning-based visual recommender system in
an unsupervised fashion. Since in a real situation, adding
labels to each single picture would be expensive and time-
consuming. We will use Adversarial Generative-Encoder
Network to achieve this goal, which can embed images into
a simpler space by learning a pair of mappings between the
data distribution and a given simple distribution. Given a
query image, the system can then recommend to the user
the top k images in the database that are closest to the query
image in the simple embedding space.

2. Problem Statement
Using crawler technology to steal image data of retail-

ers or from E-commerce websites is illegal, while we do

not have access to these database, data from ImageNet and
other standard deep learning dataset were used instead. For
example, since there are more than 14 million images in the
ImageNet dataset [1], we can simply assume that once we
can do a satisfactory recommendation on ImageNet, we can
also recommend pictures of high similarity on retailers’ or
other image datasets.

Our approach is also evaluated on ImageNet dataset
and other standard deep learning dataset such as CelebA,
SVHN, and CIFAR10. Since each image in these datasets
is labeled to a specific class, we can then define a reasonable
recommendation to be those recommended images that are
in the same class as the input query image. Then we define
the recommendation precision to be the proportion of rea-
sonable recommendations within all recommended images
output by the model. We will use Recommendation preci-
sion as our main metric for measuring the performance of
our system. We will also compare our results with some
baseline models such as simple K-Nearest-Neighbor in the
data space.

3. Related Work
Many efforts have been made to resort to the great power

of neural networks do visual recommendation in a super-
vised fashion. In [3], the author proposes a Siamese Net-
work that uses two channels of identical convolutional neu-
ral networks to learn a similarity metric for images. The
method was tested on 3 face recognition datasets and other
2 small datasets. The results are promising but the datasets
are rather simple. [2] further implements the idea of [3] on
a larger dataset. The dataset contains mainly room decora-
tion and home design image and is carefully collected by
the author by building a whole platform for human workers
to mark two images to be similar. The data collected takes
great effort of quality control and the article takes a large
volume to describe how it is actually done. The results are
promising but the whole process of collecting labeled data
reveals the most obvious cons of supervised recommender
system that it requires massive amount of hand labeled data.

Generative Adversarial Network(GAN)[7] is a powerful

1



framework for estimating generative models via an adver-
sarial process, in which a generative model G that captures
the data distribution and a discriminative model D that esti-
mates the probability that a sample came from the training
data rather than G are trained adversarially. Works have
been done to modify GAN so that an inverse mapping of G
can be learned to map data into a simpler space. [5] and [4]
are two papers published at about the same time. They both
independently proposed a Bi-directional GAN structure that
train an encoder E together with the G and D of common
GAN. This model gives good generative and reconstruction
quality of the output image, whereas the downside is that
Bi-GAN turns out to tricky to train.

4. Technical Approach
We plan to use Adversarial Generator-Encoder Network

(AGE Network)[14] to learn image feature representation
in an unsupervised fashion. Such feature representation is
useful for many downstream tasks such as finding similar
images semantically and build a visual recommender sys-
tem.

Adversarial Generator-Encoder Network (AGE Net-
work) is appropriate for extracting features from images.
Compared with other similar generative adversarial mod-
els, such as Adversarially-Learned Inference (ALI)[5] and
Bi-directional Generative Adversarial Nets (BiGAN)[4], a
promising feature for AGE Networks is that it doesn’t have
external discriminator. Instead of using discriminator to
output a binary result representing whether a image is fake
or not, the AGE network can take a batch of samples and
thus it can compare the distribution of fake image and real
image. The advantage of this feature is that it can address
the mode collapse issue of regular GAN model (usually
happens when generator learns to map several different in-
put z values to the same output point[6]). And it has been
shown that the feature embeddings learned by AGE Net-
work is useful in downstream task. Therefore, we plan to
use the representation of image in latent space learned by
AGE Network to build a recommendation system in a se-
mantic way.

In short, the overall AGE Network model includes a gen-
erator and an encoder, which define the mapping between a
given distribution in latent space and the data distribution.
The generator will try to generate images as indistinguish-
able from the real data as possible, while the encoder will
try to distinguish them from real data. In other words, the
generator try to make the distribution of real image and fake
image in latent space as close as possible, while the encoder
will try to make the two distribution as different as possible.
During the ”battle” between the generator and the encoder,
the joint model gradually ”learn” the optimal mappings be-
tween the given distribution and the data distribution. Fig-
ure 1 shows the overall architecture of the AGE network.

Figure 1: AGE Model Architecture

4.1. Distribution Divergence Loss

Formally speaking, the optimization problem for the en-
coder and generator in AGE Network is defined as the fol-
lowing:

max
e

min
g
V (g, e) (1)

where e represents the mapping from image distribution
to latent space defined by encoder, g represents the mapping
from latent space to image distribution defined by generator,
and V is the distribution divergence. It should be empha-
sized that the divergence between the outcome distribution
of encoder and generator is measured in latent space. In
practice, we usually train the network adversarially by train
each of them several steps in turn. That is, we can break
down the overall optimization objective into the objective
of encoder and generator respectively:

θ̂ = argmin
θ

(V (gθ, eψ̄)) (2)

ψ̂ = argmax
ψ

(V (gθ̄, eψ)) (3)

where θ and ψ denote the value of the encoder and gen-
erator parameters. Equation (1) corresponds to generator’s
objective to make two distribution indistinguishable, while
equation (2) corresponds to encoder’s objective to encode
them as different as possible. As mentioned before, we only
compare them in latent space, since the encoder e maps dis-
tributions X and g(Z) in the latent space to the distributions
e(X) and e(g(Z)) in the latent space. Thus, we can rewrite
the above objective into following formula:

V (g, e) = ∆(e(g(Z))||e(X)) (4)

Where Z is the given distribution in latent space, which
usually serves as noise in latent space, X is the real data
distribution, which depends on the dataset we training the
AGE network, ∆ is the distribution difference measure in
latent space, and it has to be nonnegative and zero if and
only if the distributions are identical.
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However, it should be noticed that (4) requires to com-
pare the two general form distributions, which is compli-
cated if we are only given in the form of samples in prac-
tice. Therefore, we further claim that the divergence mea-
sure V (g, e) is equivalent to their relative divergence differ-
ence with respect to a fixed distribution, That is,

V (g, e) = ∆(e(g(Z))||Y )−∆(e(X)||Y ) (5)

where Y is a fixed distribution in the latent space. In our
model, we keep Y fixed as standard Gaussian distribution.
Remember that ∆ has to be nonnegative and zero if and only
if the distributions are identical, and thus we choose KL-
divergence to measure the distribution difference in latent
space. That is,

V (g, e) = KL(g||N(0; I))−KL(e||N(0; I)) (6)

In order to analytically compute the above divergence
for a mini-batch of examples, we introduce a parametric es-
timator giving the distribution divergence as below:

KL(g||N(0; I)) ≈ −M
2

+

M∑
j=1

µ2
gj + σ2

gj

2
− log(µgj ) (7)

where M is the dimension of encoding vector, and
µgj , σgj are the first and second moment of the sample.

4.2. Reconstruction Loss

Although the above analysis can ensure that if we min-
imize the distribution divergence loss, the generator and
encoder can represent the optimal mapping between data
space and latent space. However, it doesn’t necessarily en-
tails reciprocity of the e and g mappings at the level of in-
dividual samples. That is, given a real image, the gener-
ated image according to its embedding from encoder might
be very different from its original image. Therefore, we
also add a term of reconstruction loss L in the loss function.
Specifically,

LX(gθ, eψ) = EX ||x− gθ(eψ(x))||2 (8)

LZ(gθ, eψ) = EZ ||z − eψ(eθ(z))||2 (9)

As shown above, the reconstruction loss can be either
measured in latent space or data space. The reconstruction
loss in data space is the traditional loss used within auto-
encoders. In experiments, however, we found that mea-
suring the reconstruction loss in latent space for generator
can help avoid possible blurring issues for reconstruction.
Therefore, the overall optimization problem is finally de-
fined as:

θ̂ = argmin
θ

(V2(gθ, eψ̄) + λLZ(gθ, eψ̄)) (10)

ψ̂ = argmax
ψ

(V2(gθ̄, eψ)− µLX(gθ̄, eψ)) (11)

where λ and µ are hyperparameters to balance the recon-
struction loss and divergence loss. The prove of equation (3)
- (4) are given in the paper [14].

4.3. Architecture

The architecture of our encoder and generator follow the
same structure as DCGAN[10], except that the output of the
encoder is vector of length 128 instead of a single number.
Besides, we found that the architecture of AGE network is
very sensitive to image size, and thus we build two AGE
networks for image size of 32 × 32 and 64 × 64 respec-
tively, the detailed architectures are shown in Figure 2. We
train the AGE Network based on the loss function defined
above.

4.4. Making Recommendation

After training the AGE network, a KNN recommender
is built using the features extracted from the AGE network.
More specifically, we embed both all images in our dataset
as well the query image using the encoder of the AGE net-
work, then the K-nearest images in the dataset to the query
image are output as the model’s recommendation, where the
distance measure is the L2 distance in the extracted feature
space.

Since the images in the dataset are pre-labeled, we can
use the labels to evaluate the performance of this KNN rec-
ommender. we can define a reasonable recommendation to
be those recommended images that are in the same class as
the input query image. Then we define the recommendation
precision to be the proportion of reasonable recommenda-
tions within all recommended images output by the model.
We will use Recommendation precision as our main metric
for measuring the performance of our system.

5. Experiment
5.1. Data

The AGE model was trained on 4 different datasets
(SVHN, CIFAR10, CelebA, and Tiny ImageNet). The
Street View House Numbers (SVHN) Dataset has 70,000
elements in the training set, 10,000 in the validation set and
16,000 in the test set. CIFAR-10 is an established computer-
vision dataset used for object recognition containing 10
classes. It has 40,000 images in the training set, 10,000
in the validation set, and 10,000 in the test set. CelebFaces
Attributes Dataset (CelebA) is a large-scale face attributes
dataset containing 9,000 faces in the training set, and 500
each in the validation set and the test set. ImageNet is an
image database organized according to the WordNet hierar-
chy, while the tiny Imagenet is a smaller one provided in the
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Figure 2: Encoder and Generator Architecture

default course project for Stanford CS231N. It has 100,000
pictures in the training set, 10,000 each in the validation set
and the test set.

5.2. Training Detail

We train the AGE network on all the 4 datasets above.
For each dataset, we do hyper parameter tuning on λ from
the set of (500, 1000, 2000) and on µ from the set of
(10, 50). We choose the pair that gives the best generat-
ing quality. We monitor the training process by checking
the element-wise mean and variance of the e(X), which,
if functioning properly, should give 0 and dim(Z) respec-
tively by the property of uniform distribution on the unit
sphere[14].

5.3. Qualitative Result

We now show the generated image (sample) g(Z) and re-
construction g(e(X)) for all 4 datasets. Figure 3456 show

results for SVHN, CelebA, Cifar10 and Tiny ImageNet, re-
spectively. As we can see, the AGE network can give high
quality samples and reconstructions, indicating the model is
trained well.

5.4. Quantitative Result

5.4.1 KNN Recommendation Results

As mentioned in the previous section, a KNN classifier is
used for the task of recommendation on the SVHN dataset.
However the result is not satisfying. In this model, using the
embeddings calculated from the last three hidden layers as
well as the output layer of the encoder, with K equals to 3,
the Recommendation precision is 43.2%, but the validation
Recommendation precision is only 16.2%. This result is
surprising to us at first, so we further train an SVM classifier
to evaluate if the feature itself is useful.
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(a) SVHN sample

(b) SVHN reconstruction

Figure 3: AGE model’s generation and reconstruction for
SVHN dataset

5.4.2 SVM results

The input of the SVM is a matrix with the shape of N ∗
4416, where 4416 is the result of stacking the embeddings
of the last three hidden layers as well as the output layer
of the encoder. The training accuracy is 23.54%, and the

(a) CelebA sample

(b) CelebA reconstruction

Figure 4: AGE model’s generation and reconstruction for
CelebA dataset

validation accuracy is 19.46%. In comparison, a same SVM
classifier is trained on the raw pixel features, which got a
training accuracy of 46.49%, and a validation accuracy of
12.79%. We hence conclude that the embeddings learned
using the AGE network is indeed informative in that it out
performs raw pixel. However, the accuracy is still too low
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(a) Cifar10 sample

(b) Cifar10 reconstruction

Figure 5: AGE model’s generation and reconstruction for
Cifar10 dataset

to build a good recommender system on top of it. This is
probably because of the fact unsupervised learning lack the
semantic information incorporated in the labels of the data
and hence is unable to give high quality embeddings.

(a) Tiny ImageNet sample

(b) Tiny ImageNet reconstruction

Figure 6: AGE model’s generation and reconstruction for
Tiny ImageNet dataset

6. Conclusion and Future Work

We train a AGE network in order to build a visual rec-
ommender system in an unsupervised fashion. Our AGE
network is able to generate and reconstruct good quality
images across various datasets. The embeddings drawn
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from the AGE network are better than raw pixels on the
downstream classification task, however they are not good
enough to build a recommender system on top of it. This
is probably because that the AGE network is trained com-
pletely unsupervised and lack semantic information en-
coded in the labels to give high quality embeddings.

As for future work, we will consider modifying the AGE
network to incorporate some label information to boost the
model’s performance.
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