
IJCEM International Journal of Computational Engineering & Management, Vol. 16 Issue 6, November 2013

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

67

Visual Studio - Continuous Integration

Rama Murari
1, Veerabhadraiah Sandru

2

1,2
HiTech ISU Assurance CoE

TATA CONSULTANCY SERVICES LIMITED

Deccan Park, Hi-Tech City, Madhapur, Hyderabad, India.

Abstract
Continuous Integration is a software development practice

where members of a team integrate their work frequently,

usually each person integrates at least once a day - leading to

multiple integrations.

The shift in the development models from waterfall to agile, the

distributed environments, parallel development, frequent and

rapid feedback, inspections, deployment and repeated automated

testing encourages the organizations to adapt continuous

integration.

Continuous integration is a practice to be followed by the teams

in addition to the usage of tools for automating the process.

There are different tools for different elements of the continuous

integration like build tools, test tools, code coverage tools,

deployment tools etc. These tools are provided by different

vendors. Organizations’ selection of CI tools becomes tedious as

a careful selection of mix and match of the tools has to be done

after thorough evaluation.

Visual Studio provides a one stop shop for continuous

integration implementation by having features to support all

these needs of continuous integration. Organizations which

have heavily invested in Microsoft technologies or moving

towards it can look at Visual Studio for their CI needs. The tight

integration of Microsoft technologies, tools and Visual Studio

makes a valuable proposition for customers

This paper provides the quick overview on the philosophy

behind continuous integration and gives details of VS support

for CI practice and deep dives into the various features of VS

that will support CI implementation.

Keywords: Continuous Integration, Team Foundation Server

and Continuous Integration, Tools for Continuous Integration,

Microsoft Continuous integration, Visual Studio support for

Continuous Integration

1. Introduction
In earlier days with waterfall development methodology,

integration was a task that was taken up only after the

individual components are developed. Integration testing would

come into picture after completion of development phase. When

application to be developed had many complex components and

required lots of integrations, it typically resulted in “Integration

hell” where the identification of the root cause of the problem

was very difficult. This big bang approach of integration testing

resulted in cost overruns, cycle time slips, late discovery of

defects, poor code quality and delays in time to market.

With the onset of Agile methodology adaption and parallel

feature development, there is a need for early and frequent

builds with static quality checks for every code change. This

paved the way for the genesis of Continuous Integration which

laid emphasis on both frequent integrations and tests. FIGURE

1 shows the gradual evolution of Continuous Integration

(hereafter referred a CI) from periodic builds to builds with

testing for every change.

FIGURE 1: Evolution of CI

Next Section covers the key concepts of Continuous Integration.

2. Continuous Integration - Overview

Martin Fowler[1] who is considered the guru of

Continuous integration defines CI as follows Continuous

Integration is a software development practice where

members of a team integrate their work frequently,

usually each person integrates at least daily - leading to

multiple integrations per day. Each integration is verified

by an automated build (including test) to detect

integration errors as quickly as possible.

CI leads to early detection of code, build, test and

deployment failures thus reducing the cost to fixing the

failures. Teams have to be proactive rather than reactive

for practicing CI. CI addresses the risks faster and in

IJCEM International Journal of Computational Engineering & Management, Vol. 16 Issue 6, November 2013

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

68

smaller increments. It creates the confidence in the

application being developed as the overall health of the

progress can be measured several times a day.

The basic principles of continuous integration are as

follows

 Maintain a code repository

 Automate the build

 Make the build self-testing

 Everyone commits to the baseline every day

 Every commit (to baseline) should be built

 Keep the build fast

 Test in a clone of the production environment

 Make it easy to get the latest deliverables

 Everyone can see the results of the latest build

 Automate deployment

Continuous Integration can be either manual or

automated. Continuous integration is at its best with

automation of different processes in addition to the

practices. FIGURE 2 shows the continuous integration

work flow and TABLE I provide the type of tools required

for CI implementation.

FIGURE 2: Continuous Integration flow

Code changes are committee to the source control by the

development team. The CI server continuously polls the

changes and triggers the builds periodically. The

successful builds are deployed and tests are run to assess

the quality and impact of the code changes. The results of

the builds, deployment and tests are reported immediately.

This process is practiced continuously. In a nutshell, CI

gives instant feedback on the code changes, progress of

the build, deployment and tests. A typical continuous

integration server facilitates all the above activities. This

decreases the human inventions by automation and

enables continuous integrations.

In the market there are numerous enterprise-ready

continuous integration servers which provide rich features

such as source control, build management, release

management, role-based security ,notifications and

seamless integrations with 3rd party tools. Jenkins and

Cruise Control are widely used CI servers. The following

table gives a list of commercial and open source CI

servers.
TABLE I

CONTINUOUS INTEGRATION SERVERS

Solution

Open

Source

Latest

Version Source Link Source

TFS N 2012 http://tfs.visualstudio.com/ Microsoft

Jenkins N 1.499 http://jenkins-ci.org/ Oracle

Cruise Control Y 2.8.4 http://cruisecontrol.sourceforge.net Sourceforge

Hudson Y 3.0.0 http://hudson-ci.org/ Eclipse

TeamCity Y 7.1.3 http://www.jetbrains.com/teamcity JetBrains

AnthillPro N 3.8 http://www.urbancode.com Urbancode

Bamboo N 4.3.3 http://www.atlassian.com Atlassian

Continuum Y 1.3.8 http://continuum.apache.org Apache

Continua CI N 7.0.0.2056 http://www.FinalBuilder.com VSoft Technologies

Pulse Y 2.5.15 http://www.zutubi.com/ Zutubi

While Jenkins remains the well known CI server,

Microsoft’s Visual Studio now has all the key features to

support the Continuous Integration without the need for

having varied tools for different CI elements. This would

be extremely useful for the customers who have embraced

Microsoft technologies in the application development

environment.

This paper gives the high level overview of the features of

CI and how VS/TFS support these features. Microsoft

msdn site has further configuration details for CI

implementation.

3. Visual Studio (VS) Support for Continuous

Integration

FIGURE 3 shows how Visual Studio along with Team

Foundation Server supports the CI process. VS supports

implementation of CI by offering rich features such as

version control, build management (Team foundation

Build/TFB), Unit Testing (Visual Studio) and static

testing like code coverage, code analysis. In addition to

code maintenance and build, TFS/Visual Studio also has

extensive features for deployment and installation. TFS

supports notifications and alerts. TFS and Visual Studio

are interdependent and features that can be triggered from

Visual Studio are given here though they may in turn

interact with TFS.

IJCEM International Journal of Computational Engineering & Management, Vol. 16 Issue 6, November 2013

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

69

FIGURE 3: CI supporting TFS/VS features

Details of key features of TFS in lieu of the above are

given in the next section

4. Details Of VS Key Continuous

Integration Features

Visual Studio provides a single point solution for all CI

supporting features like source control, build

management, test management, work item tracking and

lab management. The TFS source control feature helps in

code maintenance so that the team has the same version at

any given point of time. The code committed to the

version control automatically triggers the inspections,

builds and unit tests. The TFS build management system

(Build controllers/agents) supports compiling and

building the code as per the build definition. The lab

management in TFS allows creation of virtual

environments with required configuration. The Test

Controller along with the Test agents run the test cases in

the test environments. FIGURE 4 provides the high level

architecture of TFS that supports above mentioned

features.

FIGURE I TFS Architecture

TABLE II shows a snapshot of the features available in

VS and TFS to support Continuous Integration process.
TABLE II

VISUAL STUDIO: KEY CONTINUOUS INTEGRATION

FEATURES

4.1 Source Control Support in TFS

TFS serves as central repository for source code and the

other project artifacts. It stores all the project artifacts

and all the changes made to them over time. It provides

controlled access to the all the project artifacts. It provides

the flexibility and ease to maintain different versions of

the application. The code can be merged or restored back

to any stage at any point of time. It also supports

versioning of database schema to keep data and code in

synch.

The most commonly used SCM (Software Configuration

Management) tools used are ClearCase, CVS, Git,

Mercurial, Perforce, StarTeam, Subversion, MKS,

SourceGear Vault, and Visual SourceSafe.

TFS provides the main baseline structure. As per the

project needs, branches are created for maintenance of the

code.TFS allows the following branching strategies

 Feature Branching: Branching based on the features

to be developed
 Release Branching: A branch is created to stabilize

the release and later merged to main branch after the

release.

 Quality Branching: Branching done for different

teams with focus on quality

TFS allows merging of code from different branches.

The code is checked out, appropriate changes are made

and changes are checked in after conflict resolution. In

parallel development, multiple developers can work

simultaneous on the same code base. Developers create a

IJCEM International Journal of Computational Engineering & Management, Vol. 16 Issue 6, November 2013

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

70

local workspace on their local machines. The workspace

is mapped to the TFS server code base. TFS proxy server

provides local cache for the version controlled

information that will synchronize with the master copy in

the central TFS server regularly.

Developers make changes to the code in the local

workspace. Parallel development might result in

conflicting changes. Visual Studio along with TFS aids in

comparing the differences and resolving the conflicts

either manually or automatically. The changes in the

workspace can be shelved. The pending changes in the

shelve-sets can be discarded.

When the check-in is triggered, the check-in policies are

validated. TFS supports the policy validations for work

items, builds, tests, code coverage analysis etc.

Additionally if the available policies do not match to the

needs of the project, it allows creation of custom policies.

After automated tests and code coverage is run, changes

are checked into TFS with appropriate comments.

TABLE III gives the common source control features and

TFS support for these features
TABLE III

TFS/VS SOURCE CONTROL FEATURES

The check-ins triggers the builds as per the build

configuration. The next section gives details of the build

architecture and the build process.

4.2 Build Support

TFS supports build using Team Foundation Build. Team

Foundation Build uses MSBuild script to control the build

process. The code, database schemas and the other project

artifacts from the source control are used to build the

application executables.

As part of build definition TFS allows specifying the

program and testing elements for execution, the triggers

points of build, deployment and the status retention of

different builds that helps the developers, testers,

build/release managers and project managers.

Visual Studio supports the following build triggers.

 Manual : Builds that are triggered manually

 Rolling Check-in Builds: Build triggered after regular

intervals of time. Check-ins are accumulated till

previous build succeeds

 Continuous Integration Builds: Build triggered after

every check-in, code is checked-in even if the tests

fail.

 Gated Check-in builds: Check-in is done only after

the changes merge and build is successful.

 Scheduled Builds: Builds is trigger on any day and

any time.

Visual Studio supports Continuous Integration by

triggering Continuous Integration builds or Gated

Checkin builds. For Continuous Integration build

configuration if build fails the executable is not available

till the build is fixed. This interrupts the work of the team,

hence Gated checkin configuration helps to overcome this

hurdle by not committing the code to TFS if it breaks the

build. This helps the teams to work, uninterrupted by

failures.

TFS allows the build steps to be specified as workflow

that uses Windows Workflow. TFS provides three

predefined build definition process templates (default,

upgrade and labDefault). The build steps are complex

hence Visual Studio has a visual representation to easily

understand and modify the workflow as per the project

needs.

After the build is completed, executables are deployed in

the different environments. TFS also provides the

reporting capabilities giving all the build details. Emails

and alerts can be triggered for the status reports.

Build reports gives the results of build completion, code

analysis and the tests run. For build failures link are

provided to the bug work item, based on which the teams

are notified and the failure is fixed without delay. Build

Report also provides the direct navigation to the

changesets, code analysis warning and the test results.

The data from the build report is used for metrics

reporting.

A daily build shows all code changes and work items

incorporated since the last daily build, whereas a release

IJCEM International Journal of Computational Engineering & Management, Vol. 16 Issue 6, November 2013

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

71

build shows a list of all changes checked in since the last

release.

The following table gives the few key build features of any

Build management application and the how these features

are supported in Visual Studio/TFS.
TABLE IV

TFS BUILD FEATURES

Lab Management feature supports in setting up the test

labs on physical or virtual machines. Templates can be

created for environment and can be used for recreation.

Visual Studio helps to run tests remotely, distribute tests

across multiple machines, by configuring test controller,

test agents, and test settings file. The build definition

supports automatic deployment and test runs.

4.3 Code Coverage

 Visual Studio facilitates code coverage which measures

the percentage of code which is covered by automated

tests. Code coverage measurement determines which

statements in a body of code have been executed through a

test run, and which statements have not. Visual Studio

supports code coverage analysis. This is a structural

testing technique which compares the test program

behavior against the source code

Code coverage analysis helps in finding the testing

deficiencies in covering the areas of the program. Test

cases can be added for better coverage while redundant

test cases can be removed to improve the quality.

TABLE V

VISUAL STUDIO CODE COVERAGE

4.4 Code Analysis

Visual Studio supports code analysis for both managed

and unmanaged code. A set of predefined rulesets are

defined and categorized. New customized rule-sets can

also be created.

The rulesets check the rules of some of the features like

Security, Design, Globalization etc. The rules cover wide

range of warnings from key aspects such as performance,

interoperability, reliability etc. The Code Analysis tool

provides warnings/errors that indicate rule violations in

libraries or executables.

The following gives the list of rulesets and rules

categories.
TABLE VI

VISUAL STUDIO CODE ANALYSIS

4.5 Unit Testing

Visual Studio provides Unit Testing framework for testing

the code and databases. The generation of unit tests for

the methods is made simple. Visual Studio creates the

sample test method for the code with the default inputs,

outputs and validation statements. Default assertions

statements are created which need to be refined with valid

IJCEM International Journal of Computational Engineering & Management, Vol. 16 Issue 6, November 2013

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

72

inputs, outputs and validation. Additional logic and

assertions can also be incorporated. Selected tests can be

executed. The test results can be saved to disk, published

in TFS or exported as required. Predefined assertions are

available and can be extended. The exceptions validation

can also be handled in unit tests

Database Unit Testing helps with default schema, schema

objects (procedures, functions, triggers etc), security

(authentication & authorization) and static data

validations. Visual Studio additionally provides the

capability to generate data for Unit Testing. The database

scripts deployment is also automated for early integration.

The importance of unit testing is increasing with the

increase in the evolution of TDD (Test Driven

Development) and Agile development. Visual Studio

extensively supports TDD by refactoring.

Additionally Code Metrics in Visual Studio gives the

quality measure of the source code. This helps in giving

feedback on the design of the code.

4.6 Code Metrics

 Visual Studio can measure the quality of code by

collecting code metrics. Code metrics is a set of software

measures that provide developers better insight into the

code they are developing at regular intervals which stand

as a check for the quality. TABLE VI gives the Visual

Studio supported for code metrics
TABLE VII

VISUAL STUDIO CODE METRICS

In addition to these, Visual Studio provides the

deployment, notification and reporting features to provide

end to end support for CI.

The next section gives the benefits different teams get by

practicing Continuous Integration.

5. Continuous Integration Benefits

CI solution provides better sense of the development

progress and code quality of applications continuously

throughout the development lifecycle. In impementing the

CI process in software development all the teams have a

collective ownership of the appliation. All the team have

their own benefits for CI adaption FIGURE 5 gives the

details.

FIGURE 5: Benefits to CI Team

6. Visual Studio Continuous Integration Best

Practices

Some of the best practices to practice CI with TFS/VS are

given below [6]

 Use branching to reduce builds failures.

 Commit Code changes in TFS at least once a day

 Synchronize workspace with the code in TFS server

and resolve conflicts to ensure no data loss, before

check-ins.

 Run Private builds to check build failures, before

committing changes to TFS

 Execute automated unit testing with 100% test pass

for the each code change

 Inspect the code with Code Coverage, Code Analysis

and Code Metrics

 On larger teams, install the build services on a

separate server.

 Use a CI build option to get rapid feedback on check-

ins.

 Use Gated check-in build option, to fail check-in

when build or automation tests fail.

 Use check-in policies to improve code quality.

 Use check-in policies to associate work items with the

build.

 Use build notification alerts to for build status.

7. Key Challenges In Implementing

Continuous Integration
While CI helps the organization to reduce cost and time

to market it increases productivity and quality, it certainly

requires process, organization and technology changes.

Typically the challenges would be as follow

IJCEM International Journal of Computational Engineering & Management, Vol. 16 Issue 6, November 2013

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

73

 Time, effort and cost in evaluation of CI support

tools/server

 Time for initial CI setup

 The cost to procure additional hardware and

software for CI implementation

 Acceptance of CI best practices by all the

stakeholders

 Distractions due to frequent commits, builds and

notifications

 Suitability of feature for automation (not all

features can be automated)

 Learning curve to gain knowledge, for

implementation of CI features

 Multi vendor tools to scatter to all the disciplines

of application development

 Execution time for builds, tests and deployment

7.1 Upcoming Trends in Continuous Integration

There are various upcoming trends in CI that need the

organizations attention to reduce the time to market, risks

for the customer and increase the quality.

For large projects with huge teams which span across

various geographies the strategies to best implement CI

raises a need for Distributed and multi-stage CI

implementation.

7.2 Distributed CI

In a Distributed environment, the load will be transferred

to build clients when build cluster is overloaded. There is

a primary server that creates replicated servers in the

environment. In distributed CI, multiple projects and

multiple source control tools are used. The secondary

server might be remote or local. The build status of all

servers can be monitored and controlled through the

primary server. Microsoft TFS Build Architecture

supports distributed CI with Build controller and Build

Agents and the readiness for this trend adoption.

7.3 Multi-stage CI
[7]

This involves integrating at multiple stages. Each

developer integrates and tests the individual work and

then integration will be done at team level to prevent the

failure in the entire project. The work done by different

teams is integrated and then released to QA for

integration testing. The logical division of the work of the

entire project across different teams and individuals, the

level of testing and integration done at each level plays a

key role. Microsoft TFS alignment to multi stage CI

includes its supports for the individual integration and

unit testing in the local workspaces. The branching

strategies (branch, team, quality, feature) available in TFS

enable the multi-stage CI implementation. TFS allows

merging of changes from different branches for

integration.

7.4 CI on Cloud

“The evolution of continuous delivery and

the rise of new cloud platforms will drive new

combinations or stratifications in the packaging of

development execution and application life cycle

management (ALM) functionality.” Jim Duggan;

Thomas E. Murphy, Analyst, Gartner

The hardware and software required for CI

implementation is one of the challenges to adapt CI.

Organizations that have requirements for multiple

operating systems, multiple browsers, multiple

programming languages etc are in the process of

adapting CI having the avenues open for Cloud CI.

The IAAS (Infrastructure as a Service) and SAAS

(Software As A Service) cloud services can be used

for provisioning the required infrastructure and the

software for CI implementation on demand and with

better pricing models which will allow organization

to save on cost and time and improve quality and

productivity. Microsoft provides Windows Azure

based Visual Studio Team Foundation Service and

SAAS offerings to support CI implementation on

cloud.

 TFS preparedness for cloud: Cloud-hosted service

version of Microsoft’s popular Team Foundation

Server (TFS) software that provides highly

customizable source code and builds management,

agile development and team process workflow, issue

and work item tracking, and more. Team Foundation

Service team projects can be automatically configured

to automatically build and deploy to Windows Azure

websites or cloud services

7.5 Automated Deployment and Continuous Delivery

“The biggest evolution that we’re seeing is

people moving from CI to what they’re calling

continuous deployment,” says Jeffrey Hammond,

Principal Analyst, Forrester.

Continuous Deployment is the process where the

application is continuously deployed in to production for

every code change. The aim of continuous deployment is

to reduce cycle time and effort involved in the deployment

process. Solution for continuous deployment is continuous

delivery. It does not deploy on every change, but the

deployment process is automated and will be triggered as

required.

IJCEM International Journal of Computational Engineering & Management, Vol. 16 Issue 6, November 2013

ISSN (Online): 2230-7893

www.IJCEM.org

IJCEM

www.ijcem.org

74

Conclusions

 CI advantage of rapid feedback, rapid deployment

and repeated automated testing leading to rapid

delivery ,reduced human interventions and costs

have seen a wide enterprise wide acceptance

 The raise in the adaption of agile methodologies and

TDD increases the scope of CI implementation

because it gives the health of the project several

times a day.

 There various open source tools available in the

market for organizations to implement CI. CI tools

like Jenkins, Cruise control, Hudson work well with

3rd party tool to support CI feature like version

control, build management, static testing, automated

testing, functional testing, installation and

deployment.

 Organizations which have already invested in

Microsoft technologies or moving towards it can look

at TFS/VS, which offer’s rich capabilities for CI

practice. The heavy coupling of Microsoft

technologies, tools and TFS makes it a commendable

valuable proposition for Microsoft savvy customers.

References

[1] Duvall, P., S. Matyas, and A. Glover.CI: Improving

Software Quality and Reducing Risk. Addison-Wesley, 2007

[2] Martin Fowler about CI

http://www.martinfowler.com/articles/continuousIntegration.h

tml

[3] Microsoft msdn for TFS and Visual Studio.

http://msdn.microsoft.com/en-

us/library/dd831853(v=vs.100).aspx

[4] Continuous Integration wiki http://c2.com/cgi/wiki?

[5] Manifesto for Agile Software Development.

http://agilemanifesto.org/

[6] J.D Meier, Jason Taylor, Alex Mackman, Prashant

Bansode, Kevin Jones : Team Development with Visual

Studio Team Foundation Server Microsoft Corporation, 2007

[7] Multi Stage Continuous Integration Trends

http://www.informationweek.com/multi-stage-continuous-

integration

[8] Continuous Integration Flow chart

http://www.falafel.com/images/CI_chart.jpg

[9] Veerabhadraiah Sandru, Rama Murari, “Changing

Role of Test manager in Changing Situations”, IJCEM, vol.

16 issue 1, Jan. 2013.

Author’s Biographies

Rama Murari has 14 years of IT experience and is into Software

Testing from past 9 years. She has done her masters’ from National

Institute of Technology, Warangal. She has ISTQB Foundation

certification. She has co-authored white papers on testing in QAI,

IJCEM, Step-In forums. Her white paper on ‘Pandora’s White box

testing’ has been published in STEP-IN’s forum. She has been in

various roles of developer, business analyst, functional analyst,

tester, project leader and program manager for large and renowned

accounts. She is working as a Solution Developer in Assurance CoE

of HiTech Industry Solution unit of Tata Consultancy Services. Her

areas of expertise include Test Process Consulting, Test

Management and White box testing.

Sandru Veerabhadraiah has 18 years of experience in IT and

10 years of experience in software testing. He has masters’ degree in

engineering from Indian Institute of Technology, Madras. He has

certifications in ISTQB-Foundation and TOGAF-Foundation. He had

earlier published 2 white papers in TCS’s Global Technical Architects

conference. He also published white papers on testing in QAI, IJCEM

and recently conducted a 2 hour tutorial on Transaction Based

Pricing at STEP-IN’s Hyderabad Software Testing Conference.

Currently he is leading the Assurance CoE of HiTech Industry

Solution unit of Tata Consultancy Services. His area of expertise

include test process consulting, test management, test automation

and test methodologies in usability testing, globalization, accessibility

testing.

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://agilemanifesto.org/
http://www.informationweek.com/multi-stage-continuous-integration
http://www.informationweek.com/multi-stage-continuous-integration
http://www.falafel.com/images/CI_chart.jpg

