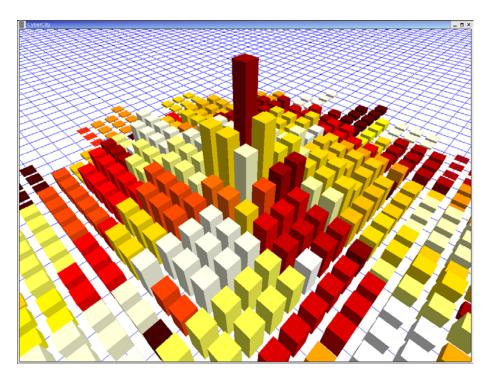
Visualization and Distributed Systems

Niklas Elmqvist <elm@cs.chalmers.se>

Contents

- Introduction
- Collaborative Virtual Environments
- Visualization of Distributed Systems
- Distributed Graphics
- Wearable Computers
- Conclusions

Introduction


- Visualization and distributed computing are two fields of research with many potential connections
- Overview of the visualization research of the Distributed Computing & Systems group at the department
- We will discuss a selection of projects related to these two areas:
 - Visualizing distributed systems
 - Using distributed systems for visualization

Visualization

Visualization: graphical representation of data to aid in human cognition.

- Visualization is a very large field of research
- Many subfields
 - Information visualization
 - Scientific visualization
 - Data visualization
 - etc.
- Key component: computer graphics
- Key feature: high performance
- **Distributed systems** may be useful here!

Visualization: Example

- **CyberCity** information visualization technique
 - Visualization of multidimensional data
 - 3D computer graphics
 - Uses a "city" metaphor with buildings, blocks, and a downtown area
- This is just one example of the unlimited uses of visualization

- Why do we want to combine visualization and distributed systems?
- Two main reasons:
 - 1. Visualizing distributed systems
 - Distributed systems may be very complex to design, implement and debug.
 - Visualization can help us to do this easier.
 - 2. Using distributed systems for visualization
 - Visualization is usually a very CPU-intensive activity
 - We can use distributed systems to improve performance

Collaborative Virtual Environments

Of Quake and Quest

Introduction

- Sometimes it is beneficial to allow geographically distributed people to work (or fight!) together in a shared environment
- Online 3D multiplayer games are excellent examples of such environments
 - EverQuest, Dark Age of Camelot, Ultima Online, Quake, etc
- Visualization is an important part of these shared environments (see picture), and so is distributed systems

Scene from Dark Age of Camelot

Definitions

Collaborative Virtual Environment (CVE):

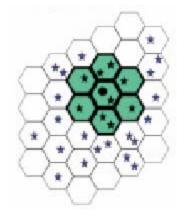
general-purpose virtual world shared by participants across a computer network.

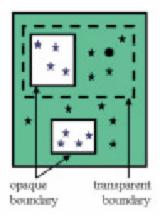
- Generalization of online multiplayer games to include any kind of activity
- Each participant is embodied by an **avatar**
 - Graphical entity representing
 - Identity
 - Presence
 - Location
 - Activity
 - Is used to interact with the world
- Convergence of Virtual Reality (VR) and Computer-Supported Cooperative Work (CSCW) research

CVEs and Distributed Computing

- CVEs are by definition distributed systems
- Participants are geographically distributed and connected using some kind of network
- Many interesting challenges:
 - **Scalability**: potentially thousands of users
 - Interest management: who shall receive state changes?
 - Distributed architecture: client/server or peer-topeer (multicast vs unicast)
 - Consistency: how to ensure that all users have the same view of the world?

Scalability


- Modern multiplayer games support up to 20,000 concurrent users (Anarchy Online)
 Client/server architecture with a large server cluster
- A large-scale CVE may need to support even more users
 - Massive bandwidth requirements
 - Node processing power
 - Most of the users don't see each other (at the same time)
- **Solution**: Send information only to nodes that are interested in it.


Interest Management

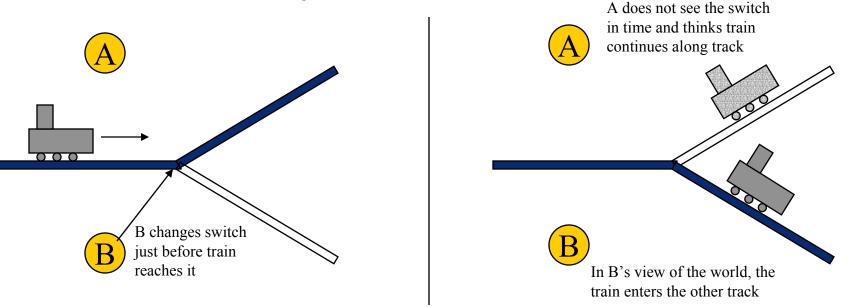
- Scalability problems can be remedied by only sending information to nodes that need it
- Two major approaches:
 - **1. Geography-based**: send information to nodes that are in the vicinity of the originating node.
 - **2. Interest-based**: send information to nodes that have registered an interest in this type of info.
- The second approach is the more general of the two but more complex to implement

Interest Management: Example

- The NPSNET system uses a network of hexagons
 - Works well for military simulations
 - Newest version of NPSNET has modularized interest management
- The MASSIVE-2 system uses hierarchies of dynamically resizing regions
 - Allows for easy culling of whole subhierarchies
 - Interest-based approach (in some ways)

Distributed Architecture

- Finding a suitable architecture is a major challenge
- Three basic architectures exist:
 - Client/server: Clients only participate with a central server, never with each other. Easy, secure, but may scale poorly.
 - Peer-to-peer unicast: Clients communicate with each other. Massive bandwidth but load is shared among all nodes, network delays low.
 - **3. Peer-to-peer multicast**: Clients communicate with each other using multicast mechanisms (IP multicast). Bandwidth-efficient but not generally available


To Serve Or Not

- Client/server architecture
 - Advantages:
 - Easy to implement
 - Secure (one authorization point)
 - Reasonably efficient
 - Consistency is simple
 - Disadvantages:
 - Will not scale indefinitely
 - Vulnerable to faults
 - Inflexible

- Peer-to-peer architecture
 - Advantages:
 - Fault-tolerant
 - Bandwidth-efficient (if using multicast)
 - Dynamically reconfigurable
 - Scales well
 - Disadvantages:
 - Complex to implement
 - Consistency is hard
 - Hard to make secure

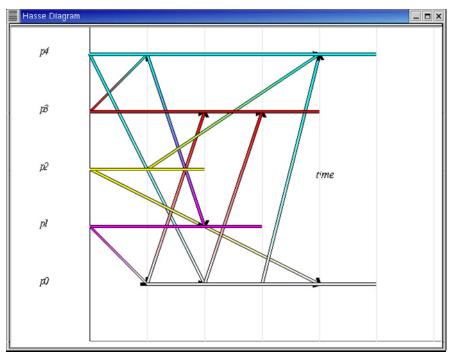
Consistency

- How do we ensure that all peers have the same **consistent** view of the shared world?
- Classic example: train switch

DCS and CVEs

- The DCS group is exploring the field of CVEs
- We want to build a system (or a prototype) with the following characteristics
 - Reconfigurable consistency (with consistency guarantees)
 - General area-of-interest management scheme
 - Peer-to-peer multicast architecture
 - General-purpose framework that can both be used for 3D worlds as well as collaborative editors

Visualization of Distributed Systems

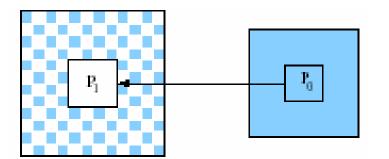

Growing Squares and CausalViz

Introduction

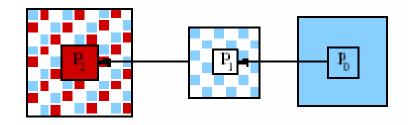
- Distributed systems are often complex to design, build, and debug
- Visualization may be able to help these activities
- Trace files of messages sent in a distributed system are useful diagnostic tools
 - Traces can be extremly large and hard to overview
 - The distributed system may be large and/or complex
- We need a visualization technique that takes system traces as input and gives a useful graphic representation as output

Hasse Diagrams

- Hasse Diagrams can be used for this purpose
 - Each process/node has a lifeline in a time-space diagram
 - Messages are represented as arrows between lifelines
 - This visualization quickly becomes messy

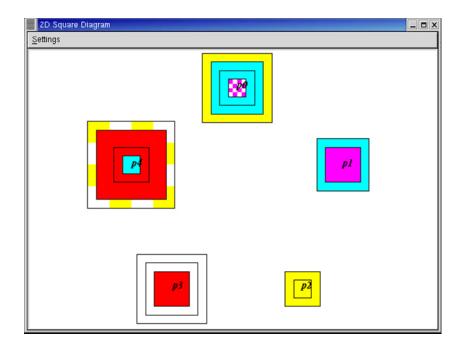


Growing Squares


- The **Growing Squares** visualization technique was designed to solve this problem
- Metaphor: pools of color spreading on a piece of paper
 - Each pool is a process/node
 - Pools grow in size over time
 - Messages from one pool to another will add color to the destination pool
 - The influence of a single pool is easy to see just by studying its color composition
 - The history of the growing process is animated

Growing Squares (2)

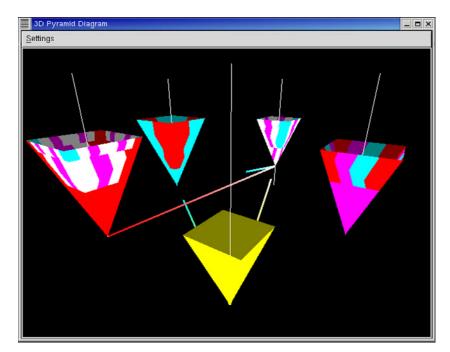
- Message passing
 - Process p0 (blue) sends a message to process p1 (white)
 - Process p1 will now have both blue and white in it


- Transitivity
 - Process p0 (blue) sends a message to process p1 (white)
 - Then, process p1 sends a message to p2 (red)
 - Transitivity is clearly visible in p2

Growing Squares: Example

- 5-process distributed system at $t = t_{end}$
 - Colors at each process shows influences
 - Animated history
 - Scales to larger systems

CausalViz Copyright (c) 2002 Elmqvist and Tsigas				_ = ×
<u>F</u> ile <u>V</u> iew				<u>H</u> elp
Play	Stop	Rewind	Forward	
Rewind the animation				8.0
Animation started.				



User Study and Results

- We have performed a user study comparing Hasse diagrams to Growing Squares
 - New method was faster and more efficient
 - Users preferred the new method over Hasse diagrams
- Things to be improved
 - Layout of processes (circular, grid, geographical)
 - Color assignment (colors too close)
 - Alternative visualizations?
- Work has been submitted to CHI 2003

Future Work

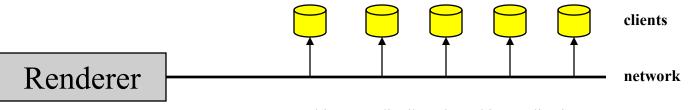
- 3D graphics is useful
 - Extensions to the original technique (i.e. Growing Pyramids)
 - More complex adaptions that make use of the 3rd dimension
- Work in progress
 - Require test subjects!
 - Sign up if you want to help

Distributed Graphics

3Dwm: The Three-Dimensional Workspace Manager

Introduction

- Some visualization applications have very high requirements
 - Virtual Reality
 - Computer-Supported Cooperative Work (CSCW)
 - High-end Computer-Aided Design (CAD)
- Networked high-performance workstations are becoming available
 - Visualization applications that were previously impractical are now feasible
- We need a framework to construct applications making use of heterogeneous set of platforms


Definitions

Distributed graphics: systems for distributing shared graphical state of multi-display/multiuser, distributed, interactive applications. [MacIntyre *et al* 1998]

- Many excellent stand-alone 3D libraries exist
 Example: Java3D, Performer, Inventor, VRML, etc
- Existing VR/CSCW platforms require "dual databases" for graphics vs application state
- We are looking for a unified way to build distributed graphics applications

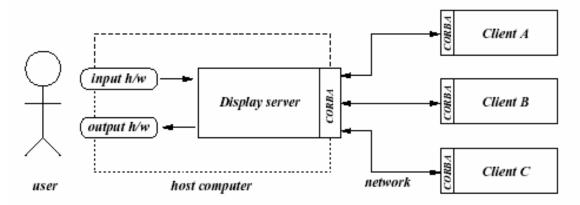
Basic Concepts

- Two basic types:
 - **1. Multi-display**: multiple views of a single graphical database
 - **2. Multi-source**: the graphical database is distributed and/or modified by multiple clients
- Hybrids are possible where both the database is distributed and rendered by different nodes

Example: multi-source distributed graphics application

Distributed Graphics Platforms

- Several distributed graphics platforms exist
 - Repo3D: general-purpose, object-oriented library for distributed 3D applications
 - WireGL/Chromium: distributed OpenGL, useful for distributing rendering across workstations
 - VR Juggler: Virtual Reality application framework, includes distributed graphics primitives
 - MR Toolkit: library for distributed graphics (mainly using "crude" IPC primitives)
 - DIVE: CVE platform supporting mechanisms for distributed graphics

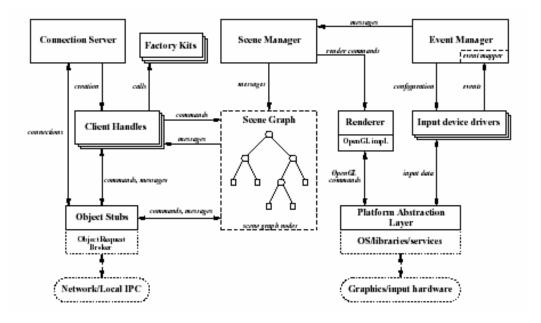

3Dwm

- The **3Dwm** (Three-Dimensional Workspace Manager) is an application framework for distributed 3D graphics
 - Initiated in 1999 by Niklas Elmqvist and Robert Karlsson
 - Supports all kinds of 3D platforms (VR, AR, etc)
- Contains a run-time component for managing concurrent workspaces and applications

Definition: a *workspace* is a special environment in which the cost structure of the needed materials is tuned to the work process using them [Card, Robertson, Mackinlay].

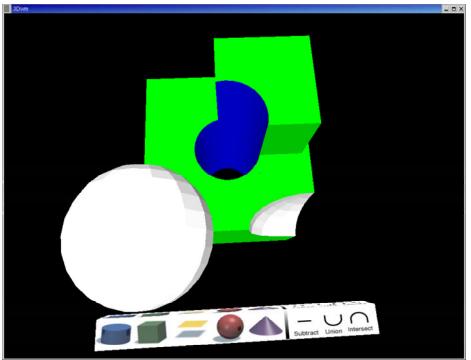
3Dwm: Basic Idea

- Single-user client/server interface system
 - Multi-source/single-display application platform
 - Each client maintains its own part of the graphical database
 - Display server contains the rendering hardware
 - Clients on the network
 - CORBA is used for communication



3Dwm: 3D User Interfaces

- 3Dwm is a platform for building applications with 3D user interfaces
- 3D user interfaces extends conventional graphical 2D interfaces
 - Interfaces with "volume"
 - Makes use of human spatial perception
 - Well-suited for Virtual and Augmented Reality
 - Example: immersive 3D modeller, simulation, 3D web browser, etc


3Dwm: System Architecture

- Layered system
- Important components:
 - Distributed 3D scene graph: abstract scene description
 - Platform abstraction layer: portable hardware/OS interface
 - Renderer: support various 3D APIs such as OpenGL and Direct3D

3Dwm: Example

- Immersive CSG modeller
 - 3D model is created by combining 3D primitives
 - Supports spheres, quads, cylinders, cones, planes, etc
 - Very simple toolbar interface
 - The 3D space is the "workshop"
 - Can coexist with other
 3Dwm applications

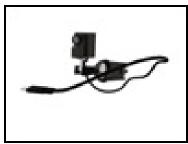
3Dwm: Future Work

- See <u>http://www.3dwm.org</u> for more information on 3Dwm
- Many future research directions
 - 3D session management
 - 3D widget toolkit
 - Information visualization
 - CVE integration
 - Augmented Reality on wearable computers

Wearable Computers

Truly Mobile Computing and Distributed Systems

Introduction


- Wearable computers are special computers that can be *worn*, like clothing
- Natural way to carry a computer
- Pioneered by Steve Mann of MIT in the 1980s
- Basic feature: personal imaging system (often via a head-mounted display)

Wearable Equipment

- Often x86-based computer
- Typical wearable:
 - Head-mounted display
 - Digital camera
 - Wireless communication
 - One-handed keyboard
 - Touch screen
 - Battery
- **Example**: Xybernaut Mobile Assistant IV (next slide)

CHALMERS

Example: Xybernaut MA IV

Augmented Reality

- Augmented Reality: the next killer app?
 - Computer-generated images superimposed on the real world (VR on a virtual world)
 - 3D visualization important
 - Example: directions to a shop drawn on your normal vision
- Wearables are especially well suited for Augmented Reality
 - Wear them in everyday life
 - Head-mounted display (goggles) very useful
 - Head-tracking prominent

Augmented Reality: Example

- Many uses in everyday life
 - Tourist information in a new city
 - Soldiers with integrated order and navigation system
 - Operation support systems

DCS and Wearables/AR

- The DCS group has 2 Xybernaut MA IV wearables
 - One unit used by a D3 student project group
- We are conducting research in the following areas
 - Turning the 3Dwm system into an Augmented Reality platform
 - Wearables as mobile entities on a wireless LAN
 - Using 3Dwm and wearables in CVEs

Conclusions

Conclusions

- The fields of visualization and distributed systems have many interconnections
 - Mutual benefit
 - Visualization of distributed systems
 - Visualization using distributed systems
 - Interesting problems and possibilities
- Much work remains to be done
 - Integrating 3Dwm with CVEs
 - Integrating 3Dwm with wearables
 - Integrating visualization with 3Dwm
 - etc...