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Abstract

Embedded systems are increasingly becoming integral parts of almost all
technology-oriented applications. The complexity and sophisticated nature
of these such systems make it very difficult for engineers to exploit the full
potential of the system’s underlying resources. More often than not, this
results in sub-optimal performance. Tools that allow an engineer to quickly
evaluate system behaviour and performance can reduce development costs
and time-to-market. Visualization techniques have proven invaluable to the
design process in the past as they have greatly simplified tasks faced by
engineers. Visual representations of views that depict algorithm and
architecture interaction are developed to highlight poor algorithm design,
problematic hardware-software interfaces, and other reasons behind poor
performance in embedded systems. An objected-oriented framework for
visual display of design information has been designed and an
implementation of this model is discussed. The framework is then used to
develop a prototype that implements architecture-algorithm visualization
techniques. The theoretical background and issues relating to effective
embedded system design are also discussed.
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1 Introduction

Over the past decade, there has been a steady increase in the number of applications that demand
customized computer systems that offer high performance at low cost. These applications are, more often
than not, characterized by the need to process large amounts of data in real time. Examples include
consumer electronics, scientific computing, and signal processing systems. A selection of applications is
given in Table 1 below.

Constraints on performance, cost and power make software implementations of data processing algorithms
for such systems infeasible. Non-programmable hardware, however, does not support modifications of
algorithms. The solution to this dilemma has been to develop application-specific hardware that is flexible
and programmable – these systems are commonly referred to as embedded systems. They typically include
embedded software that is burned into Eraseable Programmable Read Only Memory (EPROM) or resident
in memory, special-purpose hardware, and Field Programmable Gate Arrays (FPGAs); often there are
stringent requirements on power consumption, performance, and cost. Embedded systems cannot be
redesigned or removed easily once the device that incorporates the system has been built.

Embedded systems development thus requires concurrent work on both hardware and software
components. The sophisticated nature of the algorithms that are run on these customized computer systems
and the complexity of the hardware architecture make it very difficult for engineers to design algorithms
that take full advantage of the underlying resources. This often results in sub-optimal performance and
under-utilized hardware. Tuning the algorithm for optimum performance can be a very time-consuming
and difficult task, especially if the system architecture is complex.

Interfacing software with hardware is a critical issue in embedded system design, since the best
performance is achieved when algorithm and architecture interact to reduce communication costs –
between hardware components, input or output operations, and memory operations. Tools that provide the

Table 1. Some applications that incorporate embedded systems

Military Communications, radar, sonar, image processing, navigation, missile guidance

Automotive
Engine control, brake control, vibration analysis, cellular telephones, digital
radio, air bags, driver navigation systems

Medical
Hearing aids, patient monitoring, ultrasound equipment, image processing,
tomography

Telecommunications
Echo cancellation, facsimile, speaker phones, personal communication
systems (PCS), video conferencing, packet switching, data encryption,
channel multiplexing, adaptive equalization

Consumer
Radar detectors, power tools, digital TV, music synthesizers, toys, video
games, telephones, answering machines, personal digital assistants, paging

Industrial
Robotics, numeric control, security access, visual inspection, lathe control,
computer aided manufacturing (CAM), noise cancellation
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engineer with the ability to quickly develop, test, and refine algorithms on different hardware architectures
are invaluable to the design process. Time to market and development costs are reduced, costly bugs can be
eliminated, possible system failures may be avoided, and a wider set of possible solutions may be
explored.

In the past, visualization techniques have been applied to various areas in engineering to simplify tasks
faced by a design engineer. These techniques vary from drawing free-body diagrams or circuit diagrams to
visualizing scientific data. In all cases, the visual techniques have proven to be invaluable to the design
process. An early example of how visualization was used to improve worker performance is given in
Gantt’s 1919 paper, “Organizing for Work”, where he shows how charts – visual representations of
machine utilization, distribution of tasks across machines, and worker performance – easily disclose
possible reasons for poor worker performance [7].

Recently, system engineers have realized that visualization techniques can be very useful to the embedded-
system design process. Poor algorithm design, problematic hardware-software interfaces, and other
possible reasons for sub-optimal performance are easily discovered by using such techniques. They have
also realized that performance-based design can reduce the time to market a product greatly.

Scheduling is an important part of performance-based design. The scheduling process assigns software
tasks to available hardware resources and determines the execution order of the tasks. For instance, a
schedule that results in high resource utilization and low communication overhead can greatly improve
performance. Even though engineers have realized that scheduling is an extremely important part of the
design of an embedded system, they lack adequate tools for exploring appropriate scheduling strategies
that exploit the full potential of a target architecture to meet timing and other performance constraints.

This report is divided into four parts. Following this introduction, concepts and issues relating to embedded
system design are discussed. The next section builds upon the previous section and describes techniques
that can be used to visualize the interaction between a given hardware architecture and an algorithm that is
to be run on it. The goal is to easily identify whether the design of the algorithm is well-suited to the
underlying hardware architecture of the embedded system or vice versa (the architecture is well-suited to
the algorithm). This allows the designer to achieve the best performance possible. It may also provide a
means to predict performance at an early stage of design. The third part focuses on the development of an
object-oriented model for visual display of design information. The final part describes the software
implementation of this model in a prototype that is used within the Ptolemy framework. The prototype
implements architecture-algorithm interaction visualization techniques.
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2 Background and Theory

This section presents some of the principles and issues concerning the design of embedded systems that
motivated the research presented in this report.

2.1 Embedded Systems and Their Design

A system can be defined as a group of devices or artificial objects or an organization forming a network
especially for distributing something or serving a common purpose [13]. Toembed a system into some
object means to make that system an integral part of the object. When an engineer talks about an embedded
system, he or she is usually referring to a system that satisfies a well-defined need at a specific instant in
time. The system is usually dedicated to that need, and its operational limits are clearly defined: lifetime,
power consumption, performance, and so on. The system usually has limited capabilities for future
development, simply because it is permanently installed in a device that provides a certain service to its
user. Examples include DSP processors in hand-held communication devices, programmable controllers
installed in robots or cars, and video signal processors in television sets.

Because these systems cannot be redesigned or removed easily once the device that incorporates the
embedded system is built, the development procedure must produce a correct system that meets all of its
operational requirements. In addition, techniques used to design such systems must reduce development
costs and time thereby reducing time to market. This is important since introducing a product to the
consumer market early can mean that the producer will be facing fewer competitors and hence earning
greater revenues and market share.

As stated in the introduction, some of the characteristics of embedded systems include embedded software
that is burned into EPROM or resident in memory, special-purpose hardware, FPGAs, stringent
requirements on power consumption, performance, and cost. Clearly, an embedded system consists of both
hardware and software components. The performance and cost constraints make it necessary for the design
engineer to explore a combination of possible hardware architectures or custom hardware components and
software or programmable parts that would best suit the nature of the application. Hence, the division
between the programmable and non-programmable components and their interface can become a critical
issue in the design.

The development process is usually cyclic. The engineer often prototypes an algorithm, tests it on a
specific hardware architecture, and then refines the software to make most efficient use of the underlying
hardware. If software is to be embedded, this type of development can be very expensive and time-
consuming as performance analysis is done after system components have been functionally tested and
integrated. This traditional approach to design is shown in Figure 1 and is contrasted toperformance-based
design. Performance-based design advocates evaluating performance at early stages of design [27] such as
after functional testing is complete. It is apparent from the figure that the number of iterations required to
refine the design after integration of hardware and software would be much less than if the traditional
approach was taken since performance is evaluated at a very early stage in development. Clearly, this
strategy reduces implementation cost and time-to-market.

Modeling a system and simulating it before actual implementation can further reduce implementation cost
and allow the user to explore the design space in search of an optimal solution. Finding this optimal
solution can be a complicated task. The designer needs to be able to measure performance and decide
whether other operational constraints will be met. The data that needs to be analyzed – processor



Background and Theory

7 of 48

utilization, number of input or output accesses, number of memory accesses, and inter-processor
communication overhead – can be large and difficult to sift through. A good visual display of data can lead
the designer to quickly determine whether an algorithm and architecture will perform the given task
optimally.

There are very few tools available that allow for performance-based design analysis through visualization
as well as analytical techniques [28]. There are even fewer tools that allow a designer to explore embedded
software solutions for multiple existing “off-the-shelf” hardware architectures. An important part of fitting
software to hardware resources is the scheduling process. This is discussed in the next section.

 Figure 1. Traditional Design Process Versus Performance-Based Design

2.2 Scheduling Concepts

Scheduling is an important part of the synthesis and operation of any system. The scheduling process
assigns a subset of all the tasks that the system must perform to its available resources. The performance of
a system can be greatly affected if the tasks are allocated to components that cannot efficiently perform
those tasks. The sequence in which the tasks are executed can affect performance also.

When designing embedded systems, the engineer tries to ensure that utilization of hardware resources by
software is high at all times. Mapping software to hardware components can be a formidable task if there
are a large number of possible hardware resources (e.g. processors) and a large number of ways to partition
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the software. A number of schedulers, mainly based on heuristics, have been developed to aid the designer
map tasks to available processing units and determine their execution order [2][3][23][26].

Scheduling can be performed statically or dynamically. A static scheduler maps tasks to processing units
and determines their execution order at compile time, whereas a dynamic scheduler determines this
information during run-time. Sometimes choosing one schedule over another may cause a great
enhancement in performance. It has not yet been determined whether the reason behind this is that the
scheduler is well-suited to the target architecture, or simply because the scheduler does an inadequate job
in scheduling the tasks within the given constraints.

Normally, the engineer needs to quickly determine whether the mapping produced by a scheduler will
cause the system to perform its intended function within the performance constraints at the lowest possible
cost. Traditionally, Gantt Charts, based on concepts developed by Gantt in [7], have been used to visually
represent schedules. These charts show how software components are mapped onto processing units over
time. A detailed discussion of Gantt Charts is presented in Section 2.4.2.

Current visual displays of scheduling information, which are based on the linear representation developed
by Gantt, are only effective in highlighting resource utilization, processor idle time, and task execution
order. This representation is inadequate for revealing possible performance bottlenecks and problematic
hardware-software interfaces which can greatly affect overall system performance. In addition, scheduling
techniques have evolved and a number of the schedulers that use these techniques generate schedules that
cannot be effectively displayed using the traditional Gantt Chart. Section 4.3 discusses ways of modifying
this display to effectively visualize schedules generated by these newer schedulers.

2.3 Evaluating Algorithms and Their Performance On Given Architectures

It is necessary to gather data about the execution of the algorithm on a target architecture and analyze it in
order to evaluate system performance. Evaluating the performance of a system requires gathering, sifting,
and displaying many types of information: data from manufacturers, measurements on earlier systems,
estimates made during analysis, and availability of logical and physical resources [27]. Scheduling
descriptions for logical and physical resources and allocation of processes to hardware or software are
emerging to be quite important factors in determining the performance of a system. This section briefly
discusses the various types of information that are required to evaluate algorithm performance and current
techniques that are used to present the data to design engineers.

• Processor Utilization
Processor utilization is normally determined by finding the time spent computing or doing useful work
in relation to the total time required for the task. Traditional Gantt Charts are normally used to display
this information.

• Input or Output Accesses
An input or output access occurs when data is either input to the system or output from the system. An
input or output operation’s performance can be measured in terms of response time or throughput [11].
The response time is measured as the length of time taken for the operation to complete, starting from
when the data was placed in a buffer until the time when it is finally output or input. The throughput is
the average amount of data that is input or output during a given amount of time.

• Memory Operations
A memory operation occurs when data is either written to or read from a memory location. The
memory access time is measured as the hit time plus the miss rate multiplied by the miss penalty (avg.
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mem. access time = hit time + miss rate * miss penalty) [11]. It is clear that a memory operation that
needs to access data residing in local memory on a processor will take less time than an operation that
needs to access data residing at a remote location.

• Communication Overhead
Communication overhead is usually considered important in evaluating multiple processor systems. It
is the total time spent sending and receiving data between processors in relation to the total execution
time. This information has traditionally been displayed in Gantt Charts. Communication overhead can
also be described as the time spent sending and receiving messages between concurrent processes in
relation to the overall execution time.

• Critical Paths
A critical path is the longest serial thread, or chain of dependencies, running through an execution of
an algorithm [9]. Critical paths are important performance analysis abstractions as the total execution
time cannot be reduced without shortening the length of a critical path. Critical paths are potential
places for performance bottlenecks.

• Architecture Bounds
There are physical limits placed on all hardware resources such as processor speeds, memory access
times, bus speeds, and so on. This of course limits the performance of any software. Each architecture
has different bounds, hence a single piece of software may perform differently on different
architectures.

2.3.1 Performance and Performance Models

There are number of ways of measuring the performance of a computer system. A system user may
evaluate performance by measuring the time that it takes between the start and completion of an event,
otherwise known asresponse time or execution time, or latency. Other people, such as network managers,
may use the total amount of work done in a given amount of time which is commonly referred to as
throughput as a measure of performance. In all cases, time is the basis for measures of system performance
[11]. A system that can perform a given task in the least amount of time is said to be the fastest or has the
best performance.

Performance models can be useful as they can be used to abstract system behaviour and can allow
engineers to predict and analyze system performance. Performance-based design dictates that performance
models should be integrated with functional design and resource scheduling. Models that use early
estimates of processing costs of parts of a design can aid in planning software architectures, assessing
needs to distribute data and functionality, and hardware planning [27].

In order to obtain adequate and predictable performance, it is important to characterize system behaviour:
sequences of events, actions, and delays. In addition, it is important to provision and schedule physical and
logical resources: hardware (processors, input or output devices, memory, interconnections) and things
such as locks and semaphores. Abstract models such as queuing networks, Petri nets, or other simulation
models of available resources have been developed in order to aid in performance analysis which helps in
determining contention delays, resource saturation at bottlenecks, load imbalance, and interprocessor or
interprocess communication overhead [27]. Simulating a system can generate possible execution paths that
may reveal critical paths which can lead to discovery of bottlenecks and other causes of low performance.
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2.4 Visual Display of Design Information

Design information comes in a multitude of flavours. Whether a system is implemented in hardware or
software or both, design information is always present and required at all stages of development. An
attempt has been made in Table 2 to categorize the various types in terms of high-level or low-level details
whether the design is hardware-based or software-based.

For many years, hardware engineers have relied on visual representations of design information to guide
them through the development process. Some of the forms that these visualizations take are circuit
diagrams, signal traces, and architecture block diagrams. Comparable visualizations for systems
implemented in software are few in number. For purely parallel systems, tools that visualize execution,
schedules, and communication patterns exist [9] but are sometimes inadequate for complicated
architectures. For uniprocessor and multiprocessor embedded systems, especially those that incorporate
both hardware and software modules, very little exists in terms of visualizing architecture, execution, and
performance.

Recent interest in visualizing software performance analysis of parallel systems has brought about the
advent of some basic visualization concepts and principles. These concepts which are briefly summarized
in the following section can be used to create effective visual representations of design information.

2.4.1 Visualization Basics

In [9] and [10] M. T. Heath et. al. outline basic concepts and principles that are necessary to produce
effective graphical displays. Good visualization techniques can have dramatic impact in areas where they
can lead to a discovery of unexpected phenomena. This is something that must always be kept in mind
when designing new visualization techniques. Users are not interested in pretty pictures but something that
will lead them to construct an empirical model of behaviour.

Some of the basic principles that must be considered when developing visualization techniques are:

• Users should be able to relate the display of information to a context [9]. The visualization should
allow a user to connect the display to an environment from which it is derived.

• Any visualization tool must be able to scale easily to large data sets and there must be a means for a
user to give the tool feedback.

• A user should be able to tune the tool to their needs.

Table 2. Types of Design Information

High-Level Low-Level

Specification (requirements, architecture
descriptions, interface descriptions)

Implementation (software programs, netlists,
hardware description language code)

Documentation (includes bug reports)
Execution history (traces, execution times, latency
measurements)

Design constraints (performance, cost, power,
memory)

Modification history and version information
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• An important but often overlooked concept is generation of multiple views of a body of design
information. This is important for yielding insight into the behavioural characteristics of the system
and their causes [9].

• Techniques such as using colour or size to highlight useful information from large raw data sets are
also necessary.

The visualization of algorithm and architecture interaction developed in this project use the above
principles as the basis for their design in combination with the principles underlying Gantt Charts, trace
displays, and space-time diagrams which are summarized in the following three sections.

2.4.2 Gantt Charts

The Gantt chart was the brainchild of H. L. Gantt, a consulting management engineer who developed
methods of planning, production recording, stores-keeping and cost-keeping. He developed three basic
charts: Machine Record Chart, Progress Chart, and Man Record Chart. The first displays the amount of
time a machine is working, the cumulative working time of an individual machine, the cumulative working
time of a group of machines, and reasons for idleness [7]. The Progress Chart gives a distribution of tasks
across machines, the rate of work, and the activities on the chart are measured by the amount of time
needed to perform them. This chart defines a schedule as it maps tasks to machines and determines their
the task execution order. It shows how that schedule is being lived up to by comparing what has been done
and what should have been done. If this chart is detailed enough, it can indicate probability of future
performance and anticipate needs. The third chart compares what a worker has done with what should have
been done: it records a worker’s performance. This chart makes it possible to trace the lack of production
to its sources.

Gantt created these charts in order to:

• find out how plants are performing the function for which they were created;

• find out reasons why they are not doing as well as they should;

• remove obstacles which hamper them in the performance of their function.

Gantt was trying to solve a planning problem. Designing an embedded system requires similar planning,
production recording, stores-keeping, and cost-keeping in order to achieve optimal performance. Hence
applying the basic concepts developed by Gantt to embedded system design leads naturally to
performance-based design depicted in Figure 1. In addition to using Gantt Charts to discover possible
reasons for poor performance, trace displays and space-time diagrams can be useful in empirically
modeling system behaviour.

2.4.3 Trace Displays

A trace represents an instance of execution of a system. It helps a user model system behaviour and can
lead to discovery of unexpected phenomena. Trace files are used to capture performance details by logging
operations performed by a system to a file. This raw data then can be analyzed to determine system
behaviour. Good visualizations of traces allow the user to look at the traces in a format similar to looking at
signals on an oscilloscope which may reveal critical paths.
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2.4.4 Space-Time Diagrams

A space-time diagram shows message passing and communication between different processing units in a
system [10]. Diagrams depicting communication behaviour can bring to light patterns of behaviour that
can indicate program loops, or can allow a user to determine reasons for low utilization such as poor
message-passing techniques and inadequate pipelining.
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3 The Ptolemy and Tycho Frameworks

3.1 Ptolemy

Ptolemy is an environment for specifying, simulating, and synthesizing heterogeneous systems. Many of
these systems combine control-flow oriented processes with data-flow oriented processes resulting in
subsystems that must be modeled using different models of computation. Ptolemy was designed to allow
mixing of different models of computation to specify such systems [18]. A system, application, or
algorithm can be specified in Ptolemy by representing it visually in terms of whichever semantics seem
feasible for the problem. The system specification may contain homogeneous or heterogeneous semantics
and a user may wish to divide the system into subsystems that manage specific tasks in a modular fashion.
These functional blocks are known asstars in Ptolemy. Data that flows along the arcs connecting the stars
are known asparticles. An interconnection of stars is known as agalaxy which may represent the entire
system or a part of the system. A complete application is known as auniverse which is an interconnection
of stars and galaxies. Hierarchy is used to manage complexity and mix different models of computation
[24].

A target is a modular object in Ptolemy which describes particular features of the target hardware
architecture which will implement the design. It manages a simulation or synthesis process. A user can
specify target-specific information either at run-time or choose from a standard set of pre-specified options.
If no processor-specific information is provided, the target is asked to determine the communication costs
and each of the functional blocks are asked to determine execution time and resources required. The target
controls operations such as scheduling, compiling, assembling, and downloading code. Ascheduler object
is associated with each target and it determines how stars will be mapped onto available resources and their
execution order. Adomain is a collection of stars, schedulers, and targets. It implements a particular model
of computation [24] and either performs simulation or code generation. Figure 2 clarifies the afore-
mentioned terms and Table 3 [24] summarizes all the domains available within Ptolemy.

 Figure 2. Ptolemy Terminology
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Table 3. Summary of Domains in Ptolemy

Domain Description

Synchronous Data Flow (SDF)

• Oldest and most mature domain; it is a sub-domain of
DDF, BDF, and PN.

• Special case of data flow model of computation
developed by Dennis [5].

• Flow is completely predictable at compile time thus
allows for efficient scheduling.

• Allows for static scheduling.
• Good match for synchronous signal processing systems

with sample rates that are rational multiples of one
another.

• Supports multi-rate applications and has a rich star
library.

• Range of applications is limited.

Dynamic Data Flow (DDF)

• Versatile model of computation as it supports
conditionals, data-dependent iteration, and true
recursion.

• More general than SDF.
• Uses dynamic (run-time) scheduling which is more

expensive than static scheduling.
• Good match for signal processing applications with a

limited amount of run-time control.

Boolean Data Flow (BDF)

• Relatively new domain which supports run-time flow of
control.

• Attempts to construct a compile-time schedule to try
and achieve efficiency of SDF with generality of DDF.

• More limited than DDF.
• Constructs an annotated schedule: execution of a task is

annotated with a boolean condition.

Integer and State Controlled Data Flow
(STDF)

• Very new to Ptolemy and still experimental.
• Realizes data flow control by integer control data and

port statuses. It is an extension to BDF.
• Scheduling is static and conditional like BDF.
• It has user-defined evaluation functions.

Discrete Event (DE)

• Relatively mature domain which uses an event-driven
model of computation.

• Particles carry time-stamps which represent events that
occur at arbitrary points in simulated time.

• Events are processed in chronological order.

Finite State Machine (FSM)

• Very new to Ptolemy and still experimental.
• Good match for control-oriented systems like real-time

process controllers.
• Uses a directed node-and-arc graph called a state

transition diagram (STD) to describe the FSM.



The Ptolemy and Tycho Frameworks

15 of 48

Higher Order Functions (HOF)

• Implements behaviour of functions that may take a
function as an argument and return a function.

• HOF collection of stars may be used in all other
domains.

• Intended to be included only as a sub-domain by other
domains.

Process Network (PN)

• Relatively new domain that implements Kahn process
networks which is a generalization of data flow –
processes replace actors.

• Implements concurrent processes but without a model
of time.

• Uses POSIX threads.
• SDF, BDF, and DDF are sub-domains of PN.

Multidimensional Synchronous Data
Flow (MDSDF)

• Relatively new and experimental.
• Extends SDF to multidimensional streams.
• Provides ability to express a greater variety of dataflow

schedules in a graphically compact way.
• Currently only implements a two-dimensional stream.

Synchronous/Reactive (SR)

• Very new to Ptolemy and still experimental.
• Implements model of computation based on model of

time used in Esterel.
• Good match for specifying discrete reactive controllers.

Code Generation (CG)

• Base domain from which all code generation domains
are derived.

• Supports a dataflow model that is equivalent to BDF
and SDF semantics.

• This domain only generates comments, allows viewing
of the generated comments, and displays a Gantt Chart
for parallel schedules.

• Can only support scalar data types on the input and
output ports.

• All derived domains obey SDF semantics.
• Useful for testing and debugging schedulers.
• Targets include bdf-CGC which supports BDF, default-

CGC which supports SDF semantics, TclTk_Target
which supports SDF and must be used when Tcl/Tk
stars are present, and unixMulti_C which supports SDF
semantics and partitions the graph for multiple
workstations on a network.

Code Generation in C (CGC)
• Uses data flow semantics and generates C code.
• Generated C code is statically scheduled and memory

used to buffer data between stars is statically allocated.

Code Generation for the Motorola DSP
56000 (CG56)

• Synthesizes assembly code for the Motorola DSP56000
family.

Table 3. Summary of Domains in Ptolemy

Domain Description
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A user may simulate the specified system or generate code for a specific target architecture. Once a user
selects a target architecture, code generation can begin. Scheduling is the first stage of code generation in
Ptolemy and Section 3.3 discusses it in detail

Developers and users of Ptolemy have found that it has lacked proper facilities to visualize execution
traces, schedules for uniprocessor and multiprocessor systems, and performance data. This project aims to
fill this need by incorporating appropriate visualization techniques into Ptolemy using Tycho as the basis
for the implementation. Tycho is briefly described in the next section.

3.2 Tycho

Tycho is a software system designed to complement the Ptolemy framework with a hierarchal syntax
manager. Some of the key objectives of the Tycho project are to provide an extensible framework for
experimentation with visual syntaxes and to provide a mechanism for system design management. Tycho
is based on an object-oriented software architecture which is designed to allow for easy integration of
textual and graphical editors and displays. The focus is on allowing users to mix different syntactic models
such as allowing combinations of textual and graphical syntaxes. It is a relatively new project and is still in
its infancy stages.

3.3 Scheduling in Ptolemy

As stated earlier, scheduling is the first stage of code generation in Ptolemy. Currently, code generation
facilities exist for Synchronous Data Flow (SDF), Boolean Data Flow (BDF), and Integer and State-
controlled Data Flow (STDF) semantics [24]. Since all of the code generation domains support SDF
semantics and due to the fact that the SDF domain is the most mature of all the domains, the following
description of scheduling will be discussed with respect to SDF semantics. The concepts are easily
extended to the other domains.

Code generation begins after the application or algorithm has been specified using a data flow graph and a
target hardware architecture description has been selected. The target object contains information specific
to the hardware architecture: number of processors, communication costs, interconnection topology, and so
on. Several single and multiple processor schedulers use different algorithms for determining partitioning
and order of execution of functional blocks. For multiprocessor systems, an acyclic precedence graph
(APEG) must be created for every SDF graph before a schedule can be generated. The APEG displays the

Code Generation in VHDL (VHDL,
VHDLB)

• Relatively new and experimental
• Generates VHDL code.
• VHDL domain supports SDF semantics whereas

VHDLB supports behavioural models using native
VHDL discrete event model of computation.

• Many targets to choose from.
• VHDL domain is good for modeling systems at

functional block level whereas VHDLB is good for
modeling behaviour of components and their
interactions at all levels of abstraction.

Table 3. Summary of Domains in Ptolemy

Domain Description
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precedence relations between the invocations of the SDF functional blocks. All schedulers designed for
multiprocessor systems use the generated APEG as input [24].

Several types of schedulers exist within the Ptolemy framework. Some schedulers ignore hierarchy that
may be present in the SDF graph in order to maximize concurrency, whereas others use hierarchy to
minimize complexity. There are some schedulers that have been designed by Ptolemy researchers that
create a new hierarchy by clustering a scheduling graph to take advantage of the natural looping structure
of the code. No single scheduler can handle all situations so Ptolemy allows a user to mix and match
different schedulers for specific applications [24].

A summary of the types of schedulers available in Ptolemy is given in Table 4 and Table 5 [24]. The
terminology used in the tables is described in the following section.

3.3.1 Scheduling Terminology

This section briefly describes some of the terms used in Table 4 and Table 5.

• APEG
APEG abbreviates acyclic precedence graph. The nodes in this graph represent tasks or computations
and the directed arcs represent precedence constraints and data paths. Each arc has a label which
specifies the amount of data that the source node passes to the destination node. An APEG can be
derived from a SDF representation [26].

• Looped Schedule
A looped schedule is one which may contain any number ofschedule loops. A schedule loop consists
of m number of actors or functional blocks that are repeated in successionn times. Loops in a looped
schedule may be nested [3].

• Clustering
For each node in a SDF graph, there areq corresponding nodes in an APEG. The numberq represents
how many times the SDF node must be invoked in order to satisfy data precedences in the SDF graph.
This expansion can result in exponential growth of nodes in the APEG.Clustering SDF graph nodes
into composite nodes can limit the expansion resulting in a simpler APEG. The clusters may be
scheduled much like actors resulting in hierarchical schedules [22].

• Buffers and Buffering
Each edge in a SDF graph corresponds to first-in-first-out queue that buffers tokens that pass along the
edge. The queue is known as thebuffer for the edge; the process of maintaining the queue of tokens is
known asbuffering [3].

• Single Appearance Schedule
A single appearance schedule is one in which each actor or functional block appears only once in the
entire schedule [3].
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Table 4. Single Processor Schedulers in Ptolemy

Scheduler Name Features

Default SDF Scheduler

• Performed at compile time.
• Many possible schedules but schedule is chosen based on a

heuristic that minimizes resource costs and amount of buffering
required.

• No looping employed so if there are large sample rate changes,
size of generated code is large.

Joe’s Scheduler

• Performed at compile time.
• Sample rates are merged wherever deadlock does not occur.
• Loops introduced to match the sample rates.
• Results in hierarchical clustering.
• Heuristic solution so some looping possibilities are undetected.

SJS (Shuvra-Joe-Soonhoi)
Scheduler

• Performed at compile time.
• Uses Joe’s Scheduler at front end and then uses an algorithm on

the remaining graph to find the maximum amount of looping
available.

Acyclic Loop Scheduler

• Performed at compile time.
• Constructs a single appearance schedule that minimizes amount

of buffering required.
• Only intended for acyclic dataflow graphs.

Table 5. Multiple Processor Schedulers in Ptolemy

Scheduler Name Features

Hu’s Level-based List Scheduler

• Performed at compile time.
• Most widely used.
• Tasks assigned priorities and placed in a list in order of

decreasing priority.
• Ignores communication costs when assigning functional blocks

to processors.

Sih’s Dynamic Level Scheduler

• Performed at compile-time.
• Assumes that communication and computation can be

overlapped.
• Accounts for interprocessor communication overheads and

interconnection topology.
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3.3.2 Schedule Files

All scheduler objects in Ptolemy have a method that will allow a user to display a schedule in text form.
The format of the string is constructed to allow visualization tools to easily parse the schedule information
and construct a visual representation of the schedule. The format of the string is displayed below in
Table 6.

The notation used in Table 6 is explained below:

• ( <name> ) + means one or more items of typename;

• <type:description> means an item of the given type and description;

• { and } are included to make the string trivial to parse in Tcl;

• bold-faced words are key words indicating what type of information will follow.

All entries are optional and as more schedulers are added to Ptolemy, the list is expected to grow. Some
items are used only by specific schedulers. For example, theassignitem is used by a BDF scheduler to
record a value that affects the schedule.

A schedule file contains a <schedule> string that contains one or more entries of the type <entry> which
can be many different items as shown in the table. It can be either a nested schedule, a numerical entry
indicating either performance or schedule data, or it can be an identifier. Some examples of schedule files
can be found in Table 7. Visualization representations of schedule files is discussed in the next section.

Sih’s Declustering Scheduler

• Performed at compile-time.
• Addresses trade-off between exploiting parallelism and

interprocessor communication overheads.
• Analyzes a schedule and finds the most promising placements of

APEG nodes.
• Not single pass but takes an iterative approach.

Pino’s Hierarchical Scheduler

• Performed at compile time.
• Partially expands the APEG.
• Can use any of the above parallel schedulers as a top-level

scheduler.
• Supports user-specified clustering.
• Realizes multiple orders of magnitude speedup in scheduling

time and reduction in memory usage.

Table 5. Multiple Processor Schedulers in Ptolemy

Scheduler Name Features
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Table 6. Schedule File Format

Entry Format

<schedule> { ( <entry> )+ }

<entry>

{ scheduler <string:scheduler_identifier> }
| { galaxy <string:galaxy_or_universe_name> }
| { target <string:target_name> }
| { ( <num> )+ }
| { utilization  <float:utilization> }
| { ( <nestedSchedule> )+}
| { cluster <string:name> <schedule> }
| { assign <string:token> <string:value> }
| { fire <star> }
| { fire <star> <f_info> }
| { processor <string:name> <schedule> }
| { repeat <int:repetitions> <schedule> }
| { <string:annotation> <schedule> <string:endannotation>}

<nestedSchedule>
{ preamble <schedule> }
| { cluster <schedule> }
| { <string:annotation> <schedule> }

<num>

{ numberOfProcessors <int:numprocs> }
| { numberOfStars <int:numstars> }
| { numberOfStarOrClusterFirings  <int:sizeofDAG> }
| { makespan <int:makespan> }
| { totalIdleTime  <int: idletime> }
| { idle <int:idletime> }

<star>
send
| receive
| <string:star_name>

<f_info> { ( <f_entry> )+ }

<f_entry>

{ exec_time <int:exec_time> }
| { start_row <int:start_row_index> }
| { start_col <int:start_col_index> }
| { end_row <int:end_row_index> }
| { end_col <int:end_col_index> }
| { <string:label> <string:value> }
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4 Techniques to Visualize Algorithm and Architecture Interaction

This section presents techniques that can be used to visualize the interaction between an embedded system
architecture and algorithms that are run on it. The concepts that were summarized in Section 2 are used as
the basis for the design of a tool that allows an engineer to visualize the interaction and performance of
various components in an embedded system. Details of the software architecture and implementation are
the subjects of the final two parts of this project.

The initial goals are to be able to animate execution of algorithms on selected targets and to be able to
easily identify performance bottlenecks, load imbalances, and problematic hardware-software interfaces.
This requires designing visual representations of embedded system hardware and software components,
schedules, execution traces, communication patterns, and performance data. All the representations
described in this section are discussed with respect to Tycho and Ptolemy, however, they are not
necessarily tied to these frameworks.

The first subsection that follows describes visual representation of hardware components of an embedded
system. Following sections describe visualization of various types of schedules, execution traces, and
communication patterns. The final subsection discusses what sort of extra insight can be gained about
system behaviour by merely combining these views into a single display.

4.1 Visual Representation of Hardware Components

As stated in the discussion of visualization basics, it is important for any visualization tool to allow a user
to relate displayed design information to a context. In the case of embedded system design, an engineer
would like to relate visual representations of execution and performance data to the system under analysis.
A visual representation of system components and how they are being employed provides a way of relating
execution behaviour to the system environment. For example, if a visual representation of the hardware
architecture and its bounds are available to the engineer, he or she can quickly determine whether poor
performance is due to the architecture bounds or due to poor software design or a combination of both.

A simple yet effective method of representing an architecture visually is shown in Figure 3 below. Each
large block represents a processing unit. A processing unit may be an off-the-shelf processor or a memory
management unit, or a FPGA, or even an application specific integrated circuit (ASIC). The amount that
each block is filled indicates how well that resource is being utilized. If the block is completely filled then
the resource is fully employed in executing tasks at all times.

Interconnections between processing units is indicated by solid lines. Dashed lines indicate that a
connection is possible however, in the depicted configuration, no connection has been made. The benefit of
indicating different architecture configurations and delineating them from what is actually being used in
the current setup reminds the user that other design possibilities exist which may achieve better
performance. In addition it may allow a designer to gain insight into system behaviour by changing
configurations quickly and observing changes in execution patterns and performance. The thickness of
each of the arcs connecting the processing units indicates the relative amount of communication taking
place between the units.
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 Figure 3. Visual Representation of Hardware Architectures

Clicking on an individual processing unit block bring up information regarding bounds inherent in the
resource such as speed, and size of local memory. In addition, statistical information such as the number of
input or output accesses, throughput, and average memory access times are also displayed. These statistics
are shown in a manner that allow a designer to compare the observed throughput or average memory
access time with what is actually possible for that resource. This is useful in indicating to the designer how
well the architecture is being employed in comparison to its full potential and helps in determining whether
the system projected onto the hardware should be redesigned or whether the hardware should be changed
to suit the system needs.

The visualization described above allows an engineer to quickly determine how the interconnection
topology is being used and at glance he or she can determine utilization and communication overhead. If
the designer wants to dig deeper and get more detail, clicking on each individual block representing a
processing unit will bring up relevant information. Layering information in this manner allows for
uncluttered displays and allows a user to tune the tool his or her needs.
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4.2 Visual Representation of Software Components

Ptolemy provides a means to create an abstract functional model of an entire system. However, the system
may be implemented in either hardware or software or a combination of both. In the previous section,
visual representation of hardware components was discussed and it was shown how this was useful in
gaining insight into system behaviour and providing a means for relating performance data and execution
traces to the system environment. Due to the fact that not all embedded systems are implemented solely in
hardware, it is not enough to only provide a user with a hardware context. A representation of software
architectures equivalent to hardware representations would be extremely useful in depicting
interconnection and interaction of software components. It would also serve as an effective way of
displaying software designs. This work is beyond the scope of this project, however, developers of Tycho
may envision adding this capability at a later time.

4.3 Visual Representation of Schedules

The Gantt Chart discussed in Section 2.4.2 has traditionally been used to display schedules, specifically in
the form of the Progress Chart. The other two charts – Machine Record Chart and Man Record Chart –
have been used to a much lesser extent as a basis for charts that show schedules or other performance data.
In attempting to create an effective display of schedules generated for uniprocessor and multiprocessor
systems by Ptolemy schedulers, the following questions were asked:

• How are various components of the embedded system performing the function for which they were
created?

• Is it possible to identify obstacles that hamper performance of the various components?

• Are all resources being used effectively? If not, why not?

• If all components are busy, are they executing tasks that have high priority? If not, why not?

• If all components are busy and executing high priority tasks, are they doing it as fast as possible? If
not, why not?

Clearly large amounts of data are required to answer the above questions and it is not possible to display all
the data in a single view. This is where it is necessary to employ the concept of multiple views. Combining
these views in a single display can provide extra insight into behaviour and possible reasons behind poor
performance that would not be gained if the views were seen separately. This is discussed in detail in
Section 4.6.

A visual representation of the chosen hardware architecture constitutes the first view which provides a
description of the system environment and at a glance gives an indication of performance. This was
discussed in the preceding section and it is similar to the Machine Record Chart concept discussed in
Section 2.4.2. It tries to give clues to the designer regarding possible reasons for poor utilization, and why
some resources may not be effectively employed in performing tasks.

The Progress Chart concept is used as the basis for a view that displays scheduling information. It shows
the distribution of functional blocks over available resources. The chart indicates the number of processors,
the distribution of tasks across the processors, times when the processors are idle or are busy sending and
receiving messages from connected processors. It does not show communication patterns but does indicate
utilization. The chart created for Ptolemy schedules is different from traditional Gantt Charts in that the
display is not strictly linear. Because Ptolemy allows mixing of schedulers which sometimes results in



Techniques to Visualize Algorithm and Architecture Interaction

24 of  48

hierarchical scheduling, it was necessary to create a display that would indicate this mixing and the
resulting hierarchy.

The various forms that a schedule can take in Ptolemy are shown in Table 7. The simplest form is a
sequence of firings of actors or functional blocks on a single processor. Due to the fact that no execution
times are associated with the actor firings, the sequence is depicted as a train of coloured circles, each
colour representing a different actor. If execution times are associated with each actor then a strip of
coloured blocks represents the firing sequence. The length of each block gives an indication of relative
time spent executing that particular task. The time line at the top of the view indicates the total length of
the schedule and processor utilization is given below the schedule.

Loops in a schedule are shown in the third example in Table 7. If a sequence of actors occurs within a
schedule loop, then an ellipse with a certain thickness is drawn around the actors to indicate the looping.
The legend on the side provides a key to which colours correspond to which actors and how many
iterations of the schedule loop the thickness of the ellipse represents. Even though this is a very simple
visualization, it compactly displays looping and loop nesting, and order of execution.

Hierarchy which can occur because of clustering is indicated by a box that has a raised relief and a special
cluster icon. It can be opened up by clicking on it with a mouse to reveal a nested schedule which is shown
in a separate display. The nested schedule may be a looped schedule or another cluster or any other type of
schedule.

For multiprocessor schedules, communication between processors is shown by send and receive blocks
that are indicated by blocks that have special icons. The length of the blocks indicate how much time is
required by each send and receive. Displaying communication on a schedule allows a user to gauge how
much time is spent in communication overhead versus time spent performing useful tasks. If the schedule
shows that too much time is being spent in sending and receiving messages, then either the architecture
topology is not well-suited to the application or the algorithm is not well-suited to the architecture.
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Table 7. Visual Representation of Different Schedules

Schedule Example Visual Representation

Simple Sequence of actor firings with no
execution times:
{ scheduler “Identifier”}
{ fire A}
{ fire B}
{ fire C}
{ fire B}
{ fire C}
{ fire C}
{ fire C}

Sequence of actor firings with execution
times:
{ scheduler “Identifier”}
{ fire A { exec_time 200}}
{ fire B {exec_time 100}}
{ fire C {exec_time 50}}
{ fire B {exec_time 100}
{ fire C {exec_time 50}}
{ fire C {exec_time 50}}
{ fire C {exec_time 50}}

Looped Schedules – Example 1:
{ fire A}
{ repeat 2

{ fire B}
{ repeat 2

{ fire C}
 }

}

Looped Schedules – Example 2:
{ fire A}
{ repeat 2

{ fire B}
}
{ repeat 4

{ fire C}
}

A
B
C

A B C

0 600300

A
B
C
2

A
B
C
2
4
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Looped Schedules – Example 3:
{ fire A}
{ repeat 2

{ fire B}
{ fire C}

}
{ repeat 2

{ fire C}
}

Clusters:
{ cluster {
{ scheduler “Identifier”}
{ galaxygalName}
{ numberOfProcessors 2}

{ processor 0 {
{ target target1}
{ totalIdleTime  0}
{ fire ClusterA {exec_time 300}}
{ fire B {exec_time 10}}
{ fire C {exec_time 20}}
}}

{ processor 1 {
{ target target2}
{ totalIdleTime  80}
{ fire ClusterB {exec_time 250}}
}}

{ cluster ClusterA {
{ fire A1 {exec_time 100}}
{ fire A2 {exec_time 50}}
{ fire A3 {exec_time 150}}
}}

{ cluster ClusterB {
{ repeat 128
{ fire B1}
{ fire B2}
}}}

}}

Table 7. Visual Representation of Different Schedules

Schedule Example Visual Representation

A
B
C
2

clusterA

0 330

P0

clusterBP1

B C

0 300

A1 A2 A3

0 250

A1A2

B1
B2
128
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4.3.1 Modifying Schedules

Most of the schedulers in Ptolemy are based on heuristics and do not give point solutions, therefore it is
beneficial to allow users to edit a schedule so that the system can be optimized for whichever measure of
performance the engineer feels is important for the application. This added flexibility gives users more
control over the design of the system and gives them the ability to explore effects of slight schedule
modifications on performance. It can also help in providing insight into the scheduling algorithm being
employed.

Editable schedules only make sense for those that are static or quasi-static. These schedules are generated
at compile time according to some heuristic. Dynamic schedules are generated at run-time hence they
cannot be modified before the system executes. The static schedulers listed in Table 4 and Table 5 all
consider the data precedences inherent in the data flow specification of the application. Hence, when a user
modifies a schedule he or she must not be allowed to make changes that would cause a deadlock in the data
flow graph. It is clear that the schedule editor must employ some sort of validation criteria and prevent the
user from making inappropriate changes to the schedule. In addition, if a change is made to the schedule in
a particular place, it may cause changes to occur in other places. Of course, the editor should have the
capability of reflecting the changes caused by these dependencies.

An outline of how back annotation of schedules could be implemented within the software framework
developed in this project is discussed in Section 6.8.4.

4.4 Visual Representation of Execution Traces

In Ptolemy it is possible to output an execution trace of any algorithm from any domain. From this a user
can create a trace file which like a schedule file can be displayed in graphical form. Visual representation
of execution behaviour can reveal critical paths and help determine execution patterns [1]. Much like an
oscilloscope records the evolution of a signal over time, the execution trace tracks system behaviour over
time. It keeps a record of what tasks were executed, when they were executed, and how long they took to
complete. The trace may also be annotated with expected or estimated behaviour. Clearly, this is very
similar to the Man Record Chart concept developed by Gantt [7].

A simple visualization of an execution trace is shown in Figure 4. Each task is listed along the vertical axis
and time is given along the horizontal axis. The thick lines represent how long each task was expected to
take and the thin lines below represent actual execution. The different colours represent different
processing units. This simple visualization gives a very good picture of execution behaviour and how it
compares to what a designer may have expected or estimated.

{ processor 0 {
{ fire send {exec_time 5}}
}}

{ processor 1 {
{ fire receive {exec_time 10}}
}}

Table 7. Visual Representation of Different Schedules

Schedule Example Visual Representation

0 10

P0

P1
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 Figure 4. Visual Representation of An Execution Trace

4.5 Visual Representation of Interprocessor Communication

For most parallel systems it is extremely useful to be able to discern communication patterns as they can
disclose important properties of algorithms or poor message-passing techniques which would result in
poor performance. Schedule files in Ptolemy contain information regarding communication in the form of
times taken to send and receive messages however, source and destination information is missing. The
string representing schedule information will be modified to incorporate source and destination
information. The modifications are discussed in detail in Section 6.10.

The visualization of communication is shown in the figure below. Processing units are shown along the
vertical axis and time is given along the horizontal axis. Lines drawn from one processing element to
another indicate message-passing between the two and the length of the horizontal lines at each processing
unit indicate how much time that processing element is spending executing some task. The time spent
sending and receiving messages is shown by the space between when a processor finishes executing its
task and when the unit receiving the message starts executing its task. Parallelism can be depicted by
overlaying all on-going communication in the same view.
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 Figure 5. Visual Representation of Communication Between Interconnected Processors

4.6 Combining Views

Multiple views of design information can provide extra insight into system behaviour. Combining these
views into a single display can be extremely useful in gaining important information that may not have
been gained otherwise. For example, if a view of a schedule and a view of the communication patterns is
combined into a single display with one view above the other, then the designer is able to determine how
the processors are communicating with one another and how much time they are taking sending and
receiving messages in relation to the time taken to execute other tasks. Another useful combination is that
of an architecture view and a view of a schedule. The engineer can almost instantly relate scheduling
information to a context and gain insight into how topology can effect task execution and performance.
This may also helps in making changes to a schedule that would make better use of the underlying
resources.
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5 An Object-Oriented Model for Visual Display of Design Information

This section presents an object-oriented model for visual display of design information. The model
consists of three key objects that allow for combinations of multiple views of design information:
Displayer, View, and Data Filter. Each of these objects are described in detail in the following subsections.
The notation used in the figures describing the object-oriented architecture is described in [25] and
summarized in the figure below.

 Figure 6. Summary of Object Model Notation

An overview of the design is given in Figure 7. Two key issues that motivated the design are:

• Different views of information need to be easily combined in a single display. This is useful in
providing insight as a single view may not present enough information to the designer to construct a
proper empirical model of system behaviour. Combining multiple views of design information in a
single display can sometimes give a user more information than if the views were seen separately. The
benefits of this with regards to algorithm and architecture interaction were discussed in Section 4.6.

• If one set of design information is being used in multiple views, then the currentinformation state
needs to be preserved across views. In other words, if a piece of design information is being edited in
one view, then the changes must be reflected in the views that may be displaying the same piece of
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information in a different format. In addition, it must be possible to save changes to the design
information in the format that it was originally stored in. For example, if a text file was rendered in
graphical form in a view and changes were made to the view graphically, then it should be possible to
save those changes in a text form that may be re-read and displayed in another form by another view
later on in the design process.

As one can see from the figure below, the Displayer can house zero or more views and in turn, the view can
include sub-views. This makes it possible to combine multiple views in a single display and combine
various syntaxes (e.g. text and graphics) in a single view.

 Figure 7. Overview of the Object-Oriented Model for Visual Display of Design
Information

The Displayer is responsible for inserting and removing Views. It also responsible for assigning menuberas
to registered Views. The Displayer is discussed in detail in Section 5.1. The main purpose of a View is to
render design information. It can choose a Data Filter (DF) which will present the View with a sequence of
display data that indicates how the information should be displayed. The View can query the Data Filter for
any key parameters in addition to asking for the display data at any moment in time.

The Data Filter transforms data presented to it from one form into another. For example, it may take a SDF
data flow graph representation and generate an APEG representation. It may also take a text string, strip
out important information, and then generate another string consisting of graphical annotations that a View
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can use to graphically display information contained within the original text string. The View and the Data
Filter are discussed in Section 5.2 and Section 5.3, respectively. Both View and Data Filter are abstract
objects that other objects can inherit from.

5.1 Display Management

The Displayer class manages the display of views and menus. Views can be inserted or removed from the
Display using methods such assetView or removeView. It is also responsible for providing Views with a
menubar for their use. Each View can configure its own menubar by employing the menu bar methods and
once complete, the View need only tell the Displayer that it now has the focus and would like it to Display
its menubar.

Even though the Displayer can house any number and type of Views, it is assumed that users of the
Displayer will practise good judgement when mixing Views. If one or more radically different Views are
mixed, then the user does not gain anything from putting the Views into a single display. The main purpose
of mixing Views is to gain insight that would not have been obtained otherwise. Details of the Displayer
implementation are discussed in Section 6.2 and a brief summary of the intended functionality is discussed
in the sections immediately following this one.

 Figure 8. The Displayer, Menubar and View Objects
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5.1.1 View Management

The View is responsible for registering itself with its Displayer after it has been constructed. Registration is
necessary because the Displayer needs to know which Views it is responsible for and must assign a
menubar to each of its Views. When the View registers itself with its Displayer, it obtains a unique
menubar identifier which it can use to build up its menus. Once this is complete, it can call thesetView
method in the Displayer to insert itself into the Displayer. The Displayer is responsible for keeping track of
which Views have been inserted and which have merely been registered.

When a View removes itself from the Displayer, it is not de-registered. That is, the Displayer still knows
about the presence of that view as it may wish to be re-inserted in the window. De-registration destroys the
View and its menubar, and if that particular View is required again by the application it must be
reconstructed. If a View has not been removed from the Displayer before de-registration, it will be
removed before destruction. The focus passes to the next View in the list of inserted Views.

5.1.2 Menu Management

When the View registers itself with the Displayer, it is assigned a unique menubar identifier based on a
unique label provided by the View. The Displayer creates this menubar for use by the View. After this, the
View can operate on the menubar independently of the Displayer. The View can indicate to the Displayer
that it would like it to display its menubar by configuring the menubar option. A View can also query its
menubar identifier by using themenubar method.

Adding and removing menus and menu items is accomplished by calling the appropriate Menubar methods
which are shown in Figure 8. Interface details of the Menubar object are described in the final part of this
report.

5.2 Views

Views are responsible for rendering design information. Each type of View knows how to display specific
types of information. For example, a File View knows how to display files and is responsible for providing
a mechanism to perform operations on a file such as opening, closing, and editing. A View may employ a
Data Filter to either convert a particular representation of data that must be rendered into a form that it will
understand or to filter out unnecessary pieces of information that a user may not want to see.

It can also incorporate sub-views which allow different forms of design information to be combined in a
single View. If sub-views are present in the View then the View’s menubar will contain a superset of all the
menu items required for all views. A sub-view is not allowed to manipulate the parent View’s menubar.
The parent is responsible for creating its menubar. The View methods and attributes are shown in Figure 8
and the implementation details are discussed in Section 6.4.

5.3 Data Filters

A Data Filter (DF) transforms one data representation to another. It may filter out pieces of information
that may not be required in the new representation. Data Filters may be cascaded as shown in Figure 9
allowing data to go through multiple transformations before being passed on to a View for rendering. One
of the advantages of employing Data Filters is that different views of the same basic information can be
easily generated by interchanging one filter with another.
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 Figure 9. The Data Filter Concept

Each Data Filter knows the relationship between the original piece of data and the transformed counterpart
hence it can save an edited version of the new representation in the pre-processed form. Each Data Filter
must keep track of any filter preceding it as it would need to communicate with its predecessor when it
passes back edited information which may need to be saved in its original form. The concept of a Data
Filter is fairly general so each particular type of Data Filter will have differing details. The attributes and
methods common to all Data Filters are shown in the figure below.

 Figure 10. Data Filter
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The Displayer-View-Data Filter paradigm presented above can be useful for displaying many different
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6 Implementation of the Object-Oriented Model For Design
Visualization

This section describes the final part of this project – the implementation of the object-oriented model for
design visualization and the implementation of the techniques used to visualize algorithm and architecture
interaction in embedded systems. The prototype is written in [incr Tcl] and [incr Tk] [14], and is part of the
Tycho project. As mentioned in the previous section, the two key classes are the Displayer and the View.
The functionality of each was described in detail earlier. The Data Filter manipulates design information or
data and presents it to another Data Filter or a View in a different form. Data Filters can be cascaded to
allow for editing interrelated data or enabling multiple views of the same data. An overview of the
interaction between these three main classes is shown in Figure 12. A summary of the graphical notation is
provided in the figure below.

 Figure 11. Summary of Notation Used to Depict Implementation

6.1 Overview

Tycho, the syntax manager for Ptolemy, is written entirely in [incr Tcl] and [incr Tk]. The Tycho kernel is
comprised of a number of base classes that are used in almost all editors and displayers. However, the
slate,which provides a basic drawing surface for graphical objects and pictures, serves as a base for the
Tycho visual language toolkit and is independent of the kernel. The classes developed in this project use
theslate (and other associated classes) as well as some of the classes in the Tycho kernel.

The Displayer and View interact in the following manner. When a View wants to use a Displayer, it will
register itself with the Displayer by providing theregisterView method with a label and its identifier. The
registerView method acknowledges the registration by returning a unique menubar identifier which the
View can then use to create its menus and menu items. Once the View has completed its setup, it asks to be
displayed by calling thesetView method. In response, the Displayer inserts the appropriate menubar and
the View grabs the focus. A View can remove itself from the Display simply by calling theremoveView
method. Even though a View may not be displayed, it may still be registered with the Displayer. To

className
method/procedure

protected method

variable/data

flow of data

initialization_option constructior



Implementation of the Object-Oriented Model For Design Visualization

36 of  48

deregister itself, the View must call thederegisterView method which will destroy the View and its
menubar. After having called thederegisterView method, an application desiring to re-display the View
must reconstruct and register it again with the Displayer.

The View can employ the services of a Data Filter by specifying a particular instance of a specific Data
Filter as an initialization option. The View is responsible for calling thecreate method of the Data Filter to
create any appropriate data structures that it may require to transform data from one representation to
another. Each specific type of Data Filter may be very different from another; hence, the abstract Data
Filter class is rather sparse.

Details of each class are described in the following subsections followed by a description of how the
techniques used to visualize algorithm and architecture are implemented.

 Figure 12. An Overview of the Implementation of the Model for Design Visualization
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6.2 Displayer

The Displayer inherits from the TychoDismiss class which provides basic window functionality and a
status bar. It has two options that can be configured to give the Displayer a name and a menubar. Methods
exist to insert and remove Views. Upon construction, the Displayer will set up frames to house a menubar
and views. It will also create a default menubar that is visible when there are no views in the Displayer. The
figure below describes the implementation in graphical form. Details regarding the methods and variables
follow.

 Figure 13. Implementation of Displayer

6.2.1 Displayer Options

The Displayer has two options:menubarand name. Themenubar option allows a user to configure the
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calling thederegisterView method which uses the label parameter to find the View in theviewList and then
removes it from the list. The View and its menubar are consequently destroyed.

If a View has been inserted into the Displayer andderegisterView is called, then it is first removed from the
Displayer by calling theremoveView method. TheremoveView method does not destroy the View and its
menubar; it only removes it from the list of inserted Views. If the removed View had the focus, then its
menubar is removed as well and focus is given to the next View in the list of inserted Views. A View can be
inserted into the Displayer by calling thesetView method which will place the View either at the top or
bottom of the Displayer or to the left or right of previously inserted Views. Theside argument to the
method provides this functionality. TheprevMenubar variable keeps a record of which menubar was being
displayed before the menubar option changed. The next section describes the Menubar widget which is
associated with each view.

6.3 Menubar

The Menubar widget may be inserted into any Displayer or top level window. It provides methods to add
and remove menus and menu items, and to insert menu separators. It also allows a user to enable and
disable menu items and entire menus. Each View is given a menubar when it registers itself with a
Displayer. The View can then operate on its menubar independently of the Displayer. Figure 14 shows the
interface.

 Figure 14. Implementation of Menubar widget
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6.3.1 Menubar Methods

The menubar widget provides a simple way of creating menubars. Adding menus is easily accomplished
by calling theaddMenu method and adding menu items is done by calling theaddMenuItem method.
Removing menus and menu items is done in a similar fashion by calling the respective remove methods.
Similarly, menus and menu items can be enabled and disabled using the enable and disable methods. Menu
item separators can be added using theinsertMenuSeparator andaddMenuSeparator methods.

6.4 View

The View is an abstract class that other Views which specialize in rendering certain types of information
can inherit from. The abstract View class provides guidelines on how Views should communicate with the
Displayer. It also provides some generic methods required by all editors and displays. The implementation
is shown in graphical form below. Following the figure, a description of the options, variables, and
methods is given.

 Figure 15. Implementation of View
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6.4.1  View Options

The abstract View class has two configurable options. The first,df, specifies the name of the Data Filter
that a View may want to employ to filter some data into a form that it can easily understand and render. The
second option,top, allows the user to specify the top level window that contains the View.

6.4.2 View Methods and Variables

The first View method,addMyMenus, does not do anything, however, derived classes should redefine this
method to perform all operations that are required to create its menubar. This method is called from the
protected methodsetup. Thesetup method sets the Displayer for the View, registers the View with the
Displayer, and creates the unique label required for registration purposes. The final task in setup is to create
the menubar for the View by calling theaddMyMenus method. TheinsertInDisplay calls the setup method
and then calls the Displayer methodsetView which inserts the View into the Displayer. The newly inserted
View grabs the focus. The names of the Data Filter, Displayer, and Menubar are saved in the variables
myDF, myDisplayer, andmyMenubar. The unique label for the View is preserved inviewLabel.

Views may have subviews. This allows for mixing of different types of syntaxes (e.g graphics and text).
TheaddSubview andremoveSubview methods provide mechanisms to add and remove subviews. A list of
all subviews within a single View is contained in the variablesubviewList. The methodssetMenubar and
setDisplayer provide a way to change the View’s Displayer and Menubar. At the present, subview
functionality has not been implemented due to some issues that have not yet been resolved. For example,
there is the issue of how to set up the menubar when the View contains many different subviews. A lot of
effort needs to be spent on designing the View so that it can cleanly support subviews.

Other methods associated with the View are general and are required for all editors and displays. These
methods were originally written for a standard Tycho widget by Edward A. Lee but now have been
integrated into the View. The reader is asked to look at Tycho documentation for their details.

6.5 Slate View

The Slate View was developed to act as a scrollable drawing surface that could support graphical objects
and pictures. John Reekie, a Tycho developer, has created aslate which was designed for this purpose but
does not support scrollbars or menus. The Slate View inherits from View and embeds a slate to which it
adds scrolling capabilities. A lot of the code required to implement scrolling was borrowed from the code
written for the scrollable canvas widget created by Sue Yockey and Mark Ulferts. The Slate View is used as
a base class for all the graphical Views developed for the tool that visualizes architecture and algorithm
interaction. A graphical description of the implementation is not given as Slate View only adds extra
methods and options to those already existing for View. The reader should refer to Tycho documentation
for more details regarding theslate.

6.5.1 Slate View Options

Theautomargin option gives the size of the margin between the edges of the slate and the bounding box
containing all the items on the slate. Theautoresize option, when set, allows the scrollbars to adjust
automatically when new items are added to the slate. The height and width of the slate are given by the
height andwidth options. Scrollbars can be dynamic or static – that is, they can be set so that they



Implementation of the Object-Oriented Model For Design Visualization

41 of 48

disappear when they are no longer required. Thehscrollmode andvscrollmode options specify this for the
horizontal and vertical scrollbars, respectively.

6.5.2 Slate View Methods

The Slate View contains all the methods required by the View and in addition provides methods for
scrolling the slate. Thechildsite method returns the name of the slate that is embedded in the view. Also,
wrappers have been created for all the slate methods so that the same operations can be performed on the
scrollable slate. For the sake of brevity, details will not be provided here as Tycho documentation already
contains this information.

6.6 Data Filter

Data Filters that operate on specific types of data inherit from the Data Filter abstract base class. It
provides some general methods to operate on data, however, derived classes are expected to overload the
methods with their own definitions as Data Filters can be very different from one another. The abstract
class implementation is shown below in Figure 16. Following it is a description of its options, methods and
variables.

 Figure 16. Implementation of a Data Filter
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6.6.2 Data Filter Methods

There are three methods associated with the current implementation of the Data Filter. Thecreate method
creates any data structures within the filter that may be required when data is transformed from one
representation to another. Thetransform method performs this transformation. Thesave method saves a
modified version of the new representation in the form of the old representation. In other words, it tries to
perform the transformation operation in reverse. It should be noted here that the code for the reverse
transformation has not yet been written. More effort is still required in this area as reversing a filtering
operation is normally very difficult.

6.7 Architecture View

The Architecture View represents the visualization of embedded system hardware components. This
section provides an overview of a possible implementation. It should be noted that at the present, the
Ptolemy target object does not have the capability of writing out an architecture description to a file.
Hence, no code has been written for this view.

In order to help a visualization tool render a graphical display of system components, it is necessary to
provide the tool with some sort of representation of the architecture that can easily be parsed by the tool. A
file similar to the schedule file described in Section 3.3.2 is used to perform this function. The format is
given in Table 8.

Table 8. Architecture File Format

Entry Format

<target> { ( <entry> )+}

<entry>

{ target <string:target_identifier> }
| { block <string:block_identifier> <target> }
| { connect <string:toBlock> }
| { connect <string:toBlock> <connection_info> }
| { ( <estimate> )+ }
| { ( <num> )+ }

<connection_info>
{ connected }
| { not_connected }

<estimate>

{ send <int: exec_time}>}
| { receive <int: exec_time> }
| { utilization  <float: utilization> }
| { throughput  <float: throughput> }
| { avgMemAccess <float: memAccess> }

<num>
{ numberOfBlocks <int:numblocks> }
| {numberOfInputs  <int:numinputs> }
| {numberOfOutputs <int:numoutputs> }
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A Data Filter similar to the one described for the Gantt View may be developed to parse the architecture
file and generate the display data.

6.8 Gantt View

The Gantt View class is responsible for creating a graphical representation of a schedule. It uses the Gantt
Data Filter, GanttDF, to query important information from the schedule file. Details regarding the Gantt
Data Filter are given in a later section. Below is a figure which presents a graphical view of the
implementation. Following it is a description of the options and methods.

 Figure 17. Implementation of Gantt View
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6.8.2 Gantt View Methods and Variables

TheaddMyMenus method adds the appropriate menus and menu items to the menubar supplied by the
Displayer. Menus include File, Edit, Zoom, Legend, and Help. The File menu contains items pertaining to
operations normally associated with files; the Edit menu contains items that allow a user to edit a Gantt
Chart; the Legend provides information regarding the meaning of colours, lines, and shapes. The Help
menu provides the user with information pertaining to the use of the Gantt Chart.

A number of methods exist that help with drawing various parts of the Chart. ThedrawLabels method is
responsible for drawing processor labels, and schedule identifiers in the appropriate places. The
drawMarker method creates a bright marker that is positioned wherever the user clicks the mouse. The
marker is useful for finding out what tasks are executing at different time instances. The position of the
marker with respect to the time axis is displayed above the marker. ThedrawProcessor method creates a
graphical representation of the schedule on theslate. A strip of blocks or other objects such as circles are
associated with each processor. ThedrawProcessor creates the strip from information provided by the
Gantt Data Filter. This filtering operation is discussed in a later section. ThedrawRuler method draws the
time axis that appears above the schedule.

Other methods are associated with the menu items. These includeopen, close, print, zoom, setZoomFactor,
andhelp. The names of the methods indicate their function. Theredraw method is called each time the
View is resized and it redraws the entire chart so that it fits inside the Displayer.

6.8.3 Gantt Data Filter

The Gantt Data Filter parses a schedule file and provides methods that a Gantt View can use to query
important pieces of information that are required to draw a graphical representation of the schedule. For
each schedule file, the filter searches for nested schedules and when it finds one (indicated by key words
such ascluster, preamble, processor, repeat), it creates a child Gantt Data Filter. This recursive operation
results in a tree of Data Filters that process different parts of the schedule file. Each individual Data Filter
parses the schedule that it is responsible for and generates a string that has the following form: {type, proc,
{ name, start, end}+}. The type indicates what type of graphics the Gantt View should use to render the
information. As shown in Table 7 different schedules have different graphical representations so the View
should be able to delineate between the various types. Theproc entry tells the View which processor is
associated with the given schedule. The list of block names, start times, and end times is used to draw the
individual tasks in whichever form is appropriate for that schedule.

6.8.4 Modifying Schedules

It is not yet possible to modify schedules using the Gantt View. There are a number of issues that must be
addressed before proceeding with the implementation. These were outlined in Section 4.3.1. A possible
implementation strategy is outlined below for future reference.

• A data structure that represents a Gantt Chart is required. This would make it easier for saving Gantt
Charts and changes made to them.

• A mechanism to specify constraints on editing needs to be developed. One could envision somehow
attaching a constraint to the editor or an editing operation. If a change is not allowed then it simply will
not be performed and the user will be notified. If the change affects other parts of the schedule then
these changes should be automatically reflected in the Gantt Chart.
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• With regards to validation strategies, there are two possible routes: use a compact version of the APEG
to validate the schedule, or use an annotated version of the SDF graph. The simplest strategy is to
simulate the change and check whether deadlock occurs. It may be useful to give a user the choice of
using whichever strategy they prefer.

6.9 Trace View

As mentioned earlier, Ptolemy can generate execution traces, however, at the present time the traces are not
generated in a format that is useful to a visualization tool. Table 9 describes a format more amenable to
visualization. The trace can consist of estimated and actual execution behaviour.

The simplicity of the file format makes the use of a Data Filter unnecessary. This View has not yet been
implemented.

6.10 Communication View

The Communication View shows how processing units or resources communicate with one another over
time. The schedule file contains communication information however, it does not indicate from where
processing units are receiving information and to where they are sending it. A modification is necessary.
The receive and send entries should be augmented with source and destination fields. Once this is done it
will be a simple task to filter this information from the output of the Gantt Data Filter. The Communication
Filter need only search for the key wordssend andreceive in the Gantt Filter output and transmit those
items to the Communication View for rendering. The figure below shows this concept.

 Figure 18. Generating Communication Pattern View from a Schedule File

Table 9. Trace File Format

Entry Format

<trace> { ( <entry> )+ }

<entry>
{ actual <f_info> }
| { estimate <f_info> }

<f_info> { <star> { exec_time <int: exec_time> } }

<star>
send
| receive
| <string:star_name>

.sched file CommViewDF DF
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7 Summary and Future Work

Embedded systems are quickly becoming integral parts of our daily lives. They appear in consumer
electronics, automobile parts, medical technologies, and telecommunications equipment. The complexity
associated with such systems makes it very difficult for engineers to exploit the full potential of the
underlying system resources. This often results in sub-optimal performance. Tools that allow an engineer
to easily assess system behaviour and performance can reduce development costs and time-to-market.

In the past, visualization techniques have proven invaluable to the design process as they have simplified
tasks faced by engineers. Techniques that can highlight poor algorithm design, problematic hardware-
software interfaces and other reasons behind poor performance can greatly simplify the embedded system
design process. The work presented in this report shows that visualization of algorithm and architecture
interaction is an important aspect of performance-based design. Four views of algorithm and architecture
interaction have been developed based on visualization fundamentals and Gantt Charts. An object-oriented
framework for editing and displaying various types of design information has been designed, described,
and implemented. The work on implementing the visualization of algorithm and architecture interaction
within this framework has been initiated as well.

A lot of effort still remains to be spent in implementing the remaining parts of the tool that will visualize
algorithm and architecture interaction. However, the implementation of the object-oriented framework for
displaying design information is complete. Editors and displayers currently available in Tycho will move
over to the Displayer-View-Data Filter paradigm in the very near future. Work on implementing
functionality to back annotate schedules is still required and constitutes a large project in itself. The Data
Filter concept has shown promise but more detailed work needs to be done regarding its development as it
is still a fairly new idea. In conclusion, it would be interesting to explore better visualization techniques
and apply them to embedded system design.
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