Topic Notes

Visualizing Big Data (Many Cases & Dimensions)

CS 7450 - Information Visualization April 12, 2011 John Stasko

Previously

 We looked at a number of techniques for projecting >2 variables down onto the 2D plane

- Parallel coordinates
- Scatterplot matrix
- Table lens
- etc.

CS 7450

Potential Limitations

• What happens when you have lots and lots of data cases?

Strategies

 How are we going to deal with such big datasets with so many variables per case?

• Ideas?

Spring 2011

CS 7450

General Notion

- Data that is similar in most dimensions ought to be drawn together
 - Cluster at high dimensions
- Need to project the data down into the plane and give it some ultra-simplified representation
- Or perhaps only look at certain aspects of the data at any one time

CS 7450

Mathematical Assistance 1

- There exist many techniques for clustering high-dimensional data with respect to all those dimensions
 - Affinity propagation
 - k-means
 - Expectation maximization
 - Hierarchical clustering

Spring 2011

CS 7450

Mathematical Assistance 2

 There exist many techniques for projecting n-dimensions down to 2-D (dimensionality reduction)

- Multi-dimensional scaling (MDS)
- Principal component analysis
- Linear discriminant analysis
- Factor analysis

Comput Sci & Eng courses Visual Analytics, Prof. Lebanon Data mining Knowledge discovery

Spring 2011

CS 7450

Other Techniques

- Other techniques exist to reduce data
 - Sampling We only include every so many data cases or variables
 - Aggregation We combine many data cases or variables

Spring 2011	CS 7450

Our Focus

- Visual techniques
- Many are simply graphic transformations from N-D down to 2-D

CS 7450

Example

- Big document collection
- Accumulate all different words used throughout
- Each word becomes a dimension
- Value of that data case (document) in a dimension is the number of times the word appears in that document
- (May be thousands of dimensions)

Spring 2011

CS 7450

PNNL's SPIRE

Each dot is a document

Similarity provokes nearby positioning

13

Will see more later in term on Text day

Wise et al InfoVis `95

Spring 2011

Pluses & Minuses

- Can have as many cases as there are pixels and unlimited number of dimensions
- Shows similarity of data cases
- Only a dot for each case
- Doesn't say much about dimensions or cases

Spring 2011

CS 7450

Use?

- What kinds of questions/tasks would you want such a technique to address?
 - Clusters of similar data cases
 - Useless dimensions
 - Dimensions similar to each other
 - Outlier data cases
 - ...
- Think back to our "cognitive tasks" discussion

CS 7450

Today

17

 We'll examine a number of other visual techniques intended for larger, highdimensional data sets

Spring 2011

CS 7450

Can We Make a Taxonomy?

- D. Keim proposes a taxonomy of techniques
 - Standard 2D/3D display Bar charts, scatterplots
 - Geometrically transformed display Parallel coordinates
 - Iconic display
 Needle icons, Chernoff faces
 - Dense pixel display
 What we're about to see...
 - Stacked display
 Treemaps, dimensional stacking

TVCG '02

Dense Pixel Display

- Represent data case or a variable as a pixel
- Million or more per display
- Seems to rely on use of color
- Can pack lots in
- Challenge: What's the layout?

Spring 2011	CS 7450	19

Alternative

- Grouping arrangement
- Doesn't use multiple windows
- Each data case has its own small rectangular icon
- Plot out variables for data point in that icon using a grid layout

DB Applications

Database of data items, each of n dimensions

- Issue a query that specifies a target value of the dimensions
- Often get back no exact matches
- Want to find near matches

Keim & Kriegel IEEE CG&A `94

Relevance Factor

- How close an item is to the query
 - Data items have some value that can be numerically quantified
 - Each dimension is some distance away from query item
 - Sum these up for total distance
 - Relevance is inverse of distance

Spring 2011

CS 7450

25

Example

- 5 dimensions, integers 0->255
- Query: 6, 210, 73, 45, 92
- Data item: 8, 200, 73, 50, 91
- Distance: 2 + 10 + 0 + 5 + 1 = 18
- Relevance: 1275 18 = 1267

Issues

- What if dimensions are real numbers or text strings?
- What if they're the same type, but of different orders of magnitude?
- Have to define some kind of distance, then a weight function to multiply by

Coving 2011	CS 7450	27
Spring 2011	CS 7450	27

Technique

- Calculate relevance of all data points
- Sort items based on relevance
- Use spiral technique to order the values Emanate out from center
- Color items based on relevance

Technique

9	10	,
8	1	2
7	0	3
6	5	4

Spiral Method

Highest relevance value in center, decreasing values grow outward

Spring 2011

31

Display Methodology

Example: five-dimensional data

Items ordered by total relevance

Spring 2011

Alternative

- Grouping arrangement
- Doesn't use multiple windows
- Create all relevance dimensional depictions for an item and group them
- Spiral out the different data items' depictions

Grouping Arrangement

Spring 2011

CS 7450

35

Related Idea

- Pixel Bar Chart
- Overload typical bar chart with more information about individual elements

Height encodes quantity

Width encodes quantity

- Make each pixel within a bar correspond to a data point in that group represented by the bar
 - Can do millions that way
- Color the pixel to represent the value of one of the data point's variables

Figure 9 Multiple coloring attributes (e.g., C_1 = dollar amount, C_2 = no. of visits, C_3 = quantity, C_4 = region).

Spring 2011

CS 7450

ldea 6

Mapping specified by 5 tuple $\langle D_{x'}, D_{v'}, O_{x'}, O_{v'}, C \rangle$

- D_x Attribute partitions x axis
- D_v Attribute partitions y axis
- $O_x Attribute specifies x ordering$
- $\hat{O_y}$ Attribute specifies y ordering
- C Attribute specifies color mapping

Spring 2011

CS 7450

Example Application ~^ 🔊 high custome \$345,000 custome 25 visits custo 500 item 12 1 23 4 12 1 2 3 4 5 6 10 12 1 2 3 4 5 6 10 5 6 7 10

Figure 13 Multi-pixel bar chart for mining 405,000 sales transaction records. $(D_x = Product Type, D_y = \bot, O_x = no. of visits, O_y = dollar amount, C)$. (a) Color: dollar amount. (b) Color: no. of visits. (c) Color: quantity.

Product type 7 and product type 10 have the top dollar amount customers (dark colors of bar 7 and 10 in Figure 13a)
 The dollar amount spent and the number of visits are clearly correlated, especially for product type 4 (linear

2. The dollar amount spent and the number of visits are clearly correlated, especially for product type 4 (linear increase of dark colors at the top of bar 4 in Figure 13b)

3. Product types 4 and 11 have the highest quantities sold (dark colors of bar 4 and 11 in Figure 13c) 4. Clicking on pixel A shows details for that customer

Spring 2011

Thoughts?

45

Do you think that would be a helpful exploratory tool?

Spring 2011

CS 7450

High Dimensions

 Those techniques could show lots of data, but not so many dimensions at once
 Have to pick and choose

Another Idea

- Use the dense pixel display for showing data and dimensions, but then project into 2D plane to encode more information
- VaR Value and relation display

		Yang et al InfoVis `04
Spring 2011	CS 7450	47

Algorithm

- Find a correlation function for comparing dimensions
- Calculate distances between dimensions (similarities)
- Make each dimension into a dense pixel glyph
- Assign position for each glyph in 2D plane using multi-dimensional scaling

Questions

- What order are the data cases in each dimension-glyph?
 - Maybe there is a predefined order
 - Choose one dimension as "important" then order data cases by their values in that dimension

"Important" one may be the one in which many cases are similar

Spring 2011

CS 7450

55

Reordering Data

 Two different orderings of cases shown below (adimension near top is prototype, b- dimension near bottom is prototype)

Comparing dimensions

One dimension chosen as focus

Others shaded for how similar they are dark – big difference light – small difference

Spring 2011

CS 7450

57

Spring 2011

Contributions

- Highly scalable way to view dimensional relationships
- Computationally efficient
- Uses MDS for dimensions, not just data cases

Spring 2011	CS 7450

Limitations

- Those glyph overlaps are a problem
- Similar dimensions are positioned near each other with lots of overlap

Follow-on Work

- Use alternate positioning strategies other than MDS
- Use Jigsaw map idea (Wattenberg, InfoVis '05) to lay out the dimensions into a grid
 - Removes overlap
 - Limits number that can be plotted

		Yang et al <i>TVCG</i> `07
Spring 2011	CS 7450	61

Spring 2011

HCE

- Hierarchical Clustering Explorer
- Implements "rank by feature" framework
- Help guide user to choose 1D distributions and 2D scatterplots from various dimensions of a data set
- Combine statistical analysis with userdirected exploration

		Seo & Shneiderman Information Visualization	` 05
Spring 2011	CS 7450		63

ldea

- Choose a feature detection criterion to rank 1D and 2D projections of a data set
- Use person's perceptual abilities to pick out interesting items from view

HCE UI

Operation

- When you choose the histogram ordering or scatterplot ordering tabs at the bottom left, these give results based on various statistical measures
- You can then choose some of them to visualize

Demo

Spring 2011

CS 7450

67

HW 8 Return

Solution

Upcoming

• Evaluation

Reading:
 PLaisant

Casual InfoVis

 Reading:
 Pousman et al

Spring 2011

CS 7450