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Abstract

Network evolution is a ubiquitous phenomenon in a wide variety
of complex systems. There is an increasing interest in statistically
modeling the evolution of complex networks such as small-world
networks and scale-free networks. In this article, we address a
practical issue concerning the visualization of network evolution.
We compare the visualizations of co-citation networks of
scientific publications derived by two widely known link
reduction algorithms, namely minimum spanning trees (MSTs)
and Pathfinder networks (PFNETs). Our primarily goal is to
identify the strengths and weaknesses of the two methods in
fulfilling the need for visualizing evolving networks. Two criteria 
are derived for assessing visualizations of evolving networks in
terms of topological properties and dynamical properties. We
examine the animated visualization models of the evolution of
botulinum toxin research in terms of its co-citation structure
across a 58-year span (1945-2002). The results suggest that
although high-degree nodes dominate the structure of MST
models, such structures can be inadequate in depicting the essence 
of how the network evolves because MST removes potentially
significant links from high-order shortest paths. In contrast,
PFNET models clearly demonstrate their superiority in
maintaining the cohesiveness of some of the most pivotal paths,
which in turn make the growth animation more predictable and
interpretable. We suggest that the design of visualization and
modeling tools for network evolution should take the
cohesiveness of critical paths into account.

CR Categories: I.3.6 [Methodology and Techniques]; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism –
Virtual Reality; E.1 [DATA STRUCTURES] -- Graphs and
networks.

Keywords: Network evolution, network visualization, co-citation
networks, Pathfinder networks, minimum spanning trees.

1 Introduction

The significance of understanding the evolution of a complex
network is widely recognized. For example, recent research in
complex network theory has focused on statistical mechanisms

that govern the growth of small-world networks [Watts and
Strogatz 1998] and scale-free networks [Barabási et al. 2000].
Scale-free networks are characterized by a power law degree
distribution. A major concern is how to simulate the evolution of a 
network that demonstrates such special topological properties so
that one can improve the understanding of real-world networks.
Few empirical studies have examined changes in the topological
properties of a network over time. 

Visualizing fundamental changes in scientific networks is one of
the toughest challenges for research in information technology.
The shortage of comprehensive examinations of the evolution of
citation networks is due to various reasons, including the lack of
an overarching framework that accommodates underlying theories 
and system functionalities across relevant disciplines, the lack of
integrated network analysis and visualization tools, the lack of
widely accessible longitudinal citation network data, and the lack
of tools that specifically facilitate the analysis of network
evolution.

Network visualization has a long history in information
visualization, such as, SemNet [Fairchild et al. 1988], ConeTree
[Robertson et al. 1991], NicheWorks [Wills 1999], and
Hyperbolic Browser [Lamping and Rao 1996]. Researchers are
increasingly interested in visualizing emerging patterns in
association with evolving information structures, using tools such
as Disk Trees and Time Tubes [Chi et al. 1998] and Botanical
trees [Kleiberg et al. 2001].

A common problem with visualizing a complex network is that a
large number of links may prevent users from recognizing salient
structural patterns. A practical strategy is to reduce the number of 
links shown. There are several link reduction algorithms. The
question is which one preserves the underlying topological
properties best. Furthermore, as far as an evolving network is
concerned, the resultant network should also preserve dynamical
properties that characterize the evolution.

In this article, we study the role of two link reduction algorithms
in visualizing the evolution of networks. A minimum spanning
tree (MST) is widely known and commonly used in information
visualization. On the other hand, Pathfinder network scaling is a
procedural modeling algorithm originally developed by cognitive
psychologists to capture salient relationships between concepts
[Schvaneveldt 1990]. The strengths of such relationships are
typically measured by human experts’ subjective ratings of how
similar those concepts are. Prior studies exclusively used
Pathfinder networks to represent interrelations between concepts
or keywords. Our earlier work has extended the use of Pathfinder
networks to a much richer range of applications, especially co-
citation networks [Chen 1998; Chen and Paul 2001]. In fact, an
MST is a special case of a Pathfinder network because a
Pathfinder network is the set union of all the possible MSTs
derived from a network [Schvaneveldt 1990].
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Pathfinder networks have demonstrated various useful features in
co-citation studies [Chen 2002; White 2003]. However, the
Pathfinder network-scaling algorithm has its limitations. In order
to achieve a network of high clarity and legibility, it is necessary
to impose the so-called triangular inequality throughout the
network. While this requirement leads to the simplest
representation of the essence of an underlying proximity network, 
this is at a considerable computational cost. Additionally, as the
size of the original network increases, the algorithm requires a
considerable amount of memory to run. Therefore, it would be
desirable if either an equivalent but more efficient algorithm can
be developed, or a hybrid approach can be used to achieve cost-
effectiveness. In contrast, MST algorithms such as Kruskal’s
algorithm and Prim’s algorithm can be efficiently implemented,
but may not capture local structures as accurate as Pathfinder.
Now the question is how these properties influence the visualized
network evolution. To our knowledge, this issue has not been
specifically addressed.

In this article, we aim to address a number of issues concerning
visualizing the evolution of a network with special reference to
the use of MST and PFNET. 1) What should be a preferable
topological structure of a visualized network? 2) What are the
additional criteria for visualizing the evolution of a network? 3)
To what extend can MST and PFNET be expected to meet such
criteria? 4) What are the implications of our finding on visualizing 
the evolution of a network in general? The rest of the article is
organized as follows. Related work is outlined first. Criteria are
derived in terms topological properties and dynamical properties.
Then we examine these criteria in MST and PFNET versions of
animated visualizations of co-citation networks in botulinum toxin 
research between 1945 and 2002. The results are analyzed and
their implications for further research are discussed.

2 Network Visualization

Graphically representing nodes and links is the most commonly
used approach to network visualization. Much of the attention in
graph drawing has been given to the efficiency of algorithms and
the clarity of end results. 

2.1 Link Reduction

The most widely known graph drawing techniques include force-
directed graph drawing algorithms and spring-embedder
algorithms [Eades 1984]. The primary goal of these algorithms is 
to optimize the arrangement of nodes of a network
algorithmically, such that nodes connected by strong links in a
graph-theoretical model appear close to each other in the final
geometric representation, and weakly connected nodes appear far
apart. Force-directed algorithms often lead to node placements
that are aesthetically appealing. These algorithms, however, face
some challenges in terms of efficiency, especially in terms of
scalability, which is closely related to the clarity of a visualized
network.

Cluttered network visualizations should be avoided whenever
possible. An excessive number of links in a display may severely
obscure the discovery of essential patterns. A commonly used
strategy to reduce clutter is to reduce the number of links. There
are several ways to achieve this goal. Three popular ones are
analyzed below.

The first option is imposing a link weight threshold and only
include links with weights above the threshold [Zizi and
Beaudouin-Lafon 1994]. This approach is straightforward and
easy to implement. However, it does not take the intrinsic
structure of the underlying network into account, so the
transformed network may not preserve the essence of the original
network.

The second option is extracting a minimum spanning tree (MST)
from a network of N vertices and reducing the number of links to 
N – 1. This approach guarantees the number of links in the
transformed network is always N – 1, whereas option 3 may not
have such upper bounds. For instance, we know that a Pathfinder
network is the set union of all possible MSTs of the original
network, but the number of distinct MSTs depends on the weight
distribution of individual links. Therefore, the number of extra
links varies not only from network to network, but also from
measurement to measurement. For instance, Noel, Chu, and
Raghavan [2002] showed that using document co-citation counts
normalized as cosine coefficients or Pearson correlation
coefficients can lead to MSTs of different topological properties,
and that the former resulted in more favorable structures, i.e. the
presence of highly connected nodes with a fixed number of links,
although the size of their MST is relatively small, less than 200
nodes.

The third option is imposing constraints on paths and excluding
links that do not satisfy the constraints, for instance, as in
Pathfinder network scaling [Schvaneveldt 1990]. Pathfinder
network scaling is a typical example of this approach. The
topology of a PFNET is determined by two parameters q and r
and the corresponding network is denoted as PFNET(r, q).  The q-
parameter specifies the maximum length of a path subject to the
triangular inequality test. The r-parameter is the Minkowski
metric used to compute the distance of a path. The most concise
PFNET for visualization is PFNET (q = N–1, r = ∞) [Chen 2002; 
Chen and Paul 2001; Schvaneveldt 1990]. In an author co-citation
analysis (ACA), White [2003] demonstrated that a 120-node
PFNET derived from author co-citation counts was predominated
by a number of high-degree nodes. In contrast, if author co-
citation links were weighted by Pearson correlation coefficients,
the resultant PFNET did not have this pattern. He concluded that
using raw counts in ACA would be a preferred method. As a side
note, the use of Pearson correlation coefficients is studied in
[Ahlgren et al. 2003], where an example is constructed to show
that Pearson correlation coefficients could lead to counter-
intuitive results in author co-citation analysis. 

2.2 Network Evolution

The latest advances in statistical mechanics of complex networks
have attracted much attention [Albert and Barabási 2002]. Small-
world network properties as well as power-law degree
distributions are found in scientific collaboration networks
[Newman 2001a; Newman 2001b]. The growth of scale-free
networks has increasingly become the focus of the attention. Most 
network growth models draw upon the rich-get-richer notion and
cumulative advantage. As a result, if the degree of a node
indicates its “richness,” a node with a higher degree will have a
better chance to receive the next new link than a node with lower 
degree. In a citation network, this means that a highly cited article 
is more likely to be cited again than a less frequently cited article.
This type of growing mechanism is known as preferential
attachment.
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Newman [2001a] studied the evolution of scientific collaboration
networks in physics and biology and found that the more
collaborators a scientist has, the more likely that he or she will
work with even more collaborators. Barabási and his colleagues
[Barabási et al. 2002] found that preferential attachment
mechanisms could statistically reproduce the topological
properties of the co-authorship networks of mathematicians and
neuroscientists.

One of the underlying assumptions is that the study of networks
scientific papers can reveal insights into the dynamics of scientific 
frontiers. Price suggested that it is possible to identify objectively
defined subjects in citation networks and particularly emphasized 
the significance of understanding such moving frontiers in
depicting the topography of current scientific literature [Price
1965].

Small and Griffith [1974] pioneered the method of mapping the
structure of scientific literatures, especially through analyses of
co-citation networks. Small [1977] subsequently demonstrated the 
occurrence of rapid changes of research focus using the example
of collagen research. Documents clustered by their co-citation
links can represent leading specialties. The abrupt disappearance
and emergence of such document clusters indicate rapid shifts in
research focus. By tracing key events through a citation network,
Hummon and Doreian [1989] successfully re-constructed the most 
significant citation chain in the development of DNA theory.
Their study has great impact on subsequent studies of citation
networks in the graph drawing community [Batagelj and Mrvar
2001; Brandes and Willhalm 2002].

An interesting study Powell et al. [2002] analyzed the evolution of 
the biotechnology industry through a study of a network of
contractual collaborations in the field between 1988 and 1999.
The nodes in the networks are organizations and the links are
collaborative ties. Various stages of the network were visualized.
No link reduction or pruning was made. It appears to be
particularly problematic to identify significant topological and
dynamical patterns in such visualization models because of the
high density of the underlying network. 

An et al. [2001] suggested that the evolution of citation networks
could be useful in predicting research trends and in studying a
scientific community’s life span. Few studies in the literature
visualized the growth of an evolving network. Chen and Carr
[1999] represent the evolution of the field of hypertext by
visualizing its author co-citation networks over consecutive
periods of time. The evolution of discourse is visualized in a
recent example [Brandes and Willhalm 2002].

3 Criteria on Preferable Network Visualization

Two criteria are derived based on the above analysis for
qualitatively evaluating network visualization.

3.1 Criterion I: Topological Properties

The most recognizable patterns in a network are stars, rings, and
spikes [Rosch et al. 1976]. The first criterion for selecting a
preferable topological structure of a visualized network is the
presence of hubs, or stars, in derived networks. The notion of
reference points is proposed in [Krumhansl 1978], referring to
conceptually or visually salient or distinctive points in a geometric 
model. Such reference points play the role of a reference context
to which other points are seen “in relation to.” For instance, a star 
in a network is a node which is the only node many nodes connect 

to. The “starness” of a pattern is also studied by Rosch et al.
[1976]. A star pattern indicates the star node carries the most
information, processes the highest cue validity and the most
differentiated from one another. It has been demonstrated in
[Chen and Davis 1999] that star patterns emerged in a hybrid
PFNET of documents and users’ profiles and profiles are in the
center, connecting to documents. The preference of star-like
patterns is also implicit in Salton’s model of an effective indexing 
space for information retrieval [Salton 1989]. In such indexing
spaces, similar documents should be easily separable from the rest 
of documents so that as one is retrieving a relevant document, it is 
possible to scoop many other relevant ones in its vicinity and to
reject documents located remotely.

Existing studies appear to suggest that co-citation counts are likely 
to form such star patterns in both MST and PFNET. In terms of
small-world networks, star-rich networks have relatively high
clustering coefficients; we will return to this subject later in the
article. The first part of our study is to identify the boundary
conditions of this claim so that one can select the most appropriate 
method for a given network.

3.2 Criterion II: Dynamical Properties

Our second criterion focuses on the need for visualizing the
evolution of a network. What makes a good visualization of an
evolving network? The second criterion imposes additional
constraints on the visualization of network evolution. Criterion I
emphasizes the topological properties of preferable network
visualization. Criterion II requires that the changes of topological
properties over time must preserve the integrity of emergent
trends or patterns. Visualizing network evolution should not
merely inform users of changes of individual nodes and links;
rather, it is essential to inform users how an intrinsically cohesive
structure changes locally and globally in organically. A
fragmented growth picture cannot be considered as an adequate
visual representation. For instance, Branigan and Cheswick [1999]
use their Internet Mapping techniques to show how the Internet in 
Yugoslavia was affected by the war. The focus is no longer on an
individual connection; instead, it is now on the connectivity of a
subset of nodes. It also follows that Criterion II implies a level of
predictability; a good visualization should give the user various
clues of where a new node is likely to appear and where a new
path is likely to emerge.

4 MSTs versus PFNETs

Based on the available evidence in recent studies reviewed in
earlier sections, both MST and PFNET appear to be capable of
meeting the first criterion when conditions on the proximity
measurements are satisfied. For instance, MSTs of similarity
measures normalized by cosine coefficients tend to have several
hubs or star nodes, whereas PFNETs of author co-citation counts
with no normalization at all were found to have similar clustering 
patterns. MST is a common choice in information visualization.
Clusters in MST appear to reflect the concepts of hubs and
authorities. We also know that MST algorithms are more efficient 
than PFNET algorithms. Therefore, a number of theoretically and
practically important questions now need to be addressed. Will
MSTs be a generally better choice? As far as co-citation networks
are concerned, will MSTs in general meet the second criterion? To 
what extent will the topological properties of highly clustered
PFNETs be preserved by the use of raw author co-citation counts? 
Will PFNETs stand up the second criterion for visualizing the
evolution of document co-citation networks?
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In this study, we construct animated visualization models of the
evolution of a research field from 1945 through 2002 in both MST 
and PFNET. This is essentially an empirical study. We compare
the resultant models against the two criteria derived earlier in this 
article. The goal is to identify examples that can identify the
boundary conditions in association with the selection of MST or
PFNET. The evolution of the underlying research field is
represented by the evolution of its co-citation network over its 58-
year span. The nature of components of the co-citation network is 
identified in both MST and PFNET models using an independent
method – accumulative co-citation clustering.

4.1 Botulinum Toxin Research (1945-2002)

The chosen research field for our empirical study is botulinum
toxin research between 1945 and 2002. Botulinum toxin is a
poison produced by the anaerobic bacteria Clostridium botulinum
[Jankovic and Brin 1997]. The toxin is one of the most potent
poisons known, as little a .1 to 1 µg of toxin can be fatal to
humans. It attacks the synapses used by the nervous system to
activate muscle movement, preventing the production of the
neurotransmitters, thereby causing muscle paralysis. Death can
occur if the toxin paralyzes the respiratory muscles. There are
seven forms of the neurotoxin, designated A through G.
Additionally, C. botulinum produces a two-part cytotoxin
designated C2 and an exoenzyme, designated C3. 

Botulism, the medical condition caused by botulinum toxin, was
first systematically studied by J. Kerner, a German medical
officer, in the 1820's. The bacteria C. botulinum itself was first
isolated and its toxin identified by Ermengem in 1897. Most of the 
different toxin types were identified in the first half of the
twentieth century. Modern toxin research started with a seminal
paper by Burgen, et al, in 1949, which revealed that the toxin
attacked the neuromuscular junction.

4.2 Co-Citation Networks of Botulinum Toxin 

Co-citation networks of botulinum toxin research were derived
from a citation dataset, containing citation records from 1945 to
2002. Figure 1 shows a power law model of the relationship
between the number of nodes and the number of links in co-
citation networks at various citation thresholds. For instance, at
the thresholds of 5, 10, and 25 citations, the size and the density of 
the co-citation networks are: 1,250 nodes and 91,483 links, 516
nodes and 19,631 links, and 104 nodes and 2,677 links.

In the rest of the article, we primarily focus on the 516-node co-
citation network. In addition, we briefly discuss two PFNETs
without any normalization on the co-citation counts: one is a 407-
node author co-citation network for authors who have more than
15 citations; the other is a 380-node document co-citation network 
for articles with more than 12 citations. These two networks are
analyzed in order to identify the extent to which a PFNET can
keep the number of links close to N.

The weight of a link in the network was calculated in two ways:
first, weight links by direct co-citation counts; secondly, weight
links by normalized co-citation coefficients. The following
normalization (I) is used in this study:
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where cc(di, dj) is the number of times document i and document j
are cited together, and c(di) and c(dj) are the number of times

document i and document j are cited respectively. Alternatively,
one may choose to use the following normalization (II), but a
detailed comparison between the two is beyond the scope of this
article:
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Figure 1. Log-log plot of the size of co-citation network at various
citation thresholds, from 5 through 50 increased by 5. X axis is the 

logarithm of the number of nodes. Y axis is logarithm of the 
number of links.

MSTs were extracted using Prim’s algorithm. PFNETs were
extracted using the algorithm described in [Schvaneveldt 1990].
Both types of network models were examined against the first
criterion given in Section 3. In order to examine the compliance to 
the second criterion, animated visualizations were generated as a
sequence of annual snapshots of the evolving network throughout
the 58-year period. The animated visualization revealed two types
of state transitions as originally specified in [Chen and Kuljis
2003]. The connectivity of the underlying co-citation network was 
represented by three node states and three link states. The three
node states (NS) of an article are: 

NS1. Pre-publication state. 
NS2. Published but not yet cited. 
NS3. First citation detected.

Similarly, a co-citation link connecting two articles has three
states (LS) as well. Suppose article Ai was published earlier than
article Aj.

LS1. Both Aj and Aj in NS1.
LS2. Both Aj and Aj in NS2 or NS3.
LS3. First co-citation detected.

The method used to label and explore research topics in the
network models is outlined as follows. For this purpose, research
fronts are considered as collections of papers on specific research 
problems in a field [Morris et al. 2003]. Base reference clusters
are groups of references that represent the foundational
knowledge used by workers when investigating research
problems.  Research fronts can be found by clustering documents 
that tend to cite the same references, using bibliographic coupling 
[Kessler 1963] as the basis for measuring similarity between pairs 
of papers. Base reference clusters can be formed by clustering
references that tend to be cited together, using co-citation [Small
1997] as the basis for measuring similarity between pairs of
references.
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In this study, research fronts were identified by agglomerative
clustering using only papers that had at least five bibliographic
coupling counts with some other paper in the dataset. Similarity
calculation was based on Salton's cosine coefficient [Salton 1989]
applied to bibliographic coupling counts. The titles for each
research front were derived manually by exploring titles of papers 
within each research front for common themes. Base reference
clusters were formed by agglomerative clustering using only
references that had been cited 10 or more times. Similarity
calculation was based on Salton's cosine coefficient applied to co-
citation counts. For each base reference cluster, labels were found 
by using the label of the research front that contained the most
citations to references in the cluster. A map of the references in
the pathfinder network was produced identifying each reference
by its base reference cluster membership, which allowed labeling
of sections of the pathfinder network based on base cluster labels.

5 Results

The MST model indeed contained many clusters. Many articles
did not connect to any other articles in their cluster apart from the 
cluster center. Figure 2 shows the 516-node MST based on the
normalized co-citation counts. A three-dimensional visualization
with the citation counts depicted in the third dimension also
confirms that the cluster centers tend to have higher citation
counts than non-center members of clusters. The MST model in
this particular case evidently met the first criterion and it would be 
reasonable to hypothesize that MSTs can meet the criterion in a
broader range of networks. 

Figure 2. The MST visualization of the 516-node co-citation
network on botulinum toxin (1945-2002) is predominated by star 

nodes. Co-citation counts are normalized (I).

However, an examination of the animated visualization over the
58-year span indicates that the MST model did not meet the
second criterion, which requires the visualized network to convey 
the evolution of globally and locally cohesive structures. A key
question is how the relationship between the center of a cluster
and other non-center members in the cluster was depicted over the 
course of evolution. In general, due to the arbitrary choice
inherited from the MST algorithms, one cannot guarantee the
uniqueness of an MST. As a result, an MST may not preserve all
the necessary links for representing the growth of a co-citation
network. If this is the case, then important diffusion patterns may
be distorted or inadequately represented by the extracted MST
model. Users will probably find it hard to understand the way new 
nodes and new links emerge. The nature of the problem will

become clear shortly when we contrast the growth animation of
the PFNET and MST models.

The 516-node PFNET (q = N – 1, r = ∞) is shown in Figure 3. The 
two parameters q and r were chosen to ensure that the extracted
PFNET has the least number of links. The network in this case
contains 525 links, which gives the node-link ratio of 0.98. We
have developed a number of visualization methods to identify the
nature of local structures of a PFNET, including node color
mapping based on principle component analysis (PCA) on co-
citations normalized as cosine coefficients, chronologically
synchronized animated visualizations of state transitions for both
nodes and links, and base reference cluster memberships based on 
the clustering algorithm outlined at the end of Section 4, where
clusters are formed independently from algorithms used in
modeling the network. In Figure 3, each node is depicted as its
cluster number. The PFNET and the clustering methods appear to 
have a nearly perfect match between each other.

Figure 3. The PFNET visualization of the 516-node co-citation
network (q = N – 1, r = ∞ ), containing 525 links.

Figure 4. The 516-node PFNET consistently partitioned by base 
reference clusters and PCA factors. The PFNET is predominated 

by strongest paths.
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Several distinct research fronts emerged in the 1980's. Gene
sequencing research on C. botulinum started in the early 1990's.
Toxin research base references are located in the areas slightly
above the center of the map. Furthermore, research fronts have
opened up on C2 cytotoxin and C3 exoenzyme recently.
Additional research in botulinum toxin is using the C3 exoenzyme 
to study Rho proteins. C3 exoenzyme is also being studied as a
possible neurotrophic drug, used for encouraging nerve growth.
Base references related to C-2 and C-3 toxins are located in the
South-Western region of the map in Figure 3.

Other research fronts in botulinum toxin research have focused on
the mechanisms of food spoilage (located in the South-Eastern
region of the PFNET in Figure 3), the medical aspects of botulism 
(along the branch stretching towards East in Figure 3), and infant 
botulism (also in the same branch), which is often attributed to
cases of sudden infant death syndrome. There is also research
being performed to develop methods of detecting and assaying the 
botulinum toxin in the environment. Botulinum toxin can be used
as a chemical/biological warfare agent and possible bioterror
weapon, making the search for a cheap and efficient detection
method an important area for research. There does not appear to
be a consistent set of base references for botulinum toxin
bioterrorism and biological warfare as there is for the case of
anthrax [Morris et al. 2003].

The medical uses of botulinum toxin have received a great deal of 
public attention. Scott et al. [1973] described experiments on
monkeys to treat eye alignment disorders. In the 1980's it was
noticed that many patients being treated for blepharospasm (a
disorder of clamping of eyelids) using botulinum toxin exhibited
reduced facial wrinkles and improved cosmetic appearance. Based 
on this effect, Carruthers [1992] reported the use of botulinum
toxin for cosmetic purposes. The toxin has gained wide use for
this purpose and as a result, the toxin is the current focus of much 
public attention.

In the 1990's botulinum toxin has been studied for the treatment
of, spasticity, dysphonia (clamping muscles), achalasia (a disorder 
of clamping throat muscles that interferes with swallowing and
food ingestion), cerebral palsy, hyperhidrosis (excessive
sweating), anal fissures, and more. Jankovic [1991] presented an
important review on medical uses of botulinum toxin. Most
medical uses of botulinum toxin are based on toxin type A, which 
is manufactured under the commercial name of Botox. 

The PFNET in Figure 5 was colored by factor loading from PCA
based on cosine coefficients of co-citation frequencies. It is clear
from Figure 3 and Figure 4 that base reference clusters and PCA
factors are consistent with each other. For instance, C-2 and C-3
toxins base references identified by timeline visualization
correspond to the area in light blue, which is consistently
identified by PFNET and PCA.

Unlike the MST model, the PFNET model was not predominated
by high-degree nodes. If we use the first criterion alone, MSTs
would be a more preferable choice than PFNETs. In addition,
PFNETs derived from raw co-citation counts appear to form more 
interpretable structures than normalized versions, cf. [White
2003]. However, our further study of the second criterion
indicates that this may not be the case if we take the temporal
factor into account.

The examination of the second criterion was based on animated
visualizations of the 58-year growth history of the field. Figure 5
shows some of the frames in the animation sequence. The

enlarged frame shows the diffusion process of how several base
reference clusters emerge and spread. State transitions were
shown by changing the transparency level of nodes and links in
question. The four smaller frames in the figure were selected from 
the animation sequence to show the emergence of early toxin
research in late 1940s and the research front of gene studies
formed at the center more recently.

Figure 5. The animated PFNET sequence shows the evolution of 
the field as the PFNET network becomes populated.

Figure 6. The integrity of the evolution of a five-article pathway is 
well preserved in PFNET (top), whereas the same pathway is 

fragmented in MST (bottom). 

The animated PFNET visualization model demonstrated that
nodes with similar colors often emerged simultaneously and
formed local structures. And these local structures were reinforced 
by the timely emergence of salient co-citation links. The growth
process can be represented by the dynamics shown in such local
structures. Features such as continuity, predictability, and local
cohesiveness in the PFNET indicated that the second criterion was 
met. More significantly, it was found that these properties were
missing from the MST model (See Figure 6). In PFNET, five
pioneering toxin research articles formed a distinct thread, or a
pathway. One can follow the development of the thread visually
as new nodes and new links extend the pathway. In contrast, in the 
MST model, four of the five articles were in the same cluster and
one article was found in a different cluster.
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Figure 7. Two snapshots of PFNET taken subsequently clearly 
show the organic growth of the co-citation pathways. Such 

pathways were destroyed in MST.

Figure 8. A 407-author PFNET of author co-citation network, 
containing 428 links (node/link ratio 0.95). The entry threshold is 

15 or more citations for each author.

The animation showed that the pathway clearly captured by
PFNET was simply not in the MST model. None of the four
articles was the center of the cluster. Each article in the cluster
connected to the center through a single co-citation link. However, 
such links in MST were not necessarily the earliest or the most
salient co-citation links. MST may have excluded some vital links 
in the crucial pathways in the course of evolution.

A distinct advantage of the PFNET is evident in Figure 7, which
clearly shows the evolution of the co-citation network, starting
with the short pathway at first, and then continuing the growth by
the emergence of the second pathway alongside. The two frames
were separated by a few years. Users can easily recognize the
nature of the newly added nodes.

Finally, we briefly discuss the potential weakness of using un-
normalized link weights. Figure 8 is a 407-node PFNET of author 
co-citation network, containing 428 Pathfinder links. The
node/link ratio is 0.95. Figure 9 is a 380-node PFNET of
document co-citation network, containing 523 links. The
node/link ratio is as low as 0.73. Instead of normalizing link
weights, the two PFNETs used direct co-citation counts as link
weights. A low node/link ratio means that the PFNET has too
many links and it can quickly lose the advantage of a Pathfinder
network as the PFNET drifts too far from a tree structure.

Figure 9. A 380-article PFNET of a document co-citation
network, containing 523 links (node/link ratio 0.73). The entry 

threshold is 12 or more citations for each article.

6 Conclusion

In conclusion, the topological and dynamical criteria have enabled 
us to distinguish visual-spatial features of MST and PFNET in the 
context of network evolution. PFNETs tend to better preserve the 
evolution of networks. On the other hand, MST algorithms can be 
implemented more efficiently. Integrative strategies are likely to
be a fruitful approach.

Given the findings of this study, several lines of research are
worth considering: 1) visualizing the evolution of co-citation
networks in other subject domains, 2) visualizing scientific
networks other than co-citation networks, such as citation
networks, bibliographic coupling networks, co-authorship
networks, and social networks, 3) visualizing a wider range of
networks, for example, small-world networks and scale-free
networks, and 4) visualizing the evolution of complex systems
that are not necessarily represented as networks.

We expect that visualizing the evolution of networks will
stimulate further development and refinement of visualization
techniques in general and fruitful collaborations between
information visualization and other scientific communities. 
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