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Visualizing quantum scattering on the CM-2 supercomputer 
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We implement parallel algorithms for solving the time dependent Sclu'/Sdinger equation on the CM-2 supercomputer. These 
methods are unconditionally s~able as well as unata~' at each time step and have the advantage of being spatially local and 
explicit. We show l~ow to ~dsualize the dynamics of quantum scattering using techniques for vlsuaIizing complex wave 
Iuncfions. Several. scattering problems are solved to demonstrate the use of these methods. 

1. Introduction 

Numerical  solutions to the t ime-dependent Schr~Sdinger equation have long been a challenging compu-  
tational physics problem. In order to have good numerical  solutions, it is necessary to have both  a stable 
and  a unitary algorithm. Methods  wtfich possess these desired properties are computa t ional ly  quite 
expensive [1 3]. Here we use new techniques [4] that  are unitary, explicit and  local, as well as 
computa t ional ly  simple. These techniques are implemented on the CM-2 supercomputer  [6] and selected 
quantum-scat ter ing problems are solved numerically and visualized. 

Consider  the t ime dependent  Schrrdinger equation in N-dimensional  Euclidean space R x 

ih q,(x, t )= t?q,(x, t), (1) 
where 0 is the self-adjoint Hamil tonian operator  for the system under study and g ' (x ,  t)  is the system's 
wave function. This evolution equation constrains f [ ' t ' ( x ,  r) l 2 d~x to be time. independent .  For  the 
special case of a single particle moving in a fixed potential  field V(x ) ,  the Hamil tonian for the system 
takes the form 

h:  2m v':+ (2) 

Given the initial wave function 'P0(x) = 'P(x,  to), we would likc to find qs at later times t > t 0. The  formal 
solution to eq. (1) is given by 

~ ( x ,  t ) =  ( e x p ( - i ~ / 4 ' } q ' , ) ( x ,  t) .  (3) 
X 

To evaluate eq. (3), one needs an accurate way to evaluate the unitary action of  e x p ( - i ( A t / h ) 1 2 1 )  on a 
state vector. Naive  approaches that approximate  the exponential by using the leading terms of  the series 
expansion 

-1Wn (4) 
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are unstable and are not unitary.  Indeed,  one finds after  a very small  n u m b e r  of  i terat ions that  the solution 
is domina ted  by  high-frequency noise. 

Other  stable approaches  that respect  unitari ty [1], such as Cayley 's  fractional form 

1 T ~ H )  ( 1 . A t  -1 

work  quite well, but  are computa t iona l ly  expensive due to the large sys tem of equat ions that  must  be 
solved in order  to implement  the inverse opera to r  [1 + i ( A t / 2  h ) / 4 ] - 1  acting on a state vector  at each t ime 
step. 

Spectral-like methods  [2] that  w r i t e / I  = i? + I7" where 7 ~ is diagonal  in Four ier  space, and evaluate ~1 

exp{ ~ . At ^ - , - h - H ) = e x p ( - 1 - - ~ - ' A t T ~ ) e x p ( - , h - ' A t l ) ) + d ~ ( [ A  t /~J !2 (6) T ' 

are stable and indeed unitary,  but  require a non-local  Fourier  t r ans fo rm and its inverse to evaluate 
exp[ - i ( A t / h ) 7  ~] on a state vector. 

Alternat ing direction implicit  (ADI)  methods  have also been studied [3]. Al though these methods  are 
stable and unitary, they require mult iple  solutions to tr idiagonal  systems of equat ions at each t ime step. 

2. Space splitting 

Methods  used here are based on split t ing the kinetic opera to r  7 ~ into a sum of M pieces such that  
]?~= M ^ F~= 1Tt. Each ~ is chosen so that  it can be easily exponent ia ted.  This can be accomplished by requiring 
each T t to be the direct sum of matr ices each of which is no larger than some modes t  size (we use 2 by 2) 

~ 2  that  is easy to exponentiate .  The  t ime-s tepping opera to r  is evaluated as 

exp( . At ^ = e,p( A, (7) 

We shall show that  this method  is not only stable and u n i t a ~ ,  but  by  cons t ruc t ion  it is also spatially local. 
For  a large class of discretizations i ? can be divided into into M distinct parts.  Whenever  the line graph =3 
of the matr ix  of T can be M-colored,  this is indeed the case [5]. These  space-spl i t t ing methods  are therefore 
appl icable to unst ructured or irregular grid problems.  

To  see how this works on a simple one-dimensional  p roblem,  consider  a one-dimensional  periodic 
system on a discrete spatial  lattice with an even n u m b e r  L,  of  equally spaced sites and a uni form lattice 
spacing a. A second order  approx imat ion  to the Laplac ian  leads to 

k2 [2'/ ' .  - g ' ~ - i -  g'~+~], (8) 
(7~g') , , -  2ma2 

,1 The Trotter product formula states that lira. ~ ~[exp(i.~/n) exp(i/}/n)]" = exp[i(A + B)]. 
=2 To extend eq. (7) to an accuracy of O([At] 3) one can verify that exp[-i(At/h)14]=(Fl~l exp[--i(At/2h)f)])× 

exp[-i(At/h)l~l(lq~= M exp[-i(At/2h)~])+ d)([(At/h)~II 3) which also applies to eq. (6) when M = 1. 
~3 The line graph L(G) of a graph G is the graph that associates a vertex with each edge of G and an edge for each edge pair of G 

which meet at a vertex of G. 
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where n is a site index which takes on the values n = 0, 1, 2 . . . .  , L - 1. The matr ix  for 7 ~ is 

h 2 
[T]  = 2 m a 2  

2 - 1  0 . - .  0 - 1  
- 1  2 - 1  - - -  0 

0 - 1  2 - 1  0 

0 - 1  2 - 1  

- 1  0 . . .  0 - 1  2 

(9) 

which may be sprit into two parts  ~4. This spli t t ing is chosen so that each i ndependen t  piece may easily be 
exponentiated.  Our  choice is 

~2 
[Teven ]m. 2 m a  z 

] - 1  0 0 - . -  
- 1  1 0 0 

0 0 1 - 1  0 

0 0 - 1  1 0 

0 0 

0 . . . . . . . . .  0 

0 0 

0 

1 

- 1  

0 

- 1  

1 

(10) 

and  

h 2 
[T°dd] 2 m a  2 

1 0 0 0 - - -  
0 1 - 1  0 

0 - 1  1 0 

0 0 1 - 1  

0 0 - 1  1 

- 1  . . . . . . . . . . . .  0 

- 1  
0 

(11) 

Both T~ven and  Tod d are direct sums of the 2 by  2 matrix 

M = 2ma----- 7 - 1 

which may easily be exponent iated,  since 

- 1 - ~ - M !  = 1 + [ e x p ( - i Q  - 1] - - ~ - - M  = ~ - e x p ( - i c )  1 + e x p ( - i e )  

(12) 

where { = A t h / m a  2 and a = [1 + e x p ( - i e ) ] / 2  and fl = [1 e x p ( - i Q ] / 2 .  Of course e x p [ - i ( A t / h ) 3 4 ' ]  is 
un i ta ry  with eigenvalues X 1 = 1 and  ;% = e x p ( -  iQ. 

#4 The line graph of an even 1-torus is again an even 1-torus which can be 2-colored by associating the even and odd vertices. 
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These relations may also be stated algebraically as 

(7~even~) h2 ( 1 - ( - 1 ) "  q, _~ 1 + ( - 1 ) "  ) 
2 m a  2 "/'~- 2 2 q'~ + 1 (13) 

and 

]]2 ( 1 -r- ( - -1)"  
( Todd'I" )~ -- 2 ma 2 g" -- 2 q'. -1 1 - ( - 1 ) ~ 2  ~ +  1 ) - (14)  

The exponentiated forms are 

exp--i~--/~ev¢~'/" =a ' / "  - J 3 1 - ( - 1 ) " ' P ~  a - j 3 1 + ( - 1 ) " ' / ' ~ + ,  (15) 
2 - 2 

and 

f/At,lt\n__jjlexp(__i_Tl~ddq,]]~ = a , / . _ / 3 1 + ( - - 1 ) n 2  q',,-a --]3 1 - - ( - - 1 ) ~ + 2  '" (16) 

The unitarity of the algorithm implies that the time advanced norms of l exp[- - i (At /h)Tev~nq '] l  2, 
l exp[ -  i(At/h)'Fodag~]l 2 and l exp[-  i(A t /h)I)kO] 1 2 are left unchanged and equal to the norm of I'/'12 at 

the beginning of the time step, so the algorithm is unconditionally stable. 
Although we have used a second-order approximation to the Laplacian operator for demonstration 

purposes, there is no reason why higher-order approximations may not be used. For example, a 
fourth-order approximation ~.5 leads to a i? which can be split into four parts. The four parts are the even 
and odd connections to nearest-neighbor sites as in the quadratic case and the additional even and odd 
connections to next to nearest neighboring sites. 

All of these one-dimensional equations generalize to N spatial dimensions. In N spatial dimensions the 
site index n is replaced by a vector n = [n~, n 2 , . . . ,  nN] and the quadratic approximation to the kinetic 
operator T becomes 

( T g , ) , , -  2 m a 2  2 N ~  n -  ~_, (g%_G+ ~/'.+G) , (17) 
a=l 

where d o is a unit vector in the a th direction and each component n~ = da "n of n takes n the values N ^a n a = 0 ,  1 . . . . .  L a -  1. Here 7 ~ may be sprit up into 2N parts, or T=~2a=l(T£ve.+ To~d).̂ a AS in the 
one-dimensional case, we find that on the N-toms 

exp - lTTdve~ q" = c ~ q ' . - f l  I (-1)z"C'"~ l+( -1 )E"~"n~  
. 2 - 2 o 

and 

(exp[--i~7~o~dd] q ~) = a q ' . - - [ 3 1 +  ( -  1)Z)='"~ 1 (--1) ~2' ~ . 2 ' / ' n - ¢ , - / 3  2 '/'n +& (19)  

=5 (7~q,). = (h2/24ma2)[30q, _ 16~_~ 16g%+ 1 + '/'n-: + "/',,+2] + C(aa) - 
#6 By construction, each ~ is the direct sum of 2 by 2 and 1 by 1 matrices. 
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The unconditional stability argument given for the one-dimensional case depends only on the unitarity 
of the algorithm and therefore is again applicable in the N-dimensional case. 

These results for the N-torus may also be extended to arbitrary grids (structured or unstructured) with 
different topologies. As mentioned earlier, once the line graph of 7 ~ has been M-colored, the M operators 
~ ,  l = 1, 2 , . . . ,  M, are easy to exponentiate ~6 and the evolution operator is again unitary, extending the 
previous results. 

The stability results for the Schr~Sdinger equation also apply to the diffusion equation. The simple 
substitutions t--* - i t  and At ~ - i A t  with V =  0 in all our previous formula transforms the quantum 
mechanical Schri3dinger equation into the classical diffusion equation. All of the operators that were 
previously unitary in the SchriSdinger case now become real operators with positive eigenvalues that are all 
less than or equal to unity, so unconditional stability again applies. 

3. Visualizing wave functions 

In order to see the quantum scattering process, we need a technique to look at the evolution of complex 
wave functions. Standard probability-density plots can be viewed, but there is a wealth of additional 
information contained in the phase of the wave function. We desire a technique to vew both the amplitude 
and the phase of the wave function simultaneously. Most of us have some sort of metal image when we are 
presented with the concepts of a pole, a zero, a branch point or a branch cut. Most graphical techniques 
for describing complex functions are quite crude in that poles and zeros may be represented by × ' s  and 
O's  and branch cuts identified by thick lines, but detailed phase information is usually lost as well as pole 
and zero multiplicity data. Here we propose a standard for displaying complex functions that uses color to 
convey intensity and phase information. 

3.1. Projecting into color 

Color space is a compact three-dimensional space, and a point in the space can be uniquely specified by 
the three intensities (r,  g, b) that represent the intensity of the red, green and blue electron guns in a color 
display tube. The intensities r, g and b each lie in the interval [0,1[. The eight vertices of the color cube are 
displayed in fig. 1. The color intensities vary linearly between all points in the cube. 

To visuahze a complex number z = x + iy  or a two-dimensional vector field (v 1, v2), we must find a 
mapping from t2 or equivalently R 2 into the color cube [0,1] 3. There are an infinite number of possible 
mappings to choose from. 

One well known mapping stereographically maps the complex plane onto the surface of the unit sphere 
S 2 by finding the intersection of the ray that passes through the north pole (0, 0, 1) and the point in the 
plane (x, y, 0). Points that lie inside the unit circle in the complex plane are mapped to the southern 
hemisphere and the origin z = 0 is mapped to the south pole (0, 0, - 1). Points that lie outside the unit 
circle are mapped to the northern hemisphere and all points at m are mapped to the north pole (0, 0, 1). 
Points on the unit circle map directly to the equator. This mapping is defined by 

,) = (2x, 2y,  x 2 + y 2 -  1) (20) 
( x ' ,  y ' ,  z x 2 + y 2 +  1 

and this projection is shown in fig. 2. 
One natural way to imbed the unit sphere in the color tube is by shrinking its radius to 1./2 and placing 
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Fig. 1. The color cube. Fig. 2. Stereographic projection of the complex plane onto the 
surface of the unit sphere. 

the center of the sphere at the center of the color cube (r, g, b) = C1/2, 1 /2 ,  1/2).  We align the southern 
to northern axis of the sphere along the ray from (0, 0, 0) to (1, 1, 1) in the color cube. This orientation is 
chosen so that the south pole is as close to black (0, 0, 0) as possible Caesthetically zeroes which have no 
amplitude ought to the black) and the north pole is as close to white (1, 1, 1) as possible (likewise poles 
which have enormous amplitudes ought to be white). The azimuthal orientation will be uniquely 
determined if we.require that the positive real axis has maximal red intensity (R is for real or right or red!). 

This map looks quite reasonable on the unit circle but the intensities at the origin and oo are not 
distinct enough. This is because a sphere of radius 1 / 2  can only have points that are a fraction 1 / / 5  or 
about 58% of the distance to the corners at (0, 0, 0) and (1, 1, 1) which leads to weak intensities. Intensities 
for poles are not bright enough and zeros are not dark enough. To remedy this situation we will replace 
each hemisphere of the sphere by separate cones whose vertices are at C 0, 0, 0) and (1, 1, 1) and whose 
bases lie on the equator. In a coordinate system where the z-axis is the axis of the cones, this mapping is 
defined by: 

x 2 + y 2  + 1 ' (21) 

where 

1, t > O ,  
~(t)= -1,  t<O. 
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If we rescale eq. (21) by a 
the color cube and follow 

factor of 1/2,  followed by a rotation to align the cones axis with the diagonal of 
this by a translation to the center of the color cube we find: (½ #+,2) 

r =  ½ + r l (x2 + y 2 - 1 )  1 + x 2 + y 2  

g =½+ ~ ( x  2 + y 2 _ 1 )  2 l + x  2 + y 2  

b=½+rl(x2+y2-1) 2 l + x 2 + y  2 

2x 
+ ~ - ( 1  + x 2 + y 2 ) ,  (22) 

x y 
+ (23) ( g ( l + x 2 + y   (l+x2+y2) ' 

x y 
- -  ( 2 4 )  V ~ - ( l + x 2 + y  2) ~ / 2 ( l + x 2 + y 2 )  " 

the complex plane into the color cube. This map has the 
be used for visualizing complex wave functions in the next 

These completely define our mappings from 
desired properties at poles and zeros and will 
section. 

4. Scattering examples 

We have numerically studied the scattering of a Gaussian wave packet by a localized potential V(x) 
using the CM-2 supercomputer. These algorithms are very easy to program using CMFortran as can be 
seen by the following time-stepping routine. 

c Time stepping subroutine for two dimensional 
c Schr6dinger equation 

SUBROUTINE step(psi,alpha.betaeven,betaodd.expv.count) 
PARAMETER(n=1024) 
COMPLEX psi(n,n),alpha,betaeven(n,n),betaodd(n,n),expv(n,n) 
INTEGER i,count 

DO i =1.count 

psi =expv,psi 

psi =alpha,psi +betaeven* CSHIFT(psi,DIM= I,SHIFT=-I ) 
& +betaodd *CSHIFT(psi.DIM--I,SHIFT=+I) 
psi =alpha.psi +betaeven, CSHIFT(psi.DIM--1,SHIFT=+I ) 

& +betaodd *CSHIFT(psi.DIM--1,SHIFT=-I) 

psi =alpha,psi +betaeven* CSHI FT(psi,DIM-- 2,SHI FT=-I ) 
& +betaodd ,CSHIFT(psi,DIM=2,SHIFT=+I) 
psi =alpha,psi +betaeven* CSHIFT(psi,DIM=2,SHIFT=+I ) 

& +betaodd *CSHIFT(psi,DIM=2,SHIFT=-I) 

END DO 

RETURN 
END 

This is a very simple minded, but easy to understand subroutine. The array expv( ) is e x p [ - i ( A t / h ) I ) ]  
and the arrays betaeven( ) and betaodd( ) are defined to be zero on odd or even sites respectively and fl 
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Color plate 1. A packet scattered from a repulsive (positive) potential. 
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Color plate 2. A packet scattered from an attractive (negative) potential. 
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otherwise. This implementation does unnecessary multiplications by zero but still manages to run at about 
800 Mflops on a 64K CM-2. A more efficient C M F O R T R A N  version runs at above 2000 Mflops on the 
same hardware [7]. 

Given an initial wave function described by 

g'(x' O) (2~r(Ax)2) n/2 ( (x-x°); ) = exp 2(Ax)2 + i p . x  (25) 

centered at the point x 0 and moving with momenta  p ,  we would like to observe the time evolution q-'(x, t)  
of the scattering process. 

We will restrict ourselves to two spatial dimensions so that the results can be seen on the sheets of  this 
paper. In order to visualize the complex wave function, we have used the technique described in the 
previous section. 

Color plate 1 shows a sequence of frames where a packet is scattered from a repulsive (positive) 
potential that is constant inside a circle of radius r 0. Notice the de Broglie waves perpendicular to the 
direction of motion in the initial Gaussian wave packet as it move to the right. As the packed moves it 
spreads and finally it contacts the repulsive potential and is reflected by it. The wave function is repelled 
by the potential. 

Color plate 2 shows a sequence of frames where a packet is scattered from an attractive (negative) 
potential that is constant inside a circle of radius r 0. Notice how the wave function is attracted by the 
potential which seems to pull it through the scattering center causing a peak in the forward scattering cross 
section. 

These frames can be computed and viewed continuously using the CM-2 supercomputer, and vidieo- 
tapes of scattering phenomena have been made by the author [9]. 

5. Conclusion and generalizations 

We have implemented new algorithms for the numerical integration of the time-dependent Schr/Sdinger 
equation using the CM-2 and demonstrated their use. The algorithms are unconditionally stable, local 
unitary, explicit and are easy to implement. In addition we have introduced new visualization techniques 
for complex functions or two-dimensional vector fields. 

We have also shown how to extend these integration algorithms to unstructured grids and to simulate 
diffusion processes. 

As one might anticipate from our discussion, these space-splitting techniques are quite general and have 
been extended to a broader class of wave phenomena including electromagnetic processes, fluid fluid flow 
and mechanical phenomena [8]. 
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