VLA Data Reduction Techniques

Emmanuel Momjian NRAO

Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Outline

- The archive tool.
- Loading the data set.
- CASA
- Examining/Flagging the data set.
- Calibration
 - Including high and low frequency considerations.
- Imaging
 - Including spectral line, continuum, wide band, and wide field.
- Image analysis

Assumptions

This presentation assumes that you are familiar with the basics of:

- radio interferometry.
- flux density calibration, *antenna-based* calibration (complex gain, bandpass) and self-calibration.
- imaging and deconvolution.

For references on the above, please check:

- The lectures of the synthesis imaging workshop <u>http://www.aoc.nrao.edu/events/synthesis/2012/</u>
- Synthesis Imaging for Radio Astronomy II (eds. Taylor, Carilli, and Perley).
- Interferometry and Synthesis in Radio Astronomy (by Thompson, Moran, and Swenson).

https://science.nrao.edu/

NRAC

 \rightarrow Facilities \rightarrow VLA, Data Archive (left menu), VLA/VLBA Archive

https://archive.nrao.edu/

NRAG	O Science Data Archive : Adva	anced Search Tool	
Histor	ical VLA, Jansky VLA, VLBA and	GBT Data Products	
Submit Query	Check Query	Clear Form	
Output Control Parameters :			
Choose Query Return Type :			
 Download Archive Data Files 	Dutput Tbl Format HTML +	Sort Order Column 1 Starttime	As
VLA Observations Summary Max	Output Tbl Rows NO LIMIT	Sort Order Column 2 Starttime	
List of Observation Scans			
General Search Parameters :			
Project Code _{GBT: AGBT12A_055} Pro	oject Session I	Dates From	
JVLA: 12A-256	chive File ID	То	
Observer Name 744	(partial strings allowed)	(2010-06-21 14:20:30)	
Position Search -			
Target Name	Search Type SIMBAD or NED +) M	in Exposure (sees)	
RA or Longitude DE	C or Latitude	Equinar (12000 A	
(04h33m11.1s or 68.29d)	(05d21'15.5" or 5.352d)	Equinox	
Search Radius 1.0' (1d00'00" or 0.2d)	OR - Check for automatic VI	A field-of-view, freq. dependent.??	
Observing Configurations Second .			
Observing Configurations Search :		- Allo 4 - Polos	- C
Telescope	LA VLBA GBT	Observing Bands	w
Telescope All A AB BRACI		Observing Mode ALL +	
	A	Correl Mode (ALL +)	
Sub_array All 1 2 3 4 5		Polarization (ALL +)	
Data Type ALL		Frequency Range	
		(In MHz : 1665.401 - 1720.500)
Enter Looked Project Assess here	Unique keyw	ords may be used to unlock proprietary data from indi-	vidual obs

https://archive.nrao.edu/

	NRAO Science Data A	Archive : Advanced Searc	ch Tool
	Historical VLA, Jansky V	VLA, VLBA and GBT Data F	roducts
Submit	Query	Check Query	Clear Form
Output Control Parame	ters :		
Choose Query Return	Cype :		
 Download Archive Data P VLA Observations Summ 	ary Output Tbl Format H	TML Sort Order	Column 1 Starttime
List of Observation Scans	Max Output Tbl Rows NC	Sort Order	Column 2 Starttime
List of Projects			
General Search Paramet	ters :		
		-	
Project Code GBT: AG	BT12A_055 Project Session	Dates From	
Observer Name	Archive File ID	To	
Observer Hand	(partial st	trings allowed) (20	10-06-21 14:20:30)
Position Search :			
Target Name	Search Type SIMBA	D or NED \$ Min. Exposure	(secs)
RA or Longitude (04h33m	11.1s or 68.29d) DEC or Latitude (05d21')	15.5" or 5.352d) Equinox	J2000 🛊
Search Radius 1.0'	- OR - Check	for automatic VLA field-of-vie	w, freq. dependent.??
(1400)	J0° or 0.2d)		· · · · -
Observing Configuratio	ns Search :		
Telescope	ky VLA Historical VLA VLBA GBT	Observing B	ands All 4 P L S C
Telescope at All A		Observing M	fode ALL +
Config c c		Correl N	fode ALL \$
Sub_array All 1	2 3 4 5	Polariz	ation ALL \$
	*	Frequency R	ange
Data Type ALL			
Data Type ALL			(In MHZ: 1665.401 - 1720.500)

Basic Search: A Simple data retrieval tool

Arabiya Hama Daria Caarah Adyangad Caarah	(Image Secret Decorintion Archive Policy	I Arabiwa Status I Arabiwa Toola I	Enture Cools I VI DA Courses Downloads
Archive Home I Dasic Search I Advanced Search	a image Search i Description i Archive Foncy	Archive Status FArchive Tools I	Future Obaist VLDA Sourcest Downloads

In order to unlock your proprietary data and hav My.NR	e access to other archive tools, you must log in to your AO account.								
NRAO Science Data Archive : Basic Search Tool									
Historical VLA, Jansky VLA	, VLBA and GBT Data Products								
Instructions on how to download your data : click here									
Project (Proposal) Code	The NRAO proposal or observing project id.								
Observer :	The observer's name. Case sensitive, partial string searchs best.								
Telescope ALL +	You may restrict the search to a single telescope.								
Observe Start Date :	Format : yyyy-MMM-dd or yyyy-MMM-dd hh:mm:ss								
Observe Stop Date :	Format : yyyy-MMM-dd or yyyy-MMM-dd hh:mm:ss								
Query Control Parameters :									
Enter Locked Project Access Key	Unique keywords may be used to unlock proprietary data from individual observing projects. Contact the <u>NRAO Data Analysts</u> for project access keys.								
Query Returns : Download Archive Files	Select 'Download Archive Files' to proceed to the download page, the other options are for browsing.								
Submit Query Clear Form									
Please direct feedback and/or questions concerning this p	bage and its associated search engine to NRAO DAS contact								

Basic Search: A Simple data retrieval tool

Archive Home Basic Search Advanced S	Search Image Search Description Arc	hive Policy Archive Status Archive Tools	Future Goals I VI BA Sources Downloads
Them to Home I busic bouten I ravanced a	- mage bearen (Desemption (Me	ruenive foney (ruenive fonte	Tutule obuist (Downloads)

NRAO Science Data A	Archive : Basic Search Tool
Historical VLA, Jansky VL	A, VLBA and GBT Data Products
nstructions on how to download your data : click here	
Project (Proposal) Code	The NRAO proposal or observing project id.
Observer :	The observer's name. Case sensitive, partial string searchs best.
Telescope ALL +	You may restrict the search to a single telescope.
Observe Start Date :	Format : yyyy-MMM-dd or yyyy-MMM-dd hh:mm:ss
Observe Stop Date :	Format : yyyy-MMM-dd or yyyy-MMM-dd hh:mm:ss
Query Control Parameters :	
Enter Locked Project Access Key	Unique keywords may be used to unlock proprietary data from individual observing projects. Contact the <u>NRAO Data Analysts</u> for project access keys.
Query Returns : Download Archive File	Select 'Download Archive Files' to proceed to the download page, the other options are for browsing.
Submit Query Clear Form	

- For each observing session, the archive tool allows the observer to view:
 - The logs
 - The scans
 - The SDM-BDF set (listing of the sdm and bdf files)
 - Any data quality issues.

Archive File	Status	Project	Seg	Project Data Starts	Project Data Stops	File Size	Telescope: config:sub"	Bands	Format	Туре	DQ	View Scans	Logs etc.
□ 11A-291.sb4911125.eb4924302.55782.00136674769	locked	11A-291	x	11-Aug-09 00:02:01	11-Aug-09 01:01:45	42.46GB	EVLA:A:0	L	SDMset	raw	OK	<u>Scans</u>	<u>Logs</u>
11A-291.sb4911125.eb4944094.55784.99251239583	locked	11A-291	x	11-Aug-11 23:50:07	11-Aug-1302:14:44	30.29GB	EVLA:A:0	L	SDMset	raw	OK	<u>Scans</u>	Logs
11A-291.sb4910900.eb4947827.55787.6933925	locked	11A-291	x	11-Aug-14 16:39:27	11-Aug-14 18:39:07	78.96GB	EVLA:A:0	L	<u>SDMset</u>	raw	<u>info</u>	Scans	Logs

Checking the data in the archive tool

The scan listing:

Project	Scan :sub	Source	Cal Code	Start Time	Stop Time	Sys	TOS (sec)	Intrvl (sec)	Scan Intent	Spect Win	Obs_Freq (MHz)	Bandw (MHz)	Polar	Spect chans	Corr Mode	Tele:config :sub:nants	RA(J2000)	DEC(J2000)	Archive File
11A-291	1:1	J1120+1420		11-Aug-09 00:02:01	11-Aug-09 00:02:54	UTC	53.5	1	OBS	CD_0:SW_0 CD_0:SW_1 CD_0:SW_2 CD_0:SW_3 CD_0:SW_4 CD_0:SW_5 CD_0:SW_6 CD_0:SW_7 CD_0:SW_7 CD_0:SW_9 CD_0:SW_10 CD_0:SW_11 CD_0:SW_11 CD_0:SW_12 CD_0:SW_14 CD_0:SW_14	998.00000 1062.00000 1126.00000 1190.00000 1382.00000 1382.00000 1382.00000 1570.00000 1634.00000 1634.00000 1638.00000 1639.00000 1826.00000 1895.00000	64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000	RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL	128 128 128 128 128 128 128 128 128 128	WIDR WIDR WIDR WIDR WIDR WIDR WIDR WIDR	EVLA:A:1:27	11h20m27.807s	+14d2054.99*	11A-291.sb4911125.eb4924302.55782.00136674769 uidev1a_bdf_1312848123251.bdf
114-291	2:1	J1120+1420		11-Aug-09 00:02:54	11-Aug-09 00:03:54	UTC	59.8	1	CAL	CD_0:SW_0 CD_0:SW_1 CD_0:SW_2 CD_0:SW_2 CD_0:SW_4 CD_0:SW_5 CD_0:SW_6 CD_0:SW_7 CD_0:SW_8 CD_0:SW_9 CD_0:SW_9 CD_0:SW_10 CD_0:SW_11 CD_0:SW_11 CD_0:SW_11 CD_0:SW_14 CD_0:SW_14 CD_0:SW_14	998.00000 1052.00000 1126.00000 1126.00000 138.00000 138.00000 138.00000 1446.00000 1506.00000 1506.00000 1634.00000 1638.00000 1638.00000 1890.00000 1954.00000	64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000	RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL	128 128 128 128 128 128 128 128 128 128	WIDR WIDR WIDR WIDR WIDR WIDR WIDR WIDR	EVLA:A:1:27	11h20m27.807s	+14d20/54.99*	11A-291.sb4911125.eb4924302.55782.00136674769 uidevla_bdf_1312848123257.bdf
11A-291	3:1	J1120+1420		11-Aug-09 00:03:54	11-Aug-09 00:05:24	UTC	89.8	1	CAL	CD_0:SW_0 CD_0:SW_1 CD_0:SW_2 CD_0:SW_3 CD_0:SW_5 CD_0:SW_6 CD_0:SW_6 CD_0:SW_7 CD_0:SW_9 CD_0:SW_9 CD_0:SW_10 CD_0:SW_11 CD_0:SW_11 CD_0:SW_12 CD_0:SW_14 CD_0:SW_14 CD_0:SW_14	998.00000 1062.00000 1126.00000 1254.00000 1318.00000 1318.00000 1348.00000 1570.00000 1570.00000 1634.000000 1634.000000 1890.000000 1890.000000	64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000	RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL RR,LL	128 128 128 128 128 128 128 128 128 128	WIDR WIDR WIDR WIDR WIDR WIDR WIDR WIDR	EVLA:A:1:27	11h20m27.807s	+14d2054.99*	11A-291.sb4911125.eb4924302.55782.00136674769 nidevla_bdf_1312848174961.bdf

Checking the data in the archive tool

The scan listing (reference pointing):

11A-258	42:1	0542+498=3C147	11-Jun-01 01:26:47	11-Jun-01 01:27:07	UTC	19.4	1	POINT	CD_1:SW_16 CD_1:SW_17	8332.000000 8460.000000	128.000 128.000	RR,RL,LR,LL RR,RL,LR,LL	64 64	WIDR WIDR	EVLA:BnA->A:1:25	05h42m36.138s	+49d51'07.23'	11A-258.sb4139176.eb4258095.55713.0339549537 uidevla_bdf_1306891607524.bdf
11A-258	42:2	0542+498=3C147	11-Jun-01 01:27:07	11-Jun-01 01:27:27	UTC	20	1.1	POINT	CD_1:SW_16 CD_1:SW_17	8332.000000 8460.000000	128.000 128.000	RR,RL,LR,LL RR,RL,LR,LL	64 64	WIDR WIDR	EVLA:BnA->A:1:25	05h42m36.138s	+49d51'07.23'	11A-258.sb4139176.eb4258095.55713.0339549537 uidevla_bdf_1306891608043.bdf
11A-258	42:3	0542+498=3C147	11-Jun-01 01:27:27	11-Jun-01 01:27:47	UTC	20	1.1	POINT	CD_1:SW_16 CD_1:SW_17	8332.000000 8460.000000	128.000 128.000	RR,RL,LR,LL RR,RL,LR,LL	64 64	WIDR WIDR	EVLA:BnA->A:1:25	05h42m36.138s	+49d51'07.23'	11A-258.sb4139176.eb4258095.55713.0339549537 uidevla_bdf_1306891627503.bdf
11A-258	42:4	0542+498=3C147	11-Jun-01 01:27:47	11-Jun-01 01:28:07	UTC	20	1.1	POINT	CD_1:SW_16 CD_1:SW_17	8332.000000 8460.000000	128.000 128.000	RR,RL,LR,LL RR,RL,LR,LL	64 64	WIDR WIDR	EVLA:BnA->A:1:25	05h42m36.138s	+49d51'07.23'	11A-258.sb4139176.eb4258095.55713.0339549537 uidevla_bdf_1306891647507.bdf
11A-258	42:5	0542+498=3C147	11-Jun-01 01:28:07	11-Jun-01 01:28:27	UTC	20	1.1	POINT	CD_1:SW_16 CD_1:SW_17	8332.000000 8460.000000	128.000 128.000	RR,RL,LR,LL RR,RL,LR,LL	64 64	WIDR WIDR	EVLA:BnA->A:1:25	05h42m36.138s	+49d51'07.23'	11A-258.sb4139176.eb4258095.55713.0339549537 uidevla_bdf_1306891667503.bdf
11A-258	42:6	0542+498=3C147	11-Jun-01 01:28:27	11-Jun-01 01:28:47	UTC	20	1.1	POINT	CD_1:SW_16 CD_1:SW_17	8332.000000 8460.000000	128.000 128.000	RR,RL,LR,LL RR,RL,LR,LL	64 64	WIDR WIDR	EVLA:BnA->A:1:25	05h42m36.138s	+49d51'07.23'	11A-258.sb4139176.eb4258095.55713.0339549537 uidevla_bdf_1306891687511.bdf
11A-258	42:7	0542+498=3C147	11-Jun-01 01:28:47	11-Jun-01 01:29:07	UTC	20	1.1	POINT	CD_1:SW_16 CD_1:SW_17	8332.000000 8460.000000	128.000 128.000	RR,RL,LR,LL RR,RL,LR,LL	64 64	WIDR WIDR	EVLA:BnA->A:1:25	05h42m36.138s	+49d51'07.23'	11A-258.sb4139176.eb4258095.55713.0339549537 uidevla_bdf_1306891707505.bdf
11A-258	42:8	0542+498=3C147	11-Jun-01 01:29:07	11-Jun-01 01:29:27	UTC	20	1.1	POINT	CD_1:SW_16 CD_1:SW_17	8332.000000 8460.000000	128.000 128.000	RR,RL,LR,LL RR,RL,LR,LL	64 64	WIDR WIDR	EVLA:BnA->A:1:25	05h42m36.138s	+49d51'07.23'	11A-258.sb4139176.eb4258095.55713.0339549537 uidevla_bdf_1306891727505.bdf
11A-258	42:9	0542+498=3C147	11-Jun-01 01:29:27	11-Jun-01 01:29:47	UTC	20	1.1	POINT	CD_1:SW_16 CD_1:SW_17	8332.000000 8460.000000	128.000 128.000	RR,RL,LR,LL RR,RL,LR,LL	64 64	WIDR WIDR	EVLA:BnA->A:1:25	05h42m36.138s	+49d51'07.23'	11A-258.sb4139176.eb4258095.55713.0339549537 uidevla_bdf_1306891747507.bdf
11A-258	42:10	0542+498=3C147	11-Jun-01 01:29:47	11-Jun-01 01:30:07	UTC	20	1.1	POINT	CD_1:SW_16 CD_1:SW_17	8332.000000 8460.000000	128.000 128.000	RR,RL,LR,LL RR,RL,LR,LL	64 64	WIDR WIDR	EVLA:BnA->A:1:25	05h42m36.138s	+49d51'07.23'	11A-258.sb4139176.eb4258095.55713.0339549537 uidevla_bdf_1306891767505.bdf
11A-258	42:11	0542+498=3C147	11-Jun-01 01:30:07	11-Jun-01 01:30:27	UTC	20	1.1	POINT	CD_1:SW_16 CD_1:SW_17	8332.000000 8460.000000	128.000 128.000	RR,RL,LR,LL RR,RL,LR,LL	64 64	WIDR WIDR	EVLA:BnA->A:1:25	05h42m36.138s	+49d51'07.23'	11A-258.sb4139176.eb4258095.55713.0339549537 uidevla_bdf_1306891787507.bdf
11A-258	42:12	0542+498=3C147	11-Jun-01 01:30:27	11-Jun-01 01:30:42	UTC	15.4	1.2	POINT	CD_1:SW_16 CD_1:SW_17	8332.000000 8460.000000	128.000 128.000	RR,RL,LR,LL RR,RL,LR,LL	64 64	WIDR WIDR	EVLA:BnA->A:1:25	05h42m36.138s	+49d51'07.23'	11A-258.sb4139176.eb4258095.55713.0339549537 uidevla_bdf_1306891807506.bdf

CASA MS Data formats: AIPS FITS Choose download data format SDM-BDF dataset (all files) - SDM-BDF (native format; SDM tables only (no visibiliites) Create MS or SDM tar file Create tar file : desirable for the pipeline) Apply flags generated during Apply telescope flags : observing - CASA MS (default) Spectral Averaging (chans) x1 Choose online averaging for CASA MS or AIPS FITS : - AIPS FITS Time Averaging (secs) 0s Select scans for MS or AIPS ALL FITS : Include verbatim SDM tables in Auxiliary SDM Tables : MS

Expanded VLA datasets

- If CASA MS is requested, the SDM-BDF is loaded to a staging area and converted to MS using CASA' s importevla task.
- If AIPS FITS is requested, then the MS made above will be exported as a FITS file using CASA' s *exportuvfits* task.

EVLA - WIDAR datasets

- If the apply flags option is not checked, the flags are written to a
 FLAG_CMD MS table.
 They can later be applied by using the CASA task flagcmd.
- If checked, the flags are applied on the data.

	O CASA MS
Choose download data format	AIPS FITS
:	○ SDM-BDF dataset (all files)
	SDM tables only (no visibiliites)
Create tar file :	Create MS or SDM tar file
Apply telescope flags :	Apply flags generated during observing
Choose online averaging for	×1 Spectral Averaging (chans)
CASA MS or AIPS FITS :	0s Time Averaging (secs)
Select scans for MS or AIPS FITS :	ALL
Auxiliary SDM Tables :	Include verbatim SDM tables in MS

 For UVFITS, the flags need to be applied, as there will not be a FG table in the resulting file.

Expanded VLA datasets

Auxiliary SDM Tables : Include verbatim SDM tables in MS

- The tool allows the observer to average the data in time and/ or in frequency.
- It also allows the selection of scans.
 - For these, the archive tool uses the CASA task split.

Expanded VLA datasets

If applying online averaging:

- I. Make sure to apply the flags.
- 2. Averaging in frequency is discouraged as delays can cause coherence loss. We recommend reviewing the data before frequency averaging.
- Averaging in time should take into account the type of science you would like to do. See the VLA Observational Status Summary for amplitude loss due to time averaging.

Choose download data format :	 CASA MS AIPS FITS SDM-BDF dataset (all files) SDM tables only (no visibiliites)
Create tar file :	Create MS or SDM tar file
Apply telescope flags :	Apply flags generated during observing
Choose online averaging for CASA MS or AIPS FITS :	x1 Spectral Averaging (chans) 0s Time Averaging (secs)
Select scans for MS or AIPS FITS :	ALL
Auxiliary SDM Tables :	Include verbatim SDM tables in MS

 The SDM-BDF and MS are directories. For downloading through the net, make sure to ask for a tar file.

Loading The Data: The archive tool Requesting the data on a hard disk

- NRAO offers a data shipping service using hard disks:
 - when the size of the data is large, or
 - when the user does not have fast enough internet connection.
- This disk-ordering process is done through the archive tool.
- The data will be saved on 1.8 TB disks and shipped to the observer.
- Cost \$125.00 USD.

NRAC

- Disk shipment information and policies are posted at
 - <u>https://archive.nrao.edu/archive/hdshiplnfo.html</u>

https://science.nrao.edu/facilities/evla/data-shipment

- Web site: <u>http://casa.nrao.edu/</u>
- Available for both Linux and Mac OS.

- Make sure to subscribe to the CASA mailing lists:
 - casa-announce: For announcements of new releases, workshops, etc...
 - casa-users: For critical bugs and code updates.

<u>http://casa.nrao.edu/</u> \rightarrow Getting Help \rightarrow Mailing lists

CASA

- Documentation is available at <u>http://casa.nrao.edu/</u> → 'Using CASA'
- Training material is available at http://casaguides.nrao.edu
- For help, use the NRAO help desk at: <u>http://help.nrao.edu</u>

CASA 4.1.0 (stable revision 22971) will be used at this workshop

CASA

- All CASA tasks can be listed by tasklist.
- The tasks are grouped as:
 - Import/export
 - Information
 - Editing
 - Manipulation
 - Calibration
 - Modeling

- Imaging
- Analysis
- Visualization
- Simulation
- Single dish
- Utility
- AIPS CASA dictionary, and (historic) MIRIAD-CASA and CLIC-CASA dictionaries are available in the CASA cookbook.
 <u>http://casa.nrao.edu/</u> → 'Using CASA' → 'User Reference and Cookbook'.

Loading The Data: importevla

If one chooses to download the SDM-BDF

- The task importevla converts the SDM-BDF to MS.
- *importevla* is an enhanced version of *importasdm* that allows the use of the VLA online flags.
- It converts the data into a MS, and carries out various types of flagging (online flags, pure zeros, shadowing).

asdm	=	'archive_sdm_directory'
vis	=	'output MS name'
ocorr_mode	=	'co' (or load ca, ao)
scans	=	т.т.

Loading The Data: importevla

Flags:		
online	=	True
tbuff	=	0.0
flagzero	=	True
flagpol	=	True
shadow	=	True
tolerance	=	0.0
applyflags	=	False

- If applyflags = False (default) => the flags are written to a FLAG_CMD MS table. They can be examined (listed, plotted) and applied by using the task flagcmd [recommended].
- **If** applyflags = True => the flags are applied on the data.

Examining Your Data

- Observing summary (sources, scans, spectral windows, antennas, etc...): *listobs*
- Plotting the antennas: plotants
- Plotting/displaying data: plotms (unix command line casaplotms), and msview

Examine your data carefully before flagging

Observing Summary: listobs

```
= 'MS file name'
    vis
    verbose
                                                               (or False)
                                                True
                                    =
    selectdata
                                                               (or False)
                                                True
                                    =
listobs:...
                   MeasurementSet Name: /lustre/aoc/users/emomjian/zeeman/StokesV 50Hz
Observer: Dr. Emmanuel Momjian Project: T.B.D.
listobs:…
listobs:... Observation: EVLA(27 antennas)
                                   Total integration time = 3586.94 seconds
listobs:... Data records: 1249911
            Observed from 12-Jul-2011/10:22:38.6 to 12-Jul-2011/11:22:25.5 (UTC)
listobs:...
listobs: ... Fields: 3
listobs: ... ID Code Name
                                RA
                                             Decl
                                                           Epoch
                                                                  SrcId
                                18:51:46.7217 +00.35.32.4140 J2000
listobs:…
                    J1851+0035
           0
               D
listobs:... 1 NONE G37.40+1.52* 18:54:14.2627 +04.41.41.4167 J2000
                                                                  1
                    0137+331=3C* 01:37:41.2994 +33.09.35.1330 J2000
listobs:…
           2
               Е
                                                                   2
listobs:... (nVis = Total number of time/baseline visibilities per field)
listobs:... Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)
           SpwID #Chans Frame Ch1(MHz) ChanWid(kHz)TotBW(kHz) Ref(MHz)
listobs:...
                                                                          Corrs
listobs:...
           0
                    256 TOPO 6667.85673 0.9765625
                                                    250
                                                               6667.85673 RR LL
listobs: ... Sources: 3
listobs:...
                           SpwId RestFreq(MHz)
                                               SysVel(km/s)
           ID
              Name
listobs:...
           0 J1851+0035 0 6668.518
                                               41
listobs:...
              G37.40+1.52* 0 6668.518
                                               41
           1
listobs:...
               0137 + 331 = 3C * 0
                              6668.518
                                               41
listobs:... Antennas: 27 'name'='station'
            ID= 0-3: 'ea01'='W72', 'ea02'='E56', 'ea03'='E72', 'ea04'='W64',
listobs:...
            ID= 4-7: 'ea05'='W08', 'ea06'='N40', 'ea07'='E32', 'ea08'='N64',
listobs:...
            ID= 8-11: 'ea09'='E24', 'ea10'='N32', 'ea11'='E40', 'ea12'='E08',
listobs: ....
            ID= 12-15: 'ea13'='N16', 'ea14'='W48', 'ea15'='W24', 'ea16'='N48',
listobs:...
listobs: ...
            ID= 16-19: 'ea17'='W32', 'ea18'='E48', 'ea19'='W40', 'ea20'='N72',
            ID= 20-23: 'ea22'='N24', 'ea23'='E16', 'ea24'='W16', 'ea25'='N56',
listobs:...
                                                                                   24
            ID= 24-26: 'ea26'='W56', 'ea27'='E64', 'ea28'='N08'
listobs:...
```

Plotting the antennas: plotants

vis = 'MS file name'

Data Review: plotms (unix command line casaplotms)

NRAC

×	PlotMS <3>						
<u></u> Eil€	e View Help						
Plo	ots Flagging Tools Annotator Op 🕨						
lte	rated Plot 👻						
g	File Location						
lõ	ay2_TDEM0003_10s_norx Browse						
es	Selection						
AX	field						
-	spw						
E	timerange						
S	uvrange						
Trai	antenna						
	scan						
spla	corr						
ă	array						
se	msselect						
anvia	Averaging						
	Channel O channels						
to	Time 0 seconds						
EXp	Scan 🗌 Field						
	All Baselines Per Antenna						
	All Spectral Windows						
	Scalar						
	All Verbose Summary						
Ľ	FIOL						
X							

27

Observational geometry:	lte	rated Plot	-
'uvdist' (meters) 'uvwave'='uvdistl'='uvdist_l' (wavelengths, per	Data	X Axis	ie?
channel) 'u' (meters) 'v' (meters) 'azimuth' (at array reference; degrees) 'elevation' (at array reference; degrees) 'hourang'='hourangle' (at array reference; hours) 'parang'='parangle'='parallacticangle' (at array reference; degrees) Antenna-based (only works vs. data lds): 'ant'='antenna' 'ant-azimuth' 'ant-elevation' 'ant-parang'='ant-parangle'	Export Canvas Display Trans Iter Axes	Attach to: Automatic Automatic 1858/11/17/00:00:00.000 1858/11/17/00:00:00.000 Y Axis Amp In Cach Data Column: data Attach to: Left Right Range: Automatic 0 0 force reload Plot]to

Axes

NRAO

X PlotMS <3>

View Help

Flagging

Tools

Annotator

Plot

Op∢►

Ŧ

<u>F</u>ile

Plots

Transformations

Frame: TOPO, GEO, BARY, LSRK, LSRD, etc..

X	Plo	otMS	5 <3>						
<u>F</u> ile	e V	/iew	Help						
Plo	ts	Fla	gging	Tools	Annotator		Ор	┛	Þ
Am	p vs	s. Inte	erval			•]		
es Data	Trai Fra	nsfori me:[mations LSRK	•					
Iter Axe	Vel	locity	Defn: R	ADIO	•				
Trans	Res	st Fre	q (MHz)	: 1420.4	05752				
Display	Pha	dX:	enter sh 0	ift (arcse	c): 0				
Canvas									
Export									
f	orce	e relo	ad		Plot]		

Display

Colorize by: Scan Field Spw Antenna I Antenna2 Baseline Channel Correlation

Х	Plo	otMS	<3>				
<u>F</u> ile	è۱	/iew	Help				
Plo	ots	Flag	gging	Tools	Annotator	Op∮∮	
Am	np v	s. Inte	rval			•	
g	Plot	: Title					
Dat	0	None	۲	Default			
5	0 %%yaxis%% vs. %%xaxis%%						
Axe	Unf	lagge	d Point	s Symbol			
	0	None					
lter	۲	Defau	lt				
	0	Custo	m				
ans		Style	: 2	, ∎px,	circle 🔻		
Ē		Fill:	000	00ff	. fill		
Ъ.	/	Outlir	ie: 🔘 N	lone O E	efault		
disp		Coloriz	e by:	Spw	\Box		
F	Fla	gged	Points 9	Symbol			
vas	۲	None					
Can	0	Defau	lt				
	0	Custo	m				
ort		Style	: 2	≜ px, [circle 🔻		
Exp		Fill:	ffoo		. fill •		
		Outlir	ne: 💿 N	lone 🔿 🛛	Default		
		n role	- d		Dist		
	orce	e reio	aŭ		Plot		

NRAC

Example: x-axis: time, y-axis: amp iter: spw (with all channels averaged)

Example: x-axis: frequency, y-axis: amp

iteration: scan

Flagging (or unflagging) Data

I. flagdata: All purpose flagging task based on selection.

- Includes RFI flagging capabilities (RFLAG, TFCROP).
- 2. *flagcmd*: All purpose flagging task based on commands (alternative to *flagdata* for certain types of flagging).
- 3. plotms: Interactive flagging
- 4. msview: Interactive flagging

Review the VLA operator's log carefully. Certain issues (e.g., antennas without receivers), do not end up in the online flags, and need to be flagged manually.

Flagging (or unflagging) Data A few important notes

- I. Data in CASA are either flagged or not flagged.
 - Every MS has a flag column.
 - Every bit of data has its own flag (set either to true or false).
 - Applying flags means setting the flag column entries of the selected bits of data to true.
- 2. Most flagging tasks have the option of creating a flag backup.
- 3. A flag backup is a MS that contains the state of the flags before running a flagging task.
- 4. Using *flagmanager*, backed-up flags can be restored (or a flag backup can be made).

Flagging Data: flagdata - Modes

- list = apply a list of flagging commands
- manual = flagging based on specific selection parameters
- clip = clip data according to values
- quack = remove/keep specific time range at scan beginning/end
- shadow = remove antenna-shadowed data
- elevation = remove data below/above given elevations
- *tfcrop* = auto identification of outliers on the time-freq plane
- rflag = auto detection of outliers based on sliding-window RMS filters
- extend = extend and/or grow flags
- Also summary (per antenna, correlation, field, scan, total), and unflag.
- Can also flag calibration tables.

Flagging Data: flagcmd

- It allows listing, plotting, saving, applying, or un-applying flags.
- Flagging modes (inpmode) are:
 - table: uses the FLAG_CMD MS table (initially created by importevla)
 - list: uses an ASCII file that contains a set of flagging commands.
 - xml: uses the online flags from Flag.xml in the MS.
- It allows the user to save the flag records in the FLAG_CMD MS table or a file.

Examining the flags with flagcmd

list

Key	FlagID	Antenna	Reason	Timerange
0	0	ea28	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.401~2011/08/09/00:02:15.300
1	1	ea26	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.435~2011/08/09/00:02:15.274
2	2	ea21	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.478~2011/08/09/00:02:15.093
3	3	ea08	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.478~2011/08/09/00:02:15.300
4	4	ea22	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.487~2011/08/09/00:02:14.946
5	5	ea27	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.487~2011/08/09/00:02:15.594
6	6	ea20	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.522~2011/08/09/00:02:15.343
7	7	ea03	ANTENNA_NOT_ON_SOURCE	2011/08/09/00:02:00.548~2011/08/09/00:06:58.537
8	8	ea03	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.548~2011/08/09/00:02:15.551
9	9	ea18	ANTENNA_NOT_ON_SOURCE	2011/08/09/00:02:00.573~2011/08/09/00:07:31.533
10	10	ea18	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.573~2011/08/09/00:02:15.084
11	11	ea04	ANTENNA_NOT_ON_SOURCE	2011/08/09/00:02:00.573~2011/08/09/00:06:30.586
12	12	ea04	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.573~2011/08/09/00:02:15.179
13	13	ea19	ANTENNA_NOT_ON_SOURCE	2011/08/09/00:02:00.591~2011/08/09/00:06:42.907
14	14	ea19	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.591~2011/08/09/00:02:16.069
15	15	ea28	ANTENNA_NOT_ON_SOURCE	2011/08/09/00:02:00.599~2011/08/09/00:06:42.397
16	16	ea07	ANTENNA_NOT_ON_SOURCE	2011/08/09/00:02:00.608~2011/08/09/00:06:46.907
17	17	ea16	ANTENNA_NOT_ON_SOURCE	2011/08/09/00:02:00.591~2011/08/09/00:06:39.658
18	18	ea07	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.608~2011/08/09/00:02:15.663
19	19	ea16	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.591~2011/08/09/00:02:15.706
20	20	ea10	ANTENNA_NOT_ON_SOURCE	2011/08/09/00:02:00.608~2011/08/09/00:06:45.810
21	21	ea01	ANTENNA_NOT_ON_SOURCE	2011/08/09/00:02:00.591~2011/08/09/00:06:30.301
22	22	ea10	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.617~2011/08/09/00:02:15.706
23	23	ea01	SUBREFLECTOR_ERROR	2011/08/09/00:02:00.591~2011/08/09/00:02:15.430
24	24	ea02	ANTENNA_NOT_ON_SOURCE	2011/08/09/00:02:00.625~2011/08/09/00:06:59.098

Examining the flags with flagcmd

plot

			NOT IN SUBARRAY	Other
	JOCOS SOBILI LECTOR	OFF SOURCE	NOT IN SUBARRAI	oulei
00.20				
ea28 -				· - 1
eaz/				•
ea26 -				·- 1
eazo -				1
ea24				
ea22				1
eazi -				
ea20 -				
ea19 -				
ea18 -				
eal/-				
ealo -				
eal5				
eal4				
eal3				
eal2				
eall				
eal0				• - 1
ea09				• - 1
ea08 -				
ea07-				
ea06 -				
ea05 -				· • •
ea04 -				•••
ea03 -				•
ea02				•
ea01 -	· · ·			•
2011/08/08/23	:55:00.000	00:28:20.000		01:01:40.000

Flagging Data: flagdata vs. flagcmd

- Complementary flagging tasks.
- Have several common features.
- Some of the important differences:

Flagdata	Flagcmd
RFI flagging (tfcrop, rflag)*	Access to the Flag.xml
Runtime displays* (before and after flagging)	Apply the online (and other) flags in FLAG_CMD MS table
	Plot Flags

* More details on Tuesday by U. Rau

The output of locate in the casalog

	-	· · ·					
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:36:57.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=RR
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:36:57.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=LL
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:36:58.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=RR
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:36:58.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=LL
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:36:59.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=RR
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:36:59.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=LL
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:37:00.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=RR
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:37:00.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=LL
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:37:01.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=RR
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:37:01.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=LL
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:37:02.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=RR
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:37:02.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=LL
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:37:03.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=RR
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:37:03.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=LL
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:37:04.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=RR
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:37:04.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=LL
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:37:05.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=RR
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:37:05.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=LL
Scan=9	Field=W3IRS5[4]	Time=2011/08/06/10:37:06.3	BL=ea13&ea16[11&14]	Spw=0	Chan=125	Freq=22.2398	Corr=RR

Flagging Data: plotms A few important notes

- Use plotms carefully for flagging data.
- Keep in mind that flagging data with *plotms* often requires extending the flags (through the Flagging tab).
- plotms does not produce a flag backup (flagmanager has to be used).
- Use *plotms* to identify bad data (through the locate option). Then flag the bad data using *flagcmd* or *flagdata*.

Flagging Data: msview

- Shows gray scale (or colored) waterfall, plots.
- Plots Time vs. Baseline, or Time vs. Channel for
 - Amplitude (or amplitude diff or amplitude rms)
 - Phase (or phase diff or phase rms)
 - Real
 - Imaginary
- Provides interactive flagging tools (comparable to TVFLG and SPFLG in AIPS).

Flagging Data: msview

<u>http://casaguides.nrao.edu/</u> \rightarrow Data flagging with viewer

Flagging Data: msview

Use the Flagging Options

- to expand the flags.
- to apply the flags.

NRAO

Radio Frequency Interference (RFI)

- I. VLA observations, particularly at the lower frequency bands, will be severely affected by RFI.
- 2. VLA RFI information is available at:

<u>https://science.nrao.edu/</u> \rightarrow VLA \rightarrow Observing \rightarrow Guide to VLA Observing \rightarrow Radio Frequency Interference

- RFI listings per frequency Band.
- Spectra of various RFI sweeps between I-50 GHz.

RFI: L-band

RFI: S-band

53

RFI: C-band

RFI: Ku-band

RFI: K-band

RFI: Ka-band

RFI: Q-band

RFI: feedback from observers

- The VLA has opened the full I to 50 GHz frequency range.
 - Also the 230-470 MHz range [shared risk].
- This exposed us to all types of RFI.
- RFI is direction dependent.
- User feedback is critical for our ongoing RFI identification and monitoring efforts.
- Observers are asked to email <u>nrao-rfi@nrao.edu</u> and provide:
 - Observation/project code
 - Frequency and Time of the observations
 - The characteristics of the RFI signal (e.g., continuous, intermittent)
 - A spectrum

RFI: spectral (Gibbs) ringing

- Strong RFI will introduce disturbing spectral ringing.
- Hanning-smoothing should be applied on such data sets before attempting any spectral flagging, or calibration.
- In CASA, the task to use is hanningsmooth.

VLA Data Reduction Techniques: II

Emmanuel Momjian NRAO

Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Outline

- The archive tool.
- Loading the data set.
- CASA
- Examining/Flagging the data set.
- Calibration
 - Including high and low frequency considerations.
- Imaging
 - Including spectral line, continuum, wide band, and wide field.
- Image analysis

The MS structure

'Data' column	'Corrected' Column	'Model' Column
		(optional)
Raw Data	Calibrated Data	FT of source model

- When you load your data from the archive, your MS will only have the 'Data' column.
- The other two columns can be created by various means.
- The creation of the other two columns \rightarrow MS tripling in size.
- The 'Model' Column is optional.
 - If not created \rightarrow MS doubling in size.
 - Models can be "attached" to the MS, FT-ed and used when needed (replacing the need for the 'Model' column).

Calibration & Imaging Flow

Calibration

- Correcting antenna positions
- Gain Curves
- Opacity (HF) and Ionospheric (LF) corrections
- Requantizer gain calibration (for 3-bit)
- Setting the flux density scale
- Delay calibration
- Initial Phase only calibration (HF)
- Bandpass calibration
- Complex gain calibration
- Polarization Calibration
- Setting the flux scales of the secondary calibrators

Prior Calibration

gencal

• gencal is a task for various types of corrections:

```
'amp'= amplitude correction
```

```
'ph' = phase correction
```

```
'sbd'= single-band delay
```

```
'mbd'= multi-band delay
```

'antpos' = ITRF antenna position corrections

'antposvla' = VLA-centric antenna pos. corrections

'tsys' = Tsys from the SYSCAL table (ALMA)

'swpow' = EVLA switched-power gains (experimental)

'rq' = EVLA requantizer gains

'opac' = Tropospheric opacity

'gc' = Gain curve (zenith-angle-dependent gain)

'gceff' = Gain curve and efficiency

Antenna Positions: gencal

- Check the operator's log to see if any antennas were recently moved.
- Use the task gencal to produce a calibration table that includes the antenna position corrections

caltype = 'antpos'
caltable = 'antpos.cal'

 Baseline correction related information is at: <u>http://www.vla.nrao.edu/astro/archive/baselines/</u>

Gain Curves: gencal

- Large antennas have a forward gain that changes with elevation.
- Gain curves describe how each antenna behaves as a function of elevation, for each receiver band.
- The polynomial coefficients for the VLA are available directly from the CASA data repository.
- Especially important for higher frequencies.
- In gencal, set

```
caltype = 'gc'
caltable = 'gaincurve.cal'
```


Opacity Corrections (HF): plotweather, gencal

VLA Data Re

- Atmospheric optical depth corrections.
- Important for high frequency observations (>15 GHz).
- Use plotweather to estimate opacities.
 - Uses weather statistics and/or seasonal models.
 - Plots weather statistics.
- Use gencal to make a calibration table using the derived opacities.

caltype = 'opac'
caltable = 'opacity.cal'

Ionosphere Correction

- Needed for lower frequency observations (< I GHz).
- Available in AIPS (task *TECOR*; derives corrections for ionospheric Faraday rotation and dispersive delay).
- An improved version will be implemented in CASA in the future.

Requantizer gains (3-bit): gencal

- Required for 3-bit data.
 - During the observations, the setting of the requantizer gains introduces 5-10% gain changes.
- In gencal, set

caltype = 'rq'
caltable = 'requant_gains.cal'

• Need to use CASA version 4.1

Setting the flux density scale: setjy

- Calculates the absolute flux density
 - as a function of frequency for standard flux calibrators
 - also time for Solar System objects.
 - If provided, attaches a model record to the MS

vis	=	'MS file name'
field	=	'?'
spw	=	т.т.
modimage	=	'?'
listmodels	=	False
scalebychan	=	True
fluxdensity	=	-1
standard	=	'Perley-Butler 2013'
usescratch	=	False

Calibration: setjy

- listmodels
 - If True, the task will only list the available primary calibrator models (3C138, 3C147, 3C286, 3C48; at L, S, C, X, U, K, A, Q bands).
 - If False, the task will calculate the flux density.
- usescratch
 - If True, the 'Model' column will be created. This will increase the size of the MS.
 - If False, the model is simply attached to the MS. When needed, it will be FT-ed and used.

Calibration: setjy

The scalebychan parameter

- If False: The values will be per spectral window.
- Do not set it to False!

75

Calibration: setjy

The scalebychan parameter

• If True: The values will be per spectral channel

VLA Data Reduction Workshop – 8 – 12 April – Socorro 78

Delay Calibration: gaincal

gaintable	=	'previous cal tables'
gaintype	=	'κ'
refant	=	'ea ??'
solint	=	'60s'
field	=	'? '
caltable	=	'delays.cal'
vis	=	'MS file name'

- Choose I min of data on a strong source (through selectdata
 → timerange).
- Make sure the refant has baselines to all the antennas in the selected time range.
- This is not a Global Fringe Fitting; it solves for antenna based single band delays.

Before Bandpass Calibration

- Bandpass calibration is not only needed for spectralline observations, but also for continuum.
- Before calibrating the bandpass, do phase-only calibration on the bandpass calibrator (to be applied when calibrating the bandpass).
 - Prevents decorrelation when vector averaging.
 - Critical for high frequency observations.
 - Can also be used in low frequency observations.

Initial Phase only calibration: gaincal

• Run gaincal on the bandpass calibrator using:

-a short solution interval, and

-a few channels per spw (free of RFI).

• This table should only be used while calibrating the bandpass.

• In gaincal, set

- -caltable = `bpphase.gcal'
- -calmode = 'p'
- -gaintype = 'G'
- -gaintable = 'various calibration tables'
- -solint = `a short time interval'

Initial Phase only calibration Plotting the solutions: *plotcal*

- plotcal is a multi-purpose plotter (editor) for calibration results
- To plot the phase calibration results:

caltable	<pre>= 'bpphase.gcal'</pre>
xaxis	= 'time'
yaxis	= 'phase'
spw	= '1'
subplot	= 331
iteration	= 'antenna'
plotrange	= [0, 0, -200, 200]

Initial Phase only calibration Plotting the solutions: *plotcal*

X CASA Plotter <2>

LIM

Mark Region Flag Unflag Locate Next Quit

Bandpass Calibration: bandpass

NRAO

• Needed for continuum observations too.

Bandpass Calibration: bandpass

NRAO

• Needed for continuum observations too.

Bandpass Calibration: *bandpass*

caltable	=	'bar	ndpa	ss.bcal'	
field	=	'? '			
solint	=	6 9			
refant	=	'ea	??'		
solnorm	=	Fals	se		
bandtype	=	В	or	BPOLY	
fillgaps	=	3	(for	B bandtype)	
gaintable	=	various	cal	ibration	tables

- If using a source other than the flux calibrator, the spectral index (and the spectral curvature) should be accounted for.
- CASA will report these while bootstrapping the flux densities.
 Use setjy to insert these values.

Bandpass Calibration Plotting the solutions: *plotcal*

caltable	=	'bandpass.b	cal'	
xaxis	=	'chan'		
yaxis	=	'amp'	or	'phase'
spw	=	'1'		
subplot	=	331		
iteration	=	'antenna'		

Bandpass Calibration Plotting the solutions: *plotcal*

X CASA Plotter

Bandpass Calibration Plotting the solutions: *plotcal*

NRAC

8 MHz spw data set at Ka-band (no delay calibration was performed prior to the bandpass calibration).

Complex Gain Calibration: gaincal, High Freq

Examine the resulting tables with *plotcal*

Complex Gain Calibration: gaincal, Low Freq

- Examine the resulting table with *plotcal*.
- If the phases show rapid variations (e.g., due to ionosphere), use the method outlined for high frequencies.
- The calibration pipeline uses the HF approach.

Polarization Calibration

- Gaincal
 - solving for the cross-hand delays
- Polcal
 - I. solving for the leakage terms
 - 2. solving for the R-L polarization position angle
- For VLA observations, and particularly for wide bandwidth observations: have channel based solutions for the leakage terms and for the R-L polarization position angle.
- > Both CASA and AIPS allow solving for these per spectral channel.

Polarization Calibration: gaincal

- For polarization calibration, you will typically observe
 - A source to calibrate the leakage terms (this can be a polarized or an unpolarized source), and
 - A source with very well known polarization characteristics to calibrate the polarization position angle.
- Before running *polcal*, we recommend calibrating the cross hand delays:
 - Use one of the polarized sources.
 - Run gaincal with gaintype = 'KCROSS'.
 - Examine the resulting table with *plotcal*.

Apply the resulting table in subsequent steps.

Polarization Calibration: *polcal* I. Solving for the leakage (D) terms (instrumental pol.)

> For an unpolarized calibrator (Q=U=0):

Use poltype = 'Df' to solve for the leakage terms
 (D) on per channel (f) basis.

> For a polarized calibrator with unknown polarization:

- Use poltype = 'Df+QU' to solve for channel base leakage terms & apparent source polarization.
 - This requires several scans (at least 3), and
 - good parallactic angle coverage (60° of parallactic angle range is recommended).

Examine the resulting tables with plotcal.

Polarization Calibration: *polcal* 2. Solving for the R-L polarization position angle

- To obtain an accurate polarization position angle, the R-L phase needs to be calibrated.
- In *polcal*, use poltype = 'Xf' for a frequency dependent polarization position angle calibration.
- Requires the use of a source with known polarization angle (use setjy to set its Q and U values).
- Examine the resulting table with *plotcal*.
- VLA/VLBA polarization monitoring databases:
 - http://www.vla.nrao.edu/astro/calib/polar/ (up to 2009)
 - <u>http://www.aoc.nrao.edu/~smyers/evlapolcal/polcal_master.html</u>

Scale flux density: fluxscale

- Bootstraps the flux density scale of the secondary calibrators.
- Uses the scan based 'ap' gain table AP scan.g 'MS file name' vis 'input ap table' caltable = 'field # of the flux cal' reference = 'output table' fluxtable True or False incremental
- Reports the flux density values per calibrator per spw.
- Fits across the spw's of each calibrator to report a spectral index and curvature (can be supplied through setjy if needed).

Scale flux density: fluxscale

- fluxtable = 'output table'
 incremental = T or F
- If incremental = F

The output table replaces the input 'ap' table.

• If incremental = T

The output table contains only the scaling factors, and should be used alongside the input 'ap' table.

Apply Calibration: applycal

field	= '?'
interp	= nearest or linear
gaintable	<pre>= various calibration tables</pre>
gainfield	<pre>= fields corresponding to the</pre>
parang	= False (True if polcal was run)
calwt	= False

- One field at a time, but targets with the same calibrators can be grouped together.
- Use the appropriate tables for each source.
- Make sure to match the gainfield entries with the gaintables.

Examine the calibrated data (the corrected column) with *plotms*. Flag, if needed, and re-calibrate.

The VLA Calibration Pipeline

- Performs basic flagging and calibration using CASA.
- It has been run on all data sets since the start of the current D-configuration (semester 2013A).
- Primarily designed for Stokes I continuum data.
- To run successfully, the scan intents in the scheduling block must be set correctly.
- Information and scripts are at:

https://science.nrao.edu/facilities/vla/data-processing/pipeline

• Many more details on Wednesday by C. Chandler.

Split the target(s): split

- Split the target source(s) using the corrected column.
- Optionally:
 - apply time averaging
 - apply frequency averaging

- choose a certain UV range
- choose particular scans
- choose spectral windows/channels choose polarization
- choose certain antennas
- The split-ed data will occupy the 'data column' in the resulting MS.
- Self-calibration can be performed if the target is strong enough.
- Self-calibrated data will be placed in the corrected column (upon running applycal).

(Re)Weighting visibilities: statwt

- VLA data currently have their weights set to 1.
- *statwt* reweights the visibilities according to their scatter.
- Needed to down-weight underperforming antennas, or spw's affected by RFI.
- How/when to use it:
 - The data should be fully calibrated.
 - Highly recommended to *split* the data (source) of interest first (some time averaging might be helpful).
 - While split-ing, avoid applying any frequency averaging.
 - Run statwt, and then average the data as needed/desired.

Continuum Subtraction: uvcontsub

vis

fitspw

want cont

Doppler Correction: cvel

- The VLA does not offer Doppler Tracking, but only Doppler setting.
- The line of interest may shift over one or more channels during the observations.
- If adding different observing blocks, one can choose to first Doppler correct (*cvel*) each block, concatenate (*concat*) and then image (*clean*). However, stay tuned for the alternative...
- cvel should be run if one needs/wants to do self-calibration using a (narrow) strong spectral line.
- cvel could also be used if several spw's need to be combined (to make a single spw).

Imaging: clean

The imaging/cleaning task in CASA provides various options:

- Make 'dirty' image and 'dirty' beam (psf).
- Multi-frequency-continuum images or spectral channel imaging
- Full Stokes imaging
- Mosaicking
- Multi-scale cleaning
- Widefield cleaning
- Interactive clean boxing
- Use starting model (e.g., from single dish)
- Imaging outlier fields

Imaging: clean

Interactive cleaning:

- Invokes the viewer.
- Cleaning regions (masks) can be made for each spectral channel if needed.
- If no mask is specified, cleaning is not performed (only in interactive mode).
- Channel 28 of the HC3N cube of IRC+10216.
- The white contour is showing the mask that has been drawn with the polygon tool.
- Rectangular or ellipsoidal masks can also be made.

Imaging: clean

- If redoing, rename the output (imagename).
- Always check the CASA log while imaging.
- Avoid ^c while imaging \rightarrow it might disturb your UV data.
- Can use mask files from previous clean iterations.
- If dirty image is desired, set niter = 0.
- By default, a model record gets attached to the MS (e.g., for self-calibration). If usescratch = T, it generates the Model column.

Spectral Line Imaging: clean

- Allows for imaging in the following modes:
 - Channel
 - Frequency
 - Velocity
- If the data are not Doppler corrected (*cvel*-ed), *clean* can perform the correction on the fly with the velocity (or frequency) mode.
- clean can also image multiple MS files, Doppler-correcting them on-the fly. This results in a single (concatenated) image cube.

Continuum Imaging: clean Wide-band narrow-field imaging

1 x 64 MHz spw

16 x 64 MHz spw

Continuum Imaging: clean Wide-band narrow-field imaging

- Wide bandwidths:
 - Better UV coverage \rightarrow cleaner dirty beam \rightarrow better image fidelity.
 - More data \rightarrow better SNR.
- In clean, mode = 'mfs'; multi-frequency synthesis.
 - Combines all channels during imaging.
 - With nterms=2, get both average intensity and spectral slope
 image (intensity x spectral index). It also gives a spectral index
 image.
- If imaging sources that have complicated spatial structure, also use the parameter multiscale in clean => MS-MFS.
- This subject will be covered in detail on Tuesday by U. Rau.

Continuum Imaging: *clean* **Wide-band wide-field imaging**

- Wide field imaging is required because:
 - The VLA provides wide bandwidths, which in turn
 - greatly improves the continuum sensitivity, and
 - makes it sensitive for emission from a larger area.

Continuum Imaging: *clean* Wide-band wide-field imaging

- Set gridmode = 'widefield' in clean.
 - Applies corrections for non-coplanar effects during imaging by using:
 - The W-projection algorithm and/or Multi-faceting.
 - This can also be used for narrow-band widefield imaging.
- This subject + more advanced topics will be covered in detail on Tuesday by S. Bhatnagar.

Examine Images: viewer

NRAC

Obtain statistics by selecting a region and double-clicking:

Examine Image cubes: viewer

Continuum subtraction in the image plane: *imcontsub*

• Alternative to uvcontsub

imagename	=	'an image cube, line+continuum'	
linefile	=	'? '	
contfile	=	'? '	
fitorder	=	0	
region	=	'region file' or use	
box	=	'blc_x, blc_y, trc_x, trc_y'	
chans	=	'x1~y1;x2~y2'	
stokes	=	'I'	

imagename
moments
axis
region
box
chans
stokes
includepix
excludepix

```
'Input image-cube name'
=
           [0] or [0,1] etc...
=
  'spectral'
=
             1 1
=
             1 1
=
          11~40'
=
           ' T'
=
    [x,y]
=
    [x, y]
=
```


- moments=-1 mean value of the spectrum
- moments=0 integrated value of the spectrum
- moments=1 intensity weighted coordinate; traditionally used to get 'velocity fields'
- moments=2 intensity weighted dispersion of the coordinate; traditionally used to get "velocity dispersion"
- moments=3 median of I
- moments=4 median coordinate
- moments=5 standard deviation about the mean of the spectrum
- moments=6 root mean square of the spectrum
- moments=7 absolute mean deviation of the spectrum
- moments=8 maximum value of the spectrum
- moments=9 coordinate of the maximum value of the spectrum
- moments=10 minimum value of the spectrum
- moments=11 coordinate of the minimum value of the spectrum

IRC+10216 SiS Total intensity: Moment 0

IRC+10216 SiS Velocity field: Moment 1

IRC+10216 SiS Velocity dispersion: Moment 2

IRC10216 SiS.cube r0.5.image.mom2-

masked Pixel: 193 207 0 0 09:47:56.199 +13.17.03.574 I -41.4861 km/s (lsrk/radio velocity)

IRC10216_SiS.cube_r0.5.image.mom2-contour

masked Pixel: 193 207 0 0 09:47:56.199 +13.17.03.574 I -41.4861 km/s (lsrk/radio velocity) Contours: 2.662 5.324 7.986 10.65

PX

viewer: moments

- Click on Moments tool.
- Choose a point or make a region on the image

/1itiv4tsij40001gx/T/IRC10216 SiS.image -42~-10

00	Spectral Profile: Collapse/Moments - IRC10216_	SiS.image	
🛛 🔏 🛠 🗘 🗉	총 ◀ ▶ ▲ ▼ 😣 🗣	╮ ♀ (+) ↔ ⊘	0
(here $50^{-60}_{-50}_{-50}_{-60}_{-50}_{-50}$	Rectangle Region Profile radio velocity [km/s]	-10 0 10 -10 0 10 -10 0 10	47 ^m 59 ³ 57 ⁴ 56 ³ 55 ⁴ 54 ³ J2000 Right Ascension
Bottom: radio velocit \$ Top: radio velocity [k \$ Left: Jy/beam \$ LSRK \$ Mean \$ no error \$			Animator
Channels To specify a channel range graphically, select a table row then shift-click the graph with the left mouse button and drag. Interval Count: 1 +	Moment(s): (0) Integrated Value, Sum (1) Weighted Mean, Velocity Field (2) Intensity-Weighted Dispersion of Spectral Coc (3) Median Value, Median Intensity (4) Spectral Coordinate of Median, Median Veloci (5) Standard Deviation About Mean, Noise, Intens (6) Root Mean Square Intensity (7) Absolute Mean Deviation	Thresholding Include Exclude None (All) Symmetric Interval Start: End: Specity Graphically	Rate: 10 + Jump 13 54

09:47:57.41+13d16m44.474

Image analysis:

- specfit: to fit ID Gaussians and/or polynomial models to an image or image region.
- *imfit*: fit one or more elliptical Gaussian components on an image region(s).
- Interactively through the viewer

The End

. .