VLSI Design Issues

Scaling/Moore's Law has limits due to the physics of material.

- Now L (L=20nm??) affects tx delays (speed), *noise*, heat (power consumption)
- Scaling increases density of txs and requires "more" interconnect (highways & buses)-more delays (lowering speed) and heat.

Possible Solutions:

- New fabrication solutions/material. E.g., Interconnect layers, new material (copper & low k-material)
- Improve physical Designs at the transistor level. Create better cell libraries (min Power, min-delay, max speed)
- Exploit transister analog/physics characteristics
- Invent new transistors
- Invent new architectures

CMOS Inverter: DC Analysis

- Analyze DC Characteristics of CMOS Gates by studying an Inverter
- DC Analysis
 - DC value of a signal in static conditions
- DC Analysis of CMOS Inverter
 - Vin, input voltage
 - Vout, output voltage
 - single power supply, VDD
 - Ground reference
 - find Vout = f(Vin)
- Voltage Transfer Characteristic (VTC)
 - plot of Vout as a function of Vin
 - vary Vin from 0 to VDD (and in reverse!)
 - find Vout at each value of Vin

pFET: $V_{Tp} < 0$ $\beta_p = \kappa'_p \left(\frac{W}{L}\right)_p$

nFET: $V_{Tn} > 0$ $\beta_n = k'_n \left(\frac{W}{L}\right)_n$

Inverter Voltage Transfer Characteristics

- Output High Voltage, V_{OH}
 - maximum output voltage
 - occurs when input is low (Vin = OV)
 - pMOS is ON, nMOS is OFF
 - pMOS pulls Vout to VDD
 - V_{OH} = VDD
- Output Low Voltage, V_{OL}
 - minimum output voltage
 - occurs when input is high (Vin = VDD)
 - pMOS is OFF, nMOS is ON
 - nMOS pulls Vout to Ground
 - $-V_{OL} = 0V$
- Logic Swing
 - Max swing of output signal

•
$$V_L = V_{OH} - V_{OH}$$

Lecture Notes 7.3

Inverter Voltage Transfer Characteristics

- -V_{DSn}=Vout, V_{SDp}=VDD-Vout
- Transition Region (between V_{OH} and V_{OL}) •
 - Vin low
 - Vin < Vtn
 - Mn in Cutoff, OFF
 - Mp in Triode, Vout pulled to VDD
 - Vin > Vtn < ~Vout
 - Mn in Saturation, strong current
 - Mp in Triode, V_{SG} & current reducing
 - Vout decreases via current through Mn
 - Vin = Vout (mid point) $\approx \frac{1}{2}$ VDD
 - Mn and Mp both in Saturation
 - maximum current at Vin = Vout
 - Vin high
 - Vin > ~Vout, Vin < VDD |Vtp|
 - Mn in Triode, Mp in Saturation
 - Vin > VDD |Vtp|
 - Mn in Triode, Mp in Cutoff

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

 V_{DD}

Noise Margin

- Input Low Voltage, V_{TL}
 - Vin such that Vin $\langle V_{IL} = logic 0$
 - point 'a' on the plot
 - where slope, $\underline{\partial Vin} = -1$ ∂Vout
- Input High Voltage, V_{TH}
 - Vin such that Vin > V_{IH} = logic 1
 - point 'b' on the plot
 - where slope =-1
- Voltage Noise Margins •
 - measure of how stable inputs are with respect to signal interference

-
$$VNM_{H} = V_{OH} - V_{IH}$$
 = $VDD - V_{IH}$
- $VNM_{L} = V_{IL} - V_{OL}$ = V_{IL}

-
$$VNM_L = V_{IL} - V_{OL}$$

desire large VNM_H and VNM₁ for best noise immunity

Switching Threshold

- Switching threshold = point on VTC where Vout = Vin
 - also called midpoint voltage, V_M
 - here, Vin = Vout = V_M
- Calculating V_M
 - at V_M , both nMOS and pMOS in Saturation
 - in an inverter, $I_{Dn} = I_{Dp}$, always!
 - solve equation for V_M

$$I_{Dn} = \frac{\mu_n C_{OX}}{2} \frac{W}{L} (V_{GSn} - V_{tn})^2 = \frac{\beta_n}{2} (V_{GSn} - V_{tn})^2 = \frac{\beta_p}{2} (V_{SGp} - |V_{tp}|)^2 = I_{Dp}$$

- express in terms of $V_{\rm M}$

$$\frac{\beta_n}{2}(V_M - V_{tn})^2 = \frac{\beta_p}{2}(V_{DD} - V_M - |V_{tp}|)^2 \implies \sqrt{\frac{\beta_n}{\beta_p}}(V_M - V_{tn}) = V_{DD} - V_M - |V_{tp}|$$

$$- \text{ solve for } V_M = \frac{V_{DD} - |V_{tp}| + V_{tn}\sqrt{\frac{\beta_n}{\beta_p}}}{1 + \sqrt{\frac{\beta_n}{\beta_p}}}$$

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Vout

 V_M

0 "0"

 $V_{OH} = 0$

 $V_{OH} = V_{DD}$

Mp on Mn off

 $|V_M|$

VIH

 V_{IL}

 $V_{out} = V_{in}$

Mn on

Mp off

"1" V_{חת}

Effect of Transistor Size on VTC

• **Recall**

$$\beta_n = k'_n \frac{W}{L}$$
 $\frac{\beta_n}{\beta_p} = \frac{k'_n \left(\frac{W}{L}\right)_n}{k'_p \left(\frac{W}{L}\right)_p}$

- If nMOS and pMOS are same size
 - (W/L)n = (W/L)p
 - Coxn = Coxp (always)

$$\frac{\beta_n}{\beta_p} = \frac{\mu_n C_{oxn} \left(\frac{W}{L}\right)_n}{\mu_p C_{oxp} \left(\frac{W}{L}\right)_p} = \frac{\mu_n}{\mu_p} \cong 2or3$$

• If $\frac{\left(\frac{W}{L}\right)_p}{\left(\frac{W}{L}\right)} = \frac{\mu_n}{\mu_p}$, then $\frac{\beta_n}{\beta_p} = 1$ since L normally min. size for all tx, can get betas equal by making Wp larger than Wn

- Effect on switching threshold
 - if $\beta_n \approx \beta_p$ and Vtn = |Vtp|, V_M = VDD/2, exactly in the middle
- Effect on noise margin
 - if $\beta_n \approx \beta_p$, V_{IH} and V_{IL} both close to V_M and <u>noise margin is good</u>

Example

- Given
 - $k'n = 140uA/V^2$, Vtn = 0.7V, VDD = 3V
 - $k'p = 60uA/V^2$, Vtp = -0.7V
- Find
 - a) tx size ratio so that V_{M} = 1.5V
 - b) V_{M} if tx are same size

as beta ratio increases

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture Notes 7.8

CMOS Inverter: Transient Analysis

- Analyze Transient Characteristics of CMOS Gates by studying an Inverter
- Transient Analysis
 - signal value as a function of time
- Transient Analysis of CMOS Inverter
 - Vin(t), input voltage, function of time
 - Vout(t), output voltage, function of time
 - VDD and Ground, DC (not function of time) $_{V_{DD}}$
 - find Vout(t) = f(Vin(t))
- Transient Parameters
 - output signal rise and fall time
 - propagation delay

Lecture Notes 7.9

Transient Response

• Recall: the RC nMOS Transistor Model

Lecture Notes 7.10

Transient Response

STATE

Fall Time

Rise Time

Propagation Delay

- Propagation Delay, t_p
 - measures speed of output reaction to input change
 - $t_{p} = \frac{1}{2} (t_{pf} + t_{pr})$
- Fall propagation delay, t_{pf}
 - time for output to fall by 50%
 - reference to input switch
- Rise propagation delay, t_{pr}
 - time for output to rise by 50%
 - reference to input switch
- Ideal expression (if input is step change)
 - $t_{pf} = ln(2) \tau_n$
 - $t_{pr} = \ln(2) \tau_p$
- Total Propagation Delay
 - $t_p = 0.35(\tau_n + \tau_p)$

Propagation delay measurement:

- from time input reaches 50% value
- to time output reaches 50% value

Add rise and fall propagation delays for total value

Switching Speed -Resistance

- Rise & Fall Time - $t_f = 2.2 \tau_n, t_r = 2.2 \tau_p$,
- Propagation Delay
 - $t_p = 0.35(\tau_n + \tau_p)$
- In General
 - delay $\propto \tau_n + \tau_p$ - $\tau_n + \tau_p = Cout (Rn+Rp)$
- Define delay in terms of design parameters
 - Rn+Rp = $(V_{DD}-Vt)(\beta_n + \beta_p)$ $\beta_n \beta_p (V_{DD}-Vt)^2$
 - Rn+Rp = $\frac{\beta_n + \beta_p}{\beta_n \beta_p (V_{DD} Vt)}$

$$\tau_{n} = R_{n}C_{out} \qquad \tau_{p} = R_{p}C_{out}$$

$$Rn = 1/[\beta_{n}(V_{DD}-Vtn)] \qquad \beta = \mu Cox (W/L)$$

$$Rp = 1/[\beta_{p}(V_{DD}-|Vtp|)]$$

$$Cout = C_{Dn} + C_{Dp} + C_{L}$$

Beta Matched if
$$\beta_n = \beta_p = \beta$$
,
 $Rn+Rp = \frac{2}{\beta(V_{DD}-Vt)} = \frac{2L}{\mu Cox W(V_{DD}-Vt)}$
Width Matched if $W_n = W_p = W$, and $L = L_n = L_p$
 $Rn+Rp = \frac{L(\mu_n + \mu_p)}{(\mu_n \ \mu_p) Cox W(V_{DD}-Vt)}$

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

• if Vt = Vtn = |Vtp| To decrease R's, $\bigcup L$, $(MV, (MVDD, (M\mu_{p}, MCox))$

Switching Speed -Capacitance

- From Resistance we have
 - UL, $(MW, MVDD, (M\mu_p, MCox))$
 - but 1 VDD increases power
 - Image: Window Cout
- Cout
 - Cout = $\frac{1}{2}$ Cox L ($W_n + W_p$) + C_j 2L ($W_n + W_p$) + 3 Cox L ($W_n + W_p$)
 - assuming junction area ~W·2L
 - neglecting sidewall capacitance
 - Cout \approx L (W_n+W_p) [3 $\frac{1}{2}$ Cox +2 C_j]
 - Cout \propto L (W_n+W_p)
 - To decrease Cout, $\Downarrow L$, $\Downarrow W$, ($\Downarrow Cj$, $\Downarrow Cox$)
- Delay \propto Cout(Rn+Rp) \propto L W <u>L</u> = <u>L</u>² W VDD VDD

Decreasing L (reducing feature size) is best way to improve speed!

Switching Speed -Local Modification

- Previous analysis applies to the overall design
 - shows that reducing feature size is critical for higher speed
 - general result useful for creating cell libraries
- How do you improve speed within a specific gate?
 - increasing W in one gate will not increase C_G of the load gates
 - Cout = $C_{\text{Dn}} + C_{\text{Dp}} + C_{\text{L}}$
 - increasing W in one logic gate will increase $C_{\text{Dn/p}}$ but not C_{L}
 - C_L depends on the size of the tx gates at the output
 - as long as they keep minimum W, C_L will be constant
 - thus, increasing W is a good way to improve the speed within a local point
 - But, increasing W increases chip area needed, which is bad
 - fast circuits need more chip area (chip "real estate")
- Increasing VDD is not a good choice because it increases
 power consumption

CMOS Power Consumption

 leakage currents cause I_{DD} > 0, define quiescent leakage current, I_{DDQ} (due largely to leakage at substrate junctions)

$$- \mathsf{P}_{\mathsf{DC}} = \mathbf{I}_{\mathsf{DDQ}} \mathsf{V}_{\mathsf{DD}}$$

- Pdyn, power required to switch the state of a gate
 - charge transferred during transition, Qe = Cout VDD
 - assume each gate must transfer this charge 1x/clock cycle
 - Paverage = V_{DD} Qe f = Cout V_{DD}^2 f, f = frequency of signal change
- Total Power, P = I_{DDQ} V_{DD} + Cout V_{DD}² f

Power increases with Cout and frequency, and **strongly** with VDD (second order).

Multi-Input Gate Signal Transitions

- In multi-input gates multiple signal transitions produce output changes
- What signal transitions need to be analyzed?
 - for a general N-input gate with M_0 low output states and M_1 high output states
 - # high-to-low output transitions = $M_0 \cdot M_1$
 - # low-to-high output transitions = $M_1 \cdot M_0$
 - total transitions to be characterized = $2 \cdot M_0 \cdot M_1$
 - example: NAND has $M_0 = 1$, $M_1 = 3$
 - don't test/characterize cases without output transition table
- Worst-case delay is the slowest of all possible cases
 - worst-case high-to-low
 - worst-case low-to-high
 - often different input transitions for each of these cases

Lecture Notes 7.19

Series/Parallel Equivalent Circuits

W/L

n+

• (KW)/(KL) for any K

2L

 W_n

 $\beta = \mu Cox (W/L)$

 W_n

- Scale both W and L
 - no effective change in W/L
 - increases gate capacitance

inputs must be at same value/voltage

- Series Transistors
 - increases effective L

NAND: DC Analysis

NAND Switching Point

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture Notes 7.22

NOR: DC Analysis

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

NAND: Transient Analysis

NOR: Transient Analysis

NAND/NOR Performance

- Inverter: symmetry ($V_M = V_{DD}/2$), $\beta n = \beta p$
 - $(W/L)_p = \mu_n/\mu_p (W/L)_n$
- Match INV performance with NAND
 - pMOS, $\beta_P = \beta p$, same as inverter
 - nMOS, $\beta_N = 2\beta n$, to balance for 2 series nMOS
- Match INV performance with NOR
 - pMOS, β_P = 2 β_P , to balance for 2 series pMOS
 - nMOS, $\beta_N = \beta n$, same as inverter
- NAND and NOR will still be slower due to larger Cout $d \beta_p$ • $d \beta_p = \beta_p$ • $d \beta_p = \beta_p$ • $d \beta_p = \beta_p$
- This can be extended to
- 3, 4, ... N input NAND/NOR

gates

 β is adjusted by

changing transistor

size (width)

 V_{DD}

ECE 410, Prof. F. Salem/Prof. A. Mason notes update

Lecture Notes 7.26

NAND/NOR Transient Summary

- Critical Delay Path
 - paths through series transistors will be slower
 - more series transistors means worse delays
- Tx Sizing Considerations
 - increase W in series transistors
 - balance β_n/β_p for each cell
- Worst Case Transition
 - when all series transistor go from OFF to ON
 - and all internal caps have to be
 - charged (NOR)
 - discharged (NAND)

Performance Considerations

- Speed based on $\beta n,\,\beta p$ and parasitic caps
- DC performance (V_M, noise) based on $\beta n/\beta p$
- Design for speed not necessarily provide good DC performance
- Generally set tx size to <u>optimize speed</u> and then test DC characteristics to ensure adequate noise immunity
- Review Inverter: Our performance reference point
 - for symmetry ($V_M = V_{DD}/2$), $\beta n = \beta p$
 - which requires $(W/L)_p = \mu_n/\mu_p (W/L)_n$
- Use inverter as reference point for more complex gates

Lecture Notes 7.28

Timing in Complex Logic Gates

Critical delay path is due to series-connected transistors

• Example:
$$f = \overline{x(y+z)}$$

- assume all tx are same size
- Fall time critical delay
 - worst case, x ON, and y or z ON

-
$$t_f = 2.2 \tau_n$$

•
$$\tau_n = Rn Cn + 2 Rn C_{out}$$

-
$$C_{out} = 2C_{Dp} + C_{Dn} + C$$

- $Cn = 2C_{Dn} + C_{cn}$

- worst case, y and z ON, x OFF

•
$$t_r = 2.2 \tau_p$$

• $\tau_p = Rp Cp + 2 Rp C_{out}$
- $C_{out} = 2C_{Dp} + C_{Dn} + C_l$
- $Cp = C_{Dn} + C_{Sn}$

size vs. tx speed considerations $\|Wnx \Rightarrow \Downarrow Rn$ but $\|Cout$ and $\|Cn$ $\Downarrow Wny \Rightarrow \Downarrow Cn$ but $\|Rn$

Sizing in Complex Logic Gates

- Improving speed within a single logic gate $\beta_{p=2\beta_{p}}$
- An Example: f=(a b+c d) x
- nMOS
 - discharge through 3 series nMOS
 - set $\beta_N = 3\beta n$
- pMOS
 - charge through 2 series pMOS
 - set $\beta_P = 2\beta p$
 - but, Mxp is alone so β_{P1} = βp
 - but setting β_{P1} = 2 β p might make layout easier
- These large transistors will <u>increase capacitance</u> and <u>layout area</u> and may only give a small increase in speed

Advanced logic structures are best way to improve speed

 β_N

 V_{DD}

β_{P1}

 $\beta_{N1}=3\beta_n$

 $\beta_N = 3\beta_n$

 $\beta_N = 3\beta_n$

Timing in Multi-Gate Circuits

• What is the worst-case delay in multi-gate circuits?

- too many transitions to test manually
- Critical Path
 - longest delay through a circuit block
 - largest sum of delays, from input to output
 - intuitive analysis: signal that passes through most gates
 - not always true. can be slower path through fewer gates

0 0 1

1 1 0 0

1 1 1 1

1 0 0 0 | 0 - B¹

Power in Multi-Input Logic Gates

Inverter Power Consumption

$$-P = P_{DC} + P_{dyn} = V_{DD}I_{DDQ} + C_{out}V_{DD}^2f$$

- assumes gates switch output state once per clock cycle, f
- Multi-Input Gates

• $a = p_0 p_1$

- same DC component as inverter, $P_{DC} = V_{DD}I_{DDQ}$
- for dynamic power, need to estimate "activity" of the gate, how often will the output be switching

-
$$P_{dyn} = aC_{out}V_{DD}^2f$$
, a = activity coefficient

- estimate activity from truth table

- p_0 = prob. output is at 0

- p_1 = prob. of transition to 1

NOR NAND

1	1
0 0 0	1 1 0
	0 75

p0=0.75 p0=0.25 p1=0.25 p1=0.75 a=3/16 a=3/16

Lecture Notes 7.32

 Note: no connections to VDD-Ground. Input signal, Vin, must drive TG output; TG just adds extra delay

Pass Transistor

- nMOS can't pull output to VDD
 - rise time suffers from threshold loss in nMOS