
 DEPARTMENT OF ELECTRONICS AND COMMUNICATION

 ATRIA INSTITUTE OF TECHNOLOGY

(Affiliated To Visvesvaraya Technological University, Belgaum)

Anandanagar, Bangalore-24

VLSI LAB MANUAL

7th SEMESTER ELECTRONICS AND COMMUNICATION

SUBJECT CODE: 15ECL77/17ECL77

2020-21

Dept of ECE ,Atria Institute of Technology Page 2

ASIC Design Flow Manual

Using Cadence Tool Suite

Dept of ECE ,Atria Institute of Technology Page 3

Tools used for ASIC Flow:

1. INCISIVE - Used for Functional Simulation

2. GENUS - Used for Synthesis and pre-Layout Timing Analysis

3. INNOVUS - Used for Physical Design

Getting Started :

1. Make sure the Licensing Server is switched ON and the client is connected to

server.”

2. Open the “counter” directory and make a right click to “Open in Terminal”.

3. To open the tools to be used, type in the command “csh” (Press Enter) followed

by “source /home/install/cshrc” <Or the path of tools whichever is

applicable>.

4. A welcome string “Welcome to Cadence Tool Suite” appears indicating

terminal ready to invoke Cadence Tools available for you.

Module 1: Creating an RTL Code

In order to create an RTL Code, you can open a text editor and type in your

Verilog code or VHDL Code.

1. In the terminal, type in “gedit <filename>.v [OR] <filename>.vhdl”. The file

extensions depends on the type of RTL Code you write as shown.

2. Similarly, using same command, Test Bench also could be written as shown

below.

Dept of ECE ,Atria Institute of Technology Page 4

RTL Code for a 16-bit Synchronous Up-Down Counter

Test Bench for the Up-Down Counter

Dept of ECE ,Atria Institute of Technology Page 5

Module 2: Functional Simulation

1. To perform Functional Simulation, “Incisive” tool is to be used.

2. In your terminal, type the command “nclaunch -new” to open the tool.

3. Select “Multiple Step”. And then select “Create cds.lib”

Note : The ‘-new’ switch is used only for the first time the design is being run.

For the next time on wards, the command to be used could be ‘nclaunch’ only.

Dept of ECE ,Atria Institute of Technology Page 6

4. Save the cds.lib file. It is a tool file that holds the design location information

for easy access by the tool.

5. Based on the Libraries available and the type of RTL Code written, one of the

three shown above is to be selected. Cadence tool suite provides default gpdk

libraries. Here, counter RTL is of Verilog Format and hence third option is

selected.

6. A new pop-up “nclaunch” opens which will contain all the .v and .vhdl files as

per the cds.lib file created.

7. Functional Simulation using Cadence runs in 3 stages:

→ Compilation of Verilog/VHDL Code and/or Test Bench

→ Elaboration of the Code & Test Bench Compiled

→ Simulating the Test Bench or Top Module[in absence of Test Bench]

8. A set of tools are shown in the nclaunch window which refer to VHDL Compiler,

Verilog Compiler, Elaborator, Simulator corresponding from Left To Right.

9. Select the .v or .vhdl files to be compiled and launch Compiler. On successful

completion of compilation, on the Right hand Side, the modules appear under

“Worklib” .

10. Select the Module under Worklib and “Launch Elaborator” . On successful

completion of Elaboration, “Snapshots” are generated.

11. Select the Test Bench under snapshots and “Launch Simulator” .

12.The above steps are depicted under following snapshosts.

Dept of ECE ,Atria Institute of Technology Page 7

Dept of ECE ,Atria Institute of Technology Page 8

Dept of ECE ,Atria Institute of Technology Page 9

The Design Browser pops-up and The Test Bench Module name can be seen on

the left and the Pin list on the right when selected. For Simulation, The number

of Pins / Ports to be simulated can be selected.

Make a right click on the selected and Select “Send to Waveform Window”.

In the waveform window, we can see different ports in the design. Now click
on the Run simulation key to start the simulation. Use the ‘pause’ key to
interrupt or stop the simulation. Use different options like zoom in, zoom out
etc to analyze the plot.

Dept of ECE ,Atria Institute of Technology Page 10

Module 3: Synthesis

Inputs for Synthesis :

1. RTL Code (.v or .vhdl)

2. Chip Level SDC (System Design Constraints)

3. Liberty Files (.lib)

Expected Outputs of Synthesis :

1. Gate Level Netlist

2. Block Level Netlist

3. Timing, Area, Power reports

Synthesis is a 3-stage process which converts Virtual RTL Logic into Physical

Gates in order to give a Physical Shape to the design through Physical Design.

Dept of ECE ,Atria Institute of Technology Page 11

Synthesis runs in following stages :

→ Translation - RTL Codes are compiled

→ Elaboration / Mapping - Pieces of Logic are replaced with corresponding

Gates from Libraries with same Functionality

→ Optimization - Tool tries to reduce cell count without affecting the

functionality

To run the synthesis, the following script can be used.

Chip Level SDC is as follows :

Close out all INCISIVE windows and in the same terminal type in the following

command to run Synthesis.

genus -f rc_script.tcl

The tcl [Tool Command Language] script runs executing each command one

after the other.

Dept of ECE ,Atria Institute of Technology Page 12

A window of Genus GUI pops – up with the top hier cell on the left top. Make a

right click and select Schematic Viewer → In Main.

The Gate level Circuit that implements the RTL Logic can be seen and analysed.

As from the script, Block Level SDC, Gate Level Netlist, Timing, Power and Area

reports are generated which are readable.

The Timing report gives the path with Worst timing.

The area report gives Cell count and Total area occupied by them.

The total power consumed by those cells are given in Power report.

Dept of ECE ,Atria Institute of Technology Page 13

Module 4 : Physical Design

Mandatory Inputs for PD :

1. Gate Level Netlist [Output of Synthesis]

2. Block Level SDC [Output of Synthesis]

3. Liberty Files (.lib)

4. LEF Files (Layer Exchange Format)

Expected Outputs from PD :

1. GDS II File (Graphical Data Stream for Information Interchange – Feed In for

Fabrication Unit).

Close out all windows relating to Genus and in the terminal, type the command

innovus (Press Enter)

For Innovus tool, a GUI opens and also the terminal enters into innovus

command prompt where in the tool commands can be entered.

Physical Design involves 5 stages as following :

After Importing Design,

→ Floor Planning
→ Power Planning

→ Placement

→ CTS (Clock Tree Synthesis)

→ Routing

Dept of ECE ,Atria Institute of Technology Page 14

Module 4.1 : Importing Design

To Import Design, all the Mandatory Inputs are to be loaded and this can be

done using script files named with .globals and .view/.tcl

Globals File to import design using Mandatory Inputs

The Globals file reads in the LEF’s and Gate Level Netlist and .view file

implicitly.

The .view file reads Liberty Files and Block Level SDC to create various PVT

Corners for analysis.

Dept of ECE ,Atria Institute of Technology Page 15

In the terminal command prompt, type the commands as shown. The design is

imported and “Core Area” is calculated by tool and shown on GUI.

The Horizontal Lines on the GUI across the Core Area are alternative VDD and

VSS tracks and Standard Cell Placement Rows.

Dept of ECE ,Atria Institute of Technology Page 16

Module 4.2 : Floorplan

Steps under Floorplan :

1. Aspect Ratio [Ratio of Vertical Height to Horizontal Width of Core]

2. Core Utilisation [The total Core Area % to be used for Floor Planning]

3. Channel Spacing between Core Boundary to IO Boundary

Select Floorplan → Specify Floorplan to modify/add concerned values to the

above Factors.

Dept of ECE ,Atria Institute of Technology Page 17

On adding/modifying the concerned values, the core area is also modified.

Dept of ECE ,Atria Institute of Technology Page 18

The Yellow patch on the Left Bottom are the group of “Unassigned pins” which

are to be placed along the IO Boundary along with the Standard Cells [Gates].

Module 4.3 : Power Planning

Steps under Power Planning :

1. Connect Global Net Connects

2. Adding Power Rings

3. Adding Power Strings

4. Special Route

During the stage of Importing Design, under the Globals file, Two command

lines state the names of Power and Ground Nets.

However, in order to Current flow through these Power nets, they are to

converge at a point, preferably a common net connected to a Pin.

Under Connect Global Net Connects, we create two pins, one for VDD and one

for VSS connecting them to corresponding Global Nets as mentioned in Globals

file.

Select Power → Connect Global Nets.. to create “Pin” and “Connect to Global

Net” as shown and use “Add to list”.

Click on “Apply” to direct the tool in enforcing the Pins and Net connects to

Design and then Close the window.

Dept of ECE ,Atria Institute of Technology Page 19

In order to Tap in Power from a distant Power supply, Wider Nets and Parallel

connections improve efficiency. Moreover, the cells that would be placed

inside the core area are expected to have shorter Nets for lower resistance.

Hence Power Rings [Around Core Boundary] and Power Stripes [Across Core

Boundary] are added which satisfies the above conditions.

Select Power → Power Planning → Add Rings to add Power rings ‘around Core

Boundary’.

Dept of ECE ,Atria Institute of Technology Page 20

→ Select the Nets from Browse option OR Directly type in the Global Net

Names separated by a space being Case and Spelling Senstive.

→ Select the Highest Metals marked ‘H’ [Horizontal] for Top and Bottom and

Metals marked ‘V’ [Vertical] for Right and Bottom. This is because Highest

metals have Highest Widths and thus Lowest Resistance.

→ Click on Update after the selection and “Set Offset : Center in Channel” in

order to get the Minimum Width and Minimum Spacing of the corresponding

Metals and then Click “OK”.

Dept of ECE ,Atria Institute of Technology Page 21

→ Similarly, Power Stripes are added using similar content to that of Power

Rings.

Factors to be considered under Power Stripes :

→ Nets

→ Metal and It’s Direction

→ Width and Spacing [Updated]

→ Set to Set Distance = (Minimum Width of Metal + Min. Spacing) x 2

Dept of ECE ,Atria Institute of Technology Page 22

On adding Power Stripes, The Power mesh setup is complete as shown.

However, There are no Vias that could connect Metal 9 or Metal 8 directly with

Metal 1 [VDD or VSS of Standard Cells are generally made up of Metal 1].

The connection between the Highest and Lowest Metals is done through

Stacking of Vias done using “Special Route”.

To perform Special Route, Select Route → Special Route → Add Nets → OK.

After the Special Route is complete, all the Standard Cell Rows turn to the

Color coded for Metal 1 as shown below.

Dept of ECE ,Atria Institute of Technology Page 23

The complete Power Planning process makes sure Every Standard Cell receives

enough power to operate smoothly.

Dept of ECE ,Atria Institute of Technology Page 24

Module 4.4.1 : Pre - Placement

→ After Power Planning, a few Physical Cells are added namely, End Caps and

Well Taps.

→ End Caps : They are Physical Cells which are added to the Left and Right

Core Boundaries acting as blockages to avoid Standard Cells from moving out

of boundary.

→ Well Taps : They act like Shunt Resistance to avoid Latch Up effects.

1. To add End Caps, Select Place → Physical Cell → Add End Caps and “Select” the

FILL’s from the available list. Higher Fills have Higher Widths. As shown Below,

The End Caps are added below your Power Mesh.

Dept of ECE ,Atria Institute of Technology Page 25

2. To add Well Taps, Select Place → Physical Cell → Add Well Tap → Select →

FillX [X → Strength of Fill = 1,2,4 etc] → Distance Interval [Could be given in

range of 30-45u] → OK

Dept of ECE ,Atria Institute of Technology Page 26

Module 4.5 : Placement

1. The Placement stage deals with Placing of Standard Cells as well as Pins.

2. Select Place → Place Standard Cell → Run Full Placement → Mode → Enable

‘Place I/O Pins’ → OK → OK .

Dept of ECE ,Atria Institute of Technology Page 27

All the Standard Cells and Pins are placed as per the communication between

them, i.e., Two communicating Cells are placed as close as possible so that

shorter Net lengths can be used for connections as Shorter Net Lengths enable

Better Timing Results.

Placed Design

Dept of ECE ,Atria Institute of Technology Page 28

Standard Cells Placed

You can toggle the Layer Visibility from the list on the Right.

Report Generation and Optimization :

→ Timing Report :

To generate Timing Report, Timing → Report Timing → Design Stage – PreCTS

→ Analysis Type – Setup → OK

The Timing report Summary can be seen on the Terminal.

Dept of ECE ,Atria Institute of Technology Page 29

Dept of ECE ,Atria Institute of Technology Page 30

→ Area Report :

To generate Area Report, Switch to the Terminal and type the command ,

report_area to see the Cell Count and Area Occupied.

→ Power report :

To generate Power Report, In the Terminal type the command

report_power to see the Power Consumption numbers.

Dept of ECE ,Atria Institute of Technology Page 31

Design Optimization :

To optimize the Design, Select ECO → Optimize Design → Design Stage

[PreCTS] → Optimization Type – Setup → OK

Dept of ECE ,Atria Institute of Technology Page 32

This step Optimizes your design in terms of Timing, Area and Power.

You can Generate Timing, Area, Power in similar way as above report Post –

Optimization to compare the Reports.

Module 4.6 : Clock Tree Synthesis

The CTS Stage is meant to build a Clock Distribution Network such that every

Register (Flip Flop) acquires Clock at the same time (Atleast Approximately) to

keep them in proper communication.

A Script can be used to Build the Clock Tree as follows :

Source the Script as shown in the above snapshot through the Terminal and

then Select Clock → CCOpt Clock Tree Debugger → OK to build and view clock

tree.

Dept of ECE ,Atria Institute of Technology Page 33

The Red Boxes are the Clock Pins of various Flip Flops in the Design while

Yellow Pentagon on the top represents Clock Source.

The Clock Tree is built with Clock Buffers and Clock Inverters added to boost up

the Clock Signal.

Dept of ECE ,Atria Institute of Technology Page 34

Report Generation and Design Optimization :

CTS Stage adds real clock into the Design and hence “Hold” Analysis also

becomes prominent. Hence, Optimizations can be done for both Setup &

Hold, Timing Reports are to be Generated for Setup and Hold Individually.

Setup Timing Analysis :

Dept of ECE ,Atria Institute of Technology Page 35

Hold Timing Analysis :

For Area and Power Report Generation,

report_area & report_power commands can be used.

Design Optimizations :

Dept of ECE ,Atria Institute of Technology Page 36

Module 4.7 : Routing

→ All the net connections shown in the GUI till CTS are only based on the

Logical connectivity.

→ These connections are to be replaced with real Metals avoiding Opens,

Shorts, Signal Integrity [Cross Talks], Antenna Violations etc.

To run Routing, Select Route → Nano Route → Route and enable Timing

Driven and SI Driven for Design Physical Efficiency and Reliability.

Dept of ECE ,Atria Institute of Technology Page 37

Report Generation and Design Optimization :

Setup Report :

Hold Report :

Dept of ECE ,Atria Institute of Technology Page 38

Area and Power Reports :

Use the commands report_area and report_power for Area and Power

Reports respectively.

Design Optimization :

Enter the above shown command in the Terminal in order to run the Design

Optimization first Post-Route.

The Report generation is same as shown prior to Design Optimization.

Dept of ECE ,Atria Institute of Technology Page 39

Saving Database :

1. Saving Design => File → Save Design → Data Type : Innovus →

<DesignName>.enc → OK

2. Saving Netlist => File → Save → Netlist → <NetlistName>.v → OK

It is recommended to save Netlist and Design at every stage.

To restore a Design Data Base, type source <DesignName>.enc in the terminal.

Dept of ECE ,Atria Institute of Technology Page 40

3. Saving GDS => File → Save → GDS/OASIS → <FileName>.gds → OK

The GDS File is a Binary Format File which is not Readable and is fed to the

Fabrication unit with data of various layers used depicted in terms of

Geometrical Shapes.

Dept of ECE ,Atria Institute of Technology Page 41

LAB 1 : INVERTER

Objective : To compile and simulate the verilog code of the Inverter circuit and

observe the output waveform.

Inverter :

`timescale 1ps/1ns

// Define our own Inverter,

module inverter (out, in);

// Declarations of I/O, Power and Ground Lines

output out;

input in;

supply1 pwr;

supply0 gnd;

// Instantiate pmos and nmos

switches

pmos (out, pwr, in);

nmos (out, gnd, in);

endmodule

Dept of ECE ,Atria Institute of Technology Page 42

Test Bench of Inverter :

`timescale 1ps/1ns

//Test Bench of Inverter Module

module inv_test;

wire out;

reg in;

//Instantiate inverter module

inverter uut (out, in);

//Display

begin

$display (“time=%d, $time, “ns”, “input=”,in,”output=”,out); end

//Apply Stimulus

initial

begin

in=1’b0; #10 ; display;

in=1’b1; #10 ; display;

in=1’bx; #10 ; display;

in=1’bz; #10 ; display;

end

endmodule

Dept of ECE ,Atria Institute of Technology Page 43

Constraints file for Synthesis file : inverter.sdc

set_input_delay -max 1.0 [get_ports “in”]

set_output_delay -min 1.0 [get_ports “out”]

Truth Table :

Input (in) Output (out)

0 1

1 0

X x

Z x

In Desktop Create a folder to do the digital design flow. Right click

in the Desktop and select Open in terminal.

1. mkdir filename represents creating the directory with the

any filename.

2. cd filename represents moving to the current directory.

3. gedit filename.v represents opening the gedit window for

writing the rtl coding as shown in Figure : 1.

Figure : 1

Dept of ECE ,Atria Institute of Technology Page 44

4. Save the rtl coding by pressing Ctrl+s or select the save option on
the top right corner.

5. Similar way create a test bench program also.

Invoke the Cadence environment by typing the below commands as shown in

Figure 2.

csh

source home/install/cshrc

Figure : 2

After this you can see the window like as shown in Figure 3 below

Functional Simulation :

Figure : 3

Use the following command to invoke user friendly GUI as shown in Figure 4:

Figure : 4

Dept of ECE ,Atria Institute of Technology Page 45

It will invoke the nclaunch window for functional simulation we can compile,

elaborate and simulate it using Multistep.

The NCLaunch tool consists of a single main window that contains multiple

browsers, which are integrated with the suite of NC tools. The integrated tools

include the following:

1. Compilation

2. Elabarotion

3. Simulation

1. Compilation :

Compilation is the process of reading in source code and the analyzing the

source code for syntax and semantic errors. Most HDLs including System

Verilog supports compilation as a single file or multiple files using a

compilation units.

2. Elaboration :

Elaboration is the process that occurs between parsing and simulation. It binds

modules to module instances, builds the model hierarchy, computes

parameter values, resolve hierarchical names, establishes net connectivity, and

prepares all of this for simulation.

3. Simulation :

Simulation is the process by which the design model coded in the HDL gets

executed based on a given execution model. An HDL description of the design

would consists of several concurrent process, assignments and some

connections between then.

Dept of ECE ,Atria Institute of Technology Page 46

Click

Select the Multiple Step option as shown in Figure 5:

Figure : 5

We can simulate a design using the Incisive simulator.
For that we have to Create the cds.lib and hdl.var files for to Compile,

elaborate and simulate the design and test bench as shown in Figure 6.

Figure : 6

Dept of ECE ,Atria Institute of Technology Page 47

Click the cds.lib file

Figure : 7

Save the file as shown in Figure 7.

Figure : 8

Choose any option listed from above as shown in Figure 8.

Dept of ECE ,Atria Institute of Technology Page 48

Figure : 9

After that you can give OK as shown in Figure 9. After

clicking on ok, you can see the Figure 10.

Figure : 10

Dept of ECE ,Atria Institute of Technology Page 49

Left side you can see the HDL files. Right side of the window has

worklib and snapshots directories listed.
Worklib is the directory where all the compiled codes are stored while

Snapshot will have output of elaboration which in turn goes for simulation.

Compilation :

Figure : 11

Left side select the file and in Tools : launch verilog compiler with

current selection will get enable as shown in Figure 11.

Click it to compile the code.

Dept of ECE ,Atria Institute of Technology Page 50

Similarly, select the test module and do the compilation. You can see the

worklib being created. Under worklib you can see the module and test-bench

as shown in Figure 12. Next is to elaborate the design.

Figure : 12

Dept of ECE ,Atria Institute of Technology Page 51

Elaboration :

Figure : 13

Select the file under worklib and in Tools : launch elaborator with
current selection will get enable. select the elaborator to

elaborate the design.
Choose the module and test bench and elaborate the design.

Dept of ECE ,Atria Institute of Technology Page 52

Figure : 14

Similarly, select the test bench module under worklib and do the

elaboration. The snapshots will be created.

Next step will be the simulation.

Dept of ECE ,Atria Institute of Technology Page 53

Simulation :

Select the test bench file under snapshot and in Tools : Launch simulator with

current selection will get enable as shown in Figure 15 below.

Figure : 15

Dept of ECE ,Atria Institute of Technology Page 54

Select the simulator to simulate the design. After simulation you will get the

below window as shown in Figure 16.

Figure : 16

Dept of ECE ,Atria Institute of Technology Page 55

you will get the Design Browser and Simvision. In design browser
you can test bench on the left side window.

Figure : 17

Select the test bench for the inverter and Right click it. Select the

send to waveform window or select the waveform icon you can see

the waveform window as shown in Figure 17.

Dept of ECE ,Atria Institute of Technology Page 56

After that click the run tool to see the functional simulation of the inverter

as shown in the figure 18.

Figure : 18

The equivalent command terminal output can be observed in the Simvision

console window and also in nclaunch console terminal.

Dept of ECE ,Atria Institute of Technology Page 57

Synthesis :

Synthesis is the process of converting the RTL Coding into optimized gate level

netlist.

The Tool used for doing the synthesis is GENUS. The tcl file (Tool

Command Language) is used for scripting.

Inside the rc_script file we have to mention the commands as shown in Figure

19 below.

Dept of ECE ,Atria Institute of Technology Page 58

Figure : 19

Script file is explained below as shown in Figure 19 :

1. Give the path of the library w.r.t to the directory you are using

the command : set_db lib_search_path

2. Give the path of the RTL files w.r.t to the directory you are using the

command : set_db hdl_search_path

3. Read the library file from the directory specified in giving the path
for the library files in First line using the command : set_db library

(slow.lib) is the name of the library file in the directory.

4. Read the RTL files from the directory specified in the second line. The

RTL files are in the directory name : read_hdl inverter.v

5. Now Elaborate the design using the command : elaborate

Dept of ECE ,Atria Institute of Technology Page 59

Constraint File : Not Mandatory

*If you are having constraint file then you can include the constraint file like

this

[Give the standard delay constraints using:

read_sdc./constraints_top.sdc]

 Synthesize the circuit using the commands :

synthesize -to_mapped -effort medium

 Write the delay file using below commands :

write_sdf -timescale ns -nonegchecks -recrem split -edges

check_edge > delays.sdf

 Used to mention the time unit : timescale

 Used to ignore the negative timing checks : nonegchecks

 Used to split out the recrem(recovery-removal) timing check

to separate checks for recovery and removal : recrem

 Specifies the edges values : edges

 Keeps edge specifiers on timing check arcs but does not add

edge specifiers on combinational arcs : check_edge

 Timing could be check using : report timing.

 Similarly for Gates : report gates.

 Check area using : report area.

 Check Power dissipation using : report power.

 It will generate the reports

 Write the hdl code in terms of library components for the

synthesized circuit using the command: write_hdl >

inverter_netlist.v

 Similarly write the constraint file using : write_sdc >
inverter_const.sdc.

Dept of ECE ,Atria Institute of Technology Page 60

Constraints file :

Invoke the Genus tool by typing the below command on your terminal

window. The below Figure 20 can be represent after typing the command.

genus -f rc_script.tcl -gui

Figure : 20

Type the command in the terminal which is mentioned above as shown in

Figure 20.

Click on Enter after typing the command as shown in Figure 21.

Figure : 21

Dept of ECE ,Atria Institute of Technology Page 61

The genus gui window will be shown as in Figure 22.

Figure : 22

After running the script, you can see the log report in the terminal and the

module in the gui window as shown in Figure 23.

Figure : 23

Dept of ECE ,Atria Institute of Technology Page 62

It will generate the Timing, Area, Power and Gates of the design.

Area Report :

The area report as shown in Figure 24.

Figure : 24

Power Report :

The power report as shown in Figure 25.

Figure : 25

Dept of ECE ,Atria Institute of Technology Page 63

Gate Report :

The number of gates can be displayed in the below report as shown in Figure
26.

Figure : 26

GUI :

Double Click file on the side of the window and see the RTL design.

The design after doing the synthesis will be shown in Figure 27 below.

Dept of ECE ,Atria Institute of Technology Page 64

Figure : 27

Generated Files :

The files generated after doing the synthesis is shown in Figure 28 with the

highlighted arrows.

Figure : 28

Dept of ECE ,Atria Institute of Technology Page 65

LAB 2 : BUFFER

Top Module :

module buffer(o,a);

output o;

input a;

assign o=a;

endmodule

Test Module :

module tb_buffer;

reg a;

wire o;

buffer test (.a(a) ,.o(o));

//Above style is connecting by names

initial begin

a =1'b0;

#45 $finish;

end

always #6 a =~a;

always @(o)

$display("time =%0t \tINPUT VALUES: \t a=%b \toutput value o

=%b",$time,a,o);

endmodule

Dept of ECE ,Atria Institute of Technology Page 66

RESULT :

Constraint file :

set_input_delay -max 1.0 [get_ports “a”]

set_output_delay -max 1.0 [get_ports “y”]

Design :

The design after doing the synthesis as shown in figure 29.

Figure : 29

Dept of ECE ,Atria Institute of Technology Page 67

LAB 3 : Transmission Gate

Top module :

module my_tran(A_in, A_out, B_in, B_out, control); input

A_in, B_in, control;

output A_out, B_out;

assign A_out = A_in;

assign A_out = control ? B_in : 1'bz;

assign B_out = B_in;

assign B_out = control ? A_in : 1'bz;

endmodule

Test Module :

module trangate_test;

wire out ;

reg in ;

reg cntrl1,cntrl2;

trangate t1 (out, in, cntrl1, cntrl2) ; task

display ;

begin

$display ("time=%0d" , $time , " ns", " Input=" , in, " Output=", out, "

Control1=",cntrl1, " Control2=",cntrl2) ;

end

endtask

initial

begin

in = 1'b0 ; cntrl1 = 1'b0 ; cntrl2 = 1'b1 ;

Dept of ECE ,Atria Institute of Technology Page 68

in = 1'b0 ; cntrl1 = 1'b1 ; cntrl2 = 1'b0 ; in =

1'b1 ; cntrl1 = 1'b0 ; cntrl2 = 1'b1 ; in = 1'b1

; cntrl1 = 1'b1 ; cntrl2 = 1'b0 ; end

endmodule

RESULT :

LAB 4 : Basic / Universal Gates

4a.AND gate :

Top Module :
module andgate (a, b, y);

input a, b;

output y;

assign y = a & b;

endmodule

Test Module :

module tb_and_gate;

reg a,b;

wire y;

andgate test (.a(a) ,.b(b),.y(y));

Dept of ECE ,Atria Institute of Technology Page 69

//Above style is connecting by names

initial begin a

=1'b0; b =

1'b0;

#45 $finish;

end

always #6 a =~a;

always #3 b =~b;

always @(y)

$display("time =%0t \tINPUT VALUES: \t a=%b b =%b \t output value y

=%b",$time,a,b,y);

endmodule

RESULT :

SCHEMATIC :

Dept of ECE ,Atria Institute of Technology Page 70

4b. OR gate :

Top Module :

module orgate (a, b, y);

input a, b;

output y; assign y

= a | b;

endmodule

Test Module :

module tb_or_gate;

reg a,b;

wire y;

orgate test (.a(a) ,.b(b),.y(y));

//Above style is connecting by names

initial begin

a =1'b0; b

= 1'b0;

#45 $finish;

end

always #6 a =~a;

always #3 b =~b;

always @(y)

$display("time =%0t \tINPUT VALUES: \t a=%b b =%b \t output value y
=%b",$time,a,b,y);

endmodule

Dept of ECE ,Atria Institute of Technology Page 71

RESULT :

SCHEMATIC :

4c.NAND gate :

Top Module :
module nandgate (a, b, y);

input a, b;

output y;

assign y = ~(a & b);

endmodule

Test Module :

module tb_nand_gate;

reg a,b;

wire y;

nandgate test (.a(a) ,.b(b),.y(y));

Dept of ECE ,Atria Institute of Technology Page 72

//Above style is connecting by names

initial begin a

=1'b0; b =

1'b0;

#45 $finish;

end

always #6 a =~a;

always #3 b =~b;

always @(y)

$display("time =%0t \tINPUT VALUES: \t a=%b b =%b \t output value y

=%b",$time,a,b,y);

endmodule

RESULT :

SCHEMATIC :

Dept of ECE ,Atria Institute of Technology Page 73

4d.NOR gate :

Top Module :
module norgate (a, b, y);

input a, b;

output y;

assign y = ~(a | b);

endmodule

Test Module :

module tb_nor_gate;

reg a,b;

wire y;

norgate test (.a(a) ,.b(b),.y(y));

//Above style is connecting by names

initial begin

a =1'b0; b

= 1'b0;

#45 $finish;

end

always #8 a =~a;

always #10 b =~b;

always @(y)

$display("time =%0t \tINPUT VALUES: \t a=%b b =%b \t output value y

=%b",$time,a,b,y);

endmodule

Dept of ECE ,Atria Institute of Technology Page 74

RESULT :

SHCEMATIC :

4e. XOR gate :

Top module :

module xorgate (a, b, y);

input a, b;

output y;

assign y = a ^ b;

endmodule

Test module :

module tb_xor_gate;

reg a,b;

wire y;

Dept of ECE ,Atria Institute of Technology Page 75

xorgate test (.a(a) ,.b(b),.y(y));

//Above style is connecting by names

initial begin

a =1'b0; b

= 1'b0;

#45 $finish;

end

always #6 a =~a;

always #3 b =~b;

always @(y)

$display("time =%0t \tINPUT VALUES: \t a=%b b =%b \t output value y

=%b",$time,a,b,y);

endmodule

RESULT :

SCHEMATIC :

Dept of ECE ,Atria Institute of Technology Page 76

4f. XNOR gate :

Top module :

//Define our own XNOR Gate, module

xnorgate (out , in1 , in2);

// Declarations of I/O ports

output out;

input in1,in2;

wire in2bar;

assign in2bar = ~in2;

// Instantiate pmos and nmos switches :

pmos (out,in2bar,in1);

nmos (out,in2,in1); pmos

(out,in1,in2bar); nmos

(out,in1,in2); endmodule

Test module :

module xnor_test;

wire out ;

reg in1,in2 ;

`uselib view = vlog

// Instantiate Xnor gate Module

xnorgate x1 (out, in1, in2) ;

`nouselib

// Display task

display ; begin

$display ("time=%0d" , $time , " ns"," Input1=" , in1 ," Input2=" , in2 ,

Dept of ECE ,Atria Institute of Technology Page 77

" Output=" , out) ;

end

endtask

// Apply Stimulus initial

begin

in1 = 1'b0 ; in2 = 1'b0 ; #10 ; display ; in1 =

1'b0 ; in2 = 1'b1 ; #10 ; display ; in1 = 1'b1 ;

in2 = 1'b0 ; #10 ; display ; in1 = 1'b1 ; in2 =

1'b1 ; #10 ; display ; end

endmodule

RESULT :

ALTERNATIVE CODE :

module gates(

input a,b;

output not_out, and_out, or_out, nand_out, nor_out, xor_out,

xnor_out);

assign not_out=!a;

assign and_out=a&b;

assign or_out=a|b;

assign nand_out=~(a&b);

assign nor_out=~(a|b);

assign xor_out=a^b;

Dept of ECE ,Atria Institute of Technology Page 78

assign xnor_out=~(a^b);

endmodule

LAB 5 : FLIP FLOPS

5a. D-Flip Flop :

Top Module :
module dff_sync_reset (data,clk,reset,q);

input data, clk, reset ;

output q;

reg q;

always @ (posedge clk) if

(~reset) begin

q <= 1'b0;

end else begin q

<= data;

end

endmodule

Test Module :

module tb_DFF();

reg data;

reg clk;

reg reset;

wire Q;

dff_sync_reset dut(data,clk,reset,Q);

initial begin

clk=0;
forever #10 clk = ~clk;

Dept of ECE ,Atria Institute of Technology Page 79

end

initial begin

reset=1;

data <= 0;

#100;

reset=0;

data <= 1;

#100;

data <= 0;

#100;

data <= 1;

end

endmodule

RESULT :

SCHEMATIC :

Dept of ECE ,Atria Institute of Technology Page 80

5b. JK-FLIP FLOP :

Top Module :

module jkff(input reset, input clk, input j, input k, output reg q, output qnot);

assign qnot=~q; always

@(posedge clk)

if (reset) q<=1'b0; else

case ({j, k})

2'b00: q<=q;

2'b01: q<=1'b0;

2'b10: q<=1'b1;

2'b11: q<=~q;

endcase

endmodule

Test Module :

module test;

reg clk=0;

reg j=0; reg

k=0;

reg reset=1;

wire q, qnot;

jkff dut(reset, clk,j,k,q,qnot);

initial

begin

$dumpfile("dump.vcd");

$dumpvars(1);

Dept of ECE ,Atria Institute of Technology Page 81

j=1'b1; // set your JK here

k=1'b1;

#5 reset=1'b0;

#25 $finish;

end

always #1 clk=~clk;

endmodule RESULT

:

SCHEMATIC :

Dept of ECE ,Atria Institute of Technology Page 82

5c. Master-Slave Flip Flop :

Top Module :
module ms_jkff(q,q_bar,clk,j,k);

output q,q_bar;

input clk,j,k; reg

tq,q,q_bar;

always @(clk)

begin

if (!clk)

begin

if (j==1'b0 && k==1'b1) tq

<= 1'b0;

else if (j==1'b1 && k==1'b0) tq <=

1'b1;

else if (j==1'b1 && k==1'b1) tq

<= ~tq;

end

if (clk)

begin

q <= tq; q_bar

<= ~tq; end

end

endmodule

Test Module :

module tb_ms_jkff;

reg clk,j,k;
wire q,q_bar;

wire clk2,j2,k2;

ms_jkff inst(q,q_bar,clk,j,k);

Dept of ECE ,Atria Institute of Technology Page 83

assign clk2=clk;

assign j2=j; assign

k2=k; initial

clk = 1'b0;

always #10

clk = ~clk;

initial begin

j = 1'b0; k = 1'b0;

#60 j = 1'b0; k = 1'b1; #40 j

= 1'b1; k = 1'b0; #20 j =

1'b1; k = 1'b1; #40 j = 1'b1;

k = 1'b0; #5 j = 1'b0; #20 j =

1'b1;

end

endmodule

RESULT :

SCHEMATIC :

Dept of ECE ,Atria Institute of Technology Page 84

5d. T- Flip Flop :

Top Module :

module tffmod(t, clk, q);

input t;

input clk;

output q;

reg q;

initial

q <= 0;

always @(posedge clk) q

<= q^t;

endmodule

Test Module :

module tflipflopt_b;

reg t;

reg clk;

wire q;

tffmod uut (.t(t), .clk(clk),.q(q));

initial begin

t = 0;

clk = 0;

#100;

end

always #3 clk=~clk;

always #5 t=~t;

initial

#100 $stop;

endmodule

Dept of ECE ,Atria Institute of Technology Page 85

RESULT :

SCHEMATIC :

5e. SR-Flip Flop ;

Top Module :

module SR_flipflop(q,q1,r,s,clk);

output q,q1;

input r,s,clk;

reg q,q1;

initial

begin

q=1'b0; q1=1'b1;

end

always @(posedge clk)

begin

Dept of ECE ,Atria Institute of Technology Page 86

case({s,r})

{1'b0,1'b0}: begin q=q; q1=q1; end

{1'b0,1'b1}: begin q=1'b0; q1=1'b1; end

{1'b1,1'b0}: begin q=1'b1; q1=1'b0; end

{1'b1,1'b1}: begin q=1'bx; q=1'bx; end

endcase

end

endmodule

Test Module :

module test;

reg clk=0;

reg s=0;

reg r=0;

wire q, qnot;

jkff dut(reset, clk,j,k,q,qnot);

initial

begin

s=1'b1;

r=1'b1;

#25 $finish;

end

always #1 clk=~clk;

endmodule

Dept of ECE ,Atria Institute of Technology Page 87

RESULT :

LAB 6 : SERIAL AND PARALLEL ADDER

6a. Parallel Adder :

Top Module :

module adder4 (carryin,x,y,sum,carryout); input

carryin;

input [3:0] x,y;

output [3:0] sum;

output carryout;

fulladd stage0 (carryin,x[0],y[0],sum[0],c1);

fulladd stage1 (c1,x[1],y[1],sum[1],c2);

fulladd stage2 (c2,x[2],y[2],sum[2],c3); fulladd

stage3 (c3,x[3],y[3],sum[3],carryout); endmodule

module fulladd (cin,x,y,s,cout);

input cin,x,y;

output s,cout; assign

s = x^y^cin;

assign cout =(x & y) | (x & cin) |(y & cin);

endmodule

Dept of ECE ,Atria Institute of Technology Page 88

Test Module :

module adder4_t ;

reg [3:0] x,y;

reg carryin; wire

[3:0] sum; wire

carryout;

adder4 a1 (carryin,x,y,sum,carryout);

initial

begin

x = 4'b0000; y= 4'b0000;carryin = 1'b0; #20 x

=4'b1111; y = 4'b1010;

#40 x =4'b1011; y =4'b0110; #40

x =4'b1111; y=4'b1111;

#50 $finish;

end

endmodule

RESULT :

Dept of ECE ,Atria Institute of Technology Page 89

6b. Serial Adder :

Top Module :

module adder_serial(

input clk,rst,

input en, // on Enable, addition will start input a,

// 4-bit adder

input b,

output [3:0] result

);

reg [3:0] y;

reg carry;

always@(posedge rst or posedge clk)

begin

if (rst)

begin

y = 4'b0;

carry = 1'b0;

end

else if (en)

begin

y[3] = y[2];

y[2] = y[1];

y[1] = y[0];

{carry,y[0]} = a + b + carry; end

end

assign result = y;

endmodule

Dept of ECE ,Atria Institute of Technology Page 90

Test Module :

module serial_adder_test;

reg clk,rst,en,a,b;

wire [3:0] result;

adder_serial U1 (clk,rst,en,a,b,result); //instantiation initial

clk=1'b0;

always

#5 clk=~clk;

initial

begin

rst =1'b1;en=1'b0;a=0;b=0;

#10 rst =1'b0;en=1'b1;a=1;b=0;

#10 rst =1'b0;en=1'b1;a=0;b=1;

#10 rst =1'b0;en=1'b1;a=1;b=1;

#10 rst =1'b0;en=1'b1;a=0;b=1;

#10 rst =1'b0;en=1'b1;a=1;b=0;

#200 $finish;

end

endmodule

RESULT :

Dept of ECE ,Atria Institute of Technology Page 91

LAB 7 : 4-BIT COUNTERS

7a. Asynchronous Counter :

Top Module :

module counter_behav (count,reset,clk);

input wire reset, clk;

output reg [3:0] count;

always @(posedge clk or posedge reset) begin

if (reset)

count <= 4'b0000;

else

count <= count + 4'b0001;

end

endmodule

Test Module :

module mycounter_t ;

wire [3:0] count;

reg reset,clk;

initial

clk = 1'b0;

always

#5 clk = ~clk;

counter_behav m1 (count,reset,clk);

initial

begin

reset = 1'b0 ;

Dept of ECE ,Atria Institute of Technology Page 92

#15 reset =1'b1;

#30 reset =1'b0;

#300 $finish;

end

initial

$monitor ($time, "Output count = %d ",count);

endmodule

RESULT :

7b. Synchronous Counter :

Top Module :
module counter_behav (count,reset,clk);

input wire reset, clk;

output reg [3:0] count;

initial

count =4'b0000; always

@(posedge clk) if (reset)

count <= 4'b0000;

else

count <= count + 4'b0001;

endmodule

Dept of ECE ,Atria Institute of Technology Page 93

Test Module :

module mycounter_t ;

wire [3:0] count;

reg reset,clk;

initial

clk = 1'b0;

always

#5 clk = ~clk;

counter_behav m1 (count,reset,clk);

initial

begin

reset = 1'b0 ; #15

reset =1'b1;

#30 reset =1'b0;

#300 $finish;

end

initial

$monitor ($time, "Output count = %d ",count);

endmodule

RESULT :

Dept of ECE ,Atria Institute of Technology Page 94

LAB 8 : SUCCESSIVE APPROXIMATION REGISTER

Top Module :

module sar (digitalout,done,comp,start,reset,clk);

output [3:0] digitalout;

output done;

input clk, start, reset, comp;

reg [3:0]ring_count;

reg [3:0]digital;

wire D4,set0,set1,set2,set3;

assign D4 = ring_count[0];

assign done = !D4;

always @(posedge clk or negedge reset)

begin

if (~reset)

ring_count <= 4'b1000;

else

begin

if (start)

ring_count <= 4'b1000;

else

ring_count <= (ring_count>>1); end

end

assign set3 = ring_count[3];

assign set2 = ring_count[2];

assign set1 = ring_count[1];

assign set0 = ring_count[0];

always @(posedge clk or negedge reset)

begin

if(~reset)

Dept of ECE ,Atria Institute of Technology Page 95

digital[3] <= 1'b1;

else

if(start)

digital[3] <= 1'b1; else

if(set3) digital[3] <=

comp; end

always @(posedge clk or negedge reset)

begin

if(~reset) digital[2]

<= 1'b1; else

if(start)

digital[2] <= 1'b1; else

if(set2) digital[2] <=

comp; end

always @(posedge clk or negedge reset)

begin

if(~reset) digital[1]

<= 1'b1; else

if(start)

digital[1] <= 1'b1; else

if(set1) digital[1] <=

comp; end

always @(posedge clk or negedge reset)

begin

if(~reset) digital[0]

<= 1'b1; else

Dept of ECE ,Atria Institute of Technology Page 96

if(start)

digital[0] <= 1'b1; else

if(set0) digital[0] <=

comp; end

assign digitalout = (digital) | (ring_count);

endmodule

Sub Module :

module dac (comp,sar_out,vref_d,vin_d,clk,start);

output comp;

input clk,start; input

[3:0]sar_out; input

[63:0]vref_d; input

[63:0]vin_d; reg

comp;

real v_dac,vref,vin; always

@ (vin_d or start) begin

vref = $bitstoreal(vref_d); vin

= $bitstoreal(vin_d); end

always @*

begin if(start)

comp = 1'b0;

else

begin

v_dac = (vref/15)*(sar_out); if

(vin<v_dac)

comp = 1'b0;

Dept of ECE ,Atria Institute of Technology Page 97

else

comp = 1'b1;

end

end

endmodule

Test Module :

module sar_tb; reg

clk,reset,start;

reg [63:0] vref_d,vin_d;

wire done, comp;

wire [3:0] digitalout;

real vref_real = 7.5;

sar s1 (digitalout,done,comp,start,reset,clk); dac d1

(comp,digitalout,vref_d,vin_d,clk,start); initial

begin

clk = 1'b1; start

= 1'b1; #4000

$finish; end

always #10 clk = ~clk; initial

begin

#1;reset = 1'b1;

#10; reset = 1'b0;

#1; reset = 1'b1;

end

initial

begin

#10 ;

Dept of ECE ,Atria Institute of Technology Page 98

stimulus (0.0,0.5,vref_real,8'd5);

end

task stimulus (input analog, input step, input reference, input [7:0]delay);

real

analog,step;

real reference;

begin

while(analog <= reference)

begin

repeat(delay)

@(posedge

clk); start <=

1'b0;

vref_d = $realtobits (reference);

vin_d = $realtobits (analog);

@(posedge done)

analog = analog + step;

@(posedge clk);

start <=

1'b1; end

end

endtask

endmodu

le

RESULT :

Dept of ECE ,Atria Institute of Technology Page 99

 CUSTOM IC TOOL FLOW

Dept of ECE ,Atria Institute of Technology Page 100

INVERTER

Creating a new Library:

• Create a new folder for example as test

• Open the terminal inside the folder and source the cshrc file by using a

command source /home/intall/cshrc

• After that invoke the tool by using a command virtuoso &

• Then the below window will be popup.

• In the above window Go to Tools -->Library manger-->new library

Give the library name and click ok , then a tab opens to attach the technology library as shown below

Dept of ECE ,Atria Institute of Technology Page 101

Here Select the option as Attach to an existing technology library and click on OK.

• In the “Attach Library to Technology Library” window, select gpdk180 from the

Technology Library filed and click OK.

Creating a schematic cell view:

• In the Library manager, select the library(inverter), File --> New --> Cellview Then the

below Window will be pop-up.

Dept of ECE ,Atria Institute of Technology Page 102

• Give the Cell name in the cell field and click OK. A blank schematic window for the

Inverter design appears as shown in below.

Dept of ECE ,Atria Institute of Technology Page 103

• In the inverter schematic window, press letter “ i ” (Insert) to get the components like
pmos, nmos, etc or go to create in top menu and select Create --> Instance

• If we press ‘ i ’ then a window opens as shown as below.

In the above window we need to select Browse option to get the components list.

Dept of ECE ,Atria Institute of Technology Page 104

Now, Browse gpdk180 --> cell (component) --> symbol (view) .

After selecting the symbol we need to specify the values of the selected component

and then click on hide the window as shown below.

Dept of ECE ,Atria Institute of Technology Page 105

• After placing the components select the pins by pressing letter ‘ p ’ or go to create in top
menu by Create --> Pin

• After pressing P a Create Pin window will be pop-up.

In the Create Pin Window Specify the name of the pins(input, output, VDD, VSS) and

the Direction of the pins, then select Hide.
• For rotation of pins we can press letter “ r “ .

• After placing the pins, press letter “ f “ so that the schematic will fit to the screen.

• After placing all the components and pins, press ‘w’ to give the connections or go to create
in top menu and select Create --> Wire.

• Click the Check and Save icon in the schematic editor window to Save the Design.

Go back to the CIW (Command Interpreter Window) for any errors of the schematic
design.

Dept of ECE ,Atria Institute of Technology Page 106

Symbol creation:

1. In the Schematic window, select Create from top menu

Create —> Cellview—> From Cellview.

2. The “Cellview From Cellview” form appears. With the Edit Options function active, you can

control the appearance of the symbol to generate.

3. Verify that the “From View Name” field is set to schematic, and the “To View Name" field is set

to symbol, with the “Tool/Data Type” set as Schematic Symbol.

4. Click OK in the “Cellview From Cellview” form. The Symbol Generation Form appears. Modify

the Pin Specifications as follows:

5. Click OK in the Symbol Generation Options form.

6. A new window displays an automatically created Inverter symbol as shown here.

Dept of ECE ,Atria Institute of Technology Page 107

 Editing a symbol:

It is optional, we can modify it or not because the functionality will not change. we will

modify the inverter symbol as look like an Inverter gate symbol.

1. Move the cursor over the automatically generated symbol, until the green rectangle is

highlighted, click left to select it.

2. Click Delete icon in the symbol window, similarly select the red rectangle and delete that.

3. Execute “Create –->Shape –->polygon”, and draw a shape similar to triangle ass shown below.

4. After creating the triangle press ESC key. Execute “Create –->Shape –-> Circle” to make a circle at

the end of triangle.

Dept of ECE ,Atria Institute of Technology Page 108

5. You can move the pin names according to the location.

6. Execute “Create —>Selection Box”. In the Add Selection Box form, click Automatic. A new red

selection box is automatically added.

7. After creating symbol, click on the save icon in the symbol editor window to save the

symbol. In the symbol editor, execute File —>Close to close the symbol view window.

Dept of ECE ,Atria Institute of Technology Page 109

Inverter test design:

1. In the CIW or Library Manager, execute “File—>New—> Cellview”.

2. Set up the New File form as follows:

3. Click OK when done. A blank schematic window for the Inverter_Test design
appears.

Dept of ECE ,Atria Institute of Technology Page 110

4. Add the components using Create —>Instance or by pressing letter “ I ”.

5. Click the Wire (narrow) icon and wire your schematic or you can also press the “ w ” key.

6. Go to Create—>Wire (narrow) in top menu and make the necessary connections. 7.Click

on the Check and Save icon to save the design.

Simulation:

In the Inverter_Test schematic window, select Launch -->ADE L in top
menu. The Virtuoso Analog Design Environment (ADE) simulation window
appears.

1. In the simulation window, go to top menu and select Setup—>Simulator/Directory/Host.

2. In the Choosing Simulator form, set the Simulator field to spectre and click OK.

3. In the simulation window, go to top menu and select Setup --->Model Libraries.

The Model Library Setup form appears. Click the browse button to add gpdk.scs
if not added by default as shown in the Model Library Setup form.

Dept of ECE ,Atria Institute of Technology Page 111

Remember to select the section type as stat in front of the gpdk.scs file. The Model
Library Setup window will now looks like the below figure.

Choosing Analysis:

1. In the Simulation window (ADE), click the Choose -->Analyses icon or you can also

execute Analyses --> Choose.

The Choosing Analysis window appears. This is a dynamic form, the
bottom of the form changes based on the selection above.

2. To setup for transient analysis

• In the Analysis section select tran

• Set the stop time.

Dept of ECE ,Atria Institute of Technology Page 112

Select the Accuracy Defaults by click on the moderate or Enabled option at the
bottom, and then click Apply.

To setup for DC Analysis:
• In the Analysis section, select dc.

• In the DC Analysis section, enable Save DC Operating Point.

• Select the Component Parameter from Sweep Variable section.

• Click the Select Component, Which takes you to the schematic window.
• Select the input signal vpulse source in the test schematic window.

• Select ” DC Voltage “ in the Select Component Parameter form and click OK.
• In the sweep range section, type start and stop voltages as 0 to 1.8
respectively.
• Check the enable button and then click Apply.

Dept of ECE ,Atria Institute of Technology Page 113

Selecting outputs for plotting:

1. Select Outputs –->To be plotted –->Select on Design(Schematic) in the simulation window.

2. Follow the prompt at the bottom of the schematic window, Click on output net Vout, input net

Vin of the Inverter. Press Esc with the cursor in the schematic after selecting it.

Running the simulation:

Execute Simulation ---> Netlist and Run in the simulation window(Green colour button icon) to

start the simulation, this will create the netlist as well as run the simulation.

When simulation finishes, the Transient plots automatically will be

popped up along with log file.

Dept of ECE ,Atria Institute of Technology Page 114

Saving the simulator state:

1. In the simulation window, go to session ---> save state option. The saving state form

appears.

2. Set the save as field to State1_inv and make sure all options are selected under what to save field.

3. Click ok in the saving state form. The simulator state is saved.

Creating a Layout view of inverter:

1. From the Inverter schematic window menu execute Launch --> Layout XL. A Start-up Option form

appears.

2. Select Create New option. This gives a New Cell View Form

3. Check the Library name(Inverter), Cell name (Inv-des) and View name (layout).

4. Click OK from the New Cellview form and a blank layout window appear along with
schematic window.

Dept of ECE ,Atria Institute of Technology Page 115

Adding components to Layout:

1. Go to Connectivity –> Generate –> All from Source or click the icon

In the layout editor window, Generate Layout form appears. Click OK

which imports the schematic components in to the Layout window

automatically.

2. Re arrange the components with in the PR-Boundary.

3. To rotate a component, Select the component and click Edit –>Properties. Now

select the degree of rotation from the property edit form.

4. Press ‘ f ’ to fit the layout on display.

5. Press ‘ Shift+f ’ key, to enable the terminals of a transistor

Dept of ECE ,Atria Institute of Technology Page 116

6. After enabling all the terminals of a transistor, press ‘P’ in order to make the connectivity.

7. To do HRail for vdd and vss pins,

Right click on the vdd/vss pin select ‘pin placement’ option or select Place --> Pin
Placement from top menu below window will be pop-up.

• Select the necessary pin like vdd/vss and select the required Edge in Attributes session and

click on Apply option by selecting HRail which is available in Create session as shown in the image .

• Make the necessary connections as per the schematic in layout window.

Dept of ECE ,Atria Institute of Technology Page 117

• Save the design by selecting File —>Save or click on ‘save’ icon.

Dept of ECE ,Atria Institute of Technology Page 118

Physical Verification :

• For doing Physical verification we will go with ASSURA tool.

• Add the Assura technology lib file path, Go to Assura ---> Technology, then a assura

technology lib window will appear. Browse the Assura tech lib.

Running a DRC:

• Once the Technology library is added Select Assura --> Run DRC from layout window.

• The Run Assura DRC window will pop up. Now enable View Rule files, select the technology

like gpdk180, 90 or 45 and also provide the Run Name while running the DRC as shown in the

below figure.

Dept of ECE ,Atria Institute of Technology Page 119

• Click on Ok and new Progress File Window pop up so click on Watch log file so log file will

appear.

• If there are any DRC errors exist in the design View Layer Window (VLW) the Error Layer

Window (ELW) appears by double clicking on the errors in ELW the errors will be highlighted

in the layout window.

• Re-correct all the errors and re-run the DRC again.

• If there are no DRC errors it will pop up with the window showing no DRC errors.

Running LVS:

• LVS (Layout versus schematic)

• Select Assura --> Run LVS from the layout window to run LVS check.

• Below window will pop up Select the Technology File and specify the run name make

all the necessary changes as shown in the figure and hit on OK.

Dept of ECE ,Atria Institute of Technology Page 120

• Now watch the log file by clicking on Watch Log file in Progress File Window.

• If Layout and schematic matches one window will pop and notify schematic and layout match

as shown in the figure.

If the schematic and layout do not matches, a form informs that the LVS completed

successfully and asks if you want to see the results of this run.
• Click Yes in the form.

• LVS debug form appears, and you are redirected to LVS debug environment.

In the LVS debug form you can find the details of mismatches and you need to correct all those

mismatches and Re – run the LVS till you will be able to match the schematic and layout.

Dept of ECE ,Atria Institute of Technology Page 121

Running Quantus QRC:

• From the layout window, select Assura --> Run Quantus QRC for RC extraction.

• Click on setup and set the output to Extracted View and select the Technology as shown in

the above image.

• Click on Extraction from the top of the window and give the Ref Node as gnd! And also

select the Extraction Type to RC .

• Do the necessary changes as shown in the below image and click on ok.

Dept of ECE ,Atria Institute of Technology Page 122

• The QRC progress will appears, click on Watch log file from Progress File window.

• When QRC completes, a dialogue box appears, informs you that Quantus QRC run

completed successfully or not.

• Open the av_extracted view from the library manager and view the parasitics.

• The av_extracted view will appear as shown in the below figure.

Dept of ECE ,Atria Institute of Technology Page 123

To Create the configuration view

• In the CIW or Library Manager, go to File --> New --> Cellview.

• In the Create New file form by setting View as config as shown in the image and click on
ok.

Dept of ECE ,Atria Institute of Technology Page 124

• Now the new window will pop up click on use template option which will be on

bottom of the New configuration window.

• Select Spectre option and click on ok as shown in the below image .

Dept of ECE ,Atria Institute of Technology Page 125

• Change the Top Cell View to schematic and remove the default entry from the

Library List field and the top cell must be test schematic design.

Dept of ECE ,Atria Institute of Technology Page 126

• Click on Ok by doing the necessary changes as shown in the image.

• The Hierarchy will be hierarchy window will be displayed as shown in the below image.

• Click on the Tree view option in the hierarchy window editor as shown in the image.

Dept of ECE ,Atria Institute of Technology Page 127

• Save the current configuration and close the Hierarchy Editor window by click on

File --> Close Window.

To run the Circuit without Parasitics

• From the Library Manager open the test schematic Config view. Open Configuration or Top

cell view form appears.

• Click on ok by selecting both options to yes as shown in the figure.

• Make sure that the window must open with test schematic design for simulation.

• Execute Launch – ADE L from the test schematic window.

• Now you need to follow the same procedure for running the simulation. Executing

Session– Load state, the Analog Design Environment window loads the previous state.

• Click Netlist and Run icon to start the simulation. The simulation takes a few seconds and

then waveform window appears.

To run the Circuit with Parasitics

• Open the same Hierarchy Editor form, which is already set for test schematic config.

• Select the Tree View icon: this will show the design hierarchy in the tree format.

• Click right mouse on the Inverter schematic. A pull down menu appears. Select av_extracted

view from the Set Instance view menu, the View to use column now shows av_extracted view.

Dept of ECE ,Atria Institute of Technology Page 128

• Click on the Recompute the hierarchy icon

• The configuration is now updated from schematic to av_extracted view.

• From the Analog Design Environment window click Netlist and Run to start the

simulation again.

Dept of ECE ,Atria Institute of Technology Page 129

Streaming Out the Design

• Select File – > Export –> Stream from the CIW menu and Virtuoso Xstream out form

window appears .

• Click on the Options button.

• In the Stream Out-Options form select Automatic mapping and click OK.

• In the Virtuoso Stream Out form, click Translate button to start the stream
translator.

• The stream file is stored in the specified location with .gds format.

• From the Library Manager open the Inverter cell view from the GDS_LIB library

and notice the design.

Dept of ECE ,Atria Institute of Technology Page 130

LAB 2 :Common Source Amplifier

AIM : To simulate the schematic of the common source amplifier.

Theory :

In electronics, a common-source amplifier is one of three basic single-stage
field-effect transistor (FET) amplifier topologies, typically used as a voltage or
transconductance amplifier. The easiest way to tell if a FET is common source,
common drain, or common gate is to examine where the signal enters and
leaves. The remaining terminal is what is known as "common". In this example,
the signal enters the gate, and exits the drain. The only terminal remaining is
the source. This is a common-source FET circuit. The analogous bipolar
junction transistor circuit is the common-emitter amplifier.

The common-source (CS) amplifier may be viewed as a transconductance
amplifier or as a voltage amplifier. (See classification of amplifiers). As a
transconductance amplifier, the input voltage is seen as modulating the
current going to the load. As a voltage amplifier, input voltage modulates the
amount of current flowing through the FET, changing the voltage across the
output resistance according to Ohm's law. However, the FET device's output
resistance typically is not high enough for a reasonable transconductance
amplifier (ideally infinite), nor low enough for a decent voltage amplifier
(ideally zero). Another major drawback is the amplifier's limited high-frequency
response.

Circuit Diagram :

Dept of ECE ,Atria Institute of Technology Page 131

Schematic Entry :

Symbol Creation :

Dept of ECE ,Atria Institute of Technology Page 132

Design entry for Test Schematic :

Library
name

Cellview
name

Properties

myDesignLib cs_amplifier Symbol

analogLib vsin Define pulse specification as AC
Magnitude=1; DC Voltage=0;

Offset Voltage=0;
Amplitude=5m; Frequency=1K

analogLib vdd,vss,gnd Vdd=2.5;vss=-2.5;vbias=-2.5

Test Schematic Circuit :

Dept of ECE ,Atria Institute of Technology Page 133

Settings in ADE L window :

Simulation Results :

Transient Response :

Dept of ECE ,Atria Institute of Technology Page 134

DC and AC Response :

Layout :

Dept of ECE ,Atria Institute of Technology Page 135

Extracted View :

Dept of ECE ,Atria Institute of Technology Page 136

LAB 3 : Common Drain Amplifier

AIM : To simulate the schematic of the common drain amplifier and then to

perform the physical verification for the layout of the design.

Theory :

Common drain amplifier is a source follower or buffer amplifier circuit using a

MOSFET. The output is simply equal to the input minus about 2.2V. The

advantage of this circuit is that the MOSFET can provide current and power

gain; the MOSFET draws no current from the input. It provides low output

impedance to any circuit using the output of the follower, meaning that the

output will not drop under load.

Its output impedance is not as low as that of an emitter follower using a

bipolar transistor (as you can verify by connecting a resistor from the output to

-15V), but it has the advantage that the input impedance is infinite. The

MOSFET is in saturation, so the current across it is determined by the gate-

source voltage. Since a current source keeps the current constant, the gate-

source voltage is also constant.

Schematic Entry :

Dept of ECE ,Atria Institute of Technology Page 137

Symbol Creation :

Design entry for test circuit :

Library
name

Cellview
name

Properties

myDesignLib cd_amplifier Symbol

analogLib vsin Define pulse specification as AC

Magnitude=1; DC Voltage=0;
Offset Voltage=0;

Amplitude=5m; Frequency=1K

analogLib vdd,vss,gnd Vdd=2.5;vss=-2.5;

Dept of ECE ,Atria Institute of Technology Page 138

Test Schematic :

Settings in ADE L Window :

Dept of ECE ,Atria Institute of Technology Page 139

Simulation Results :

Transient Response :

DC & AC Response :

Dept of ECE ,Atria Institute of Technology Page 140

Layout :

Extracted view :

Dept of ECE ,Atria Institute of Technology Page 141

LAB 4 : Differential Amplifier

AIM : To simulate the schematic of the differential amplifier circuit.

Theory :

The differential amplifier is probably the most widely used circuit building

block in analog integrated circuits, principally op amps. We had a brief glimpse

at one back in Chapter 3 section 3.4.3 when we were discussing input bias

current. The differential amplifier can be implemented with BJTs or MOSFETs.

A differential amplifier multiplies the voltage difference between two inputs

(Vin+ - Vin-) by some constant factor Ad, the differential gain. It may have

either one output or a pair of outputs where the signal of interest is the

voltage difference between the two outputs. A differential amplifier also tends

to reject the part of the input signals that are common to both inputs (Vin+ +

Vin-)/2 . This is referred to as the common mode signal.

Schematic Entry :

Dept of ECE ,Atria Institute of Technology Page 142

Symbol Creation :

Design Entry for Test Schematic :

Library

name

Cellview

name

Properties

myDesignLib cs_amplifier Symbol

analogLib vsin Define pulse specification as AC

Magnitude=1; DC Voltage=0;
Offset Voltage=0;

Amplitude=5m; Frequency=1K

analogLib vdd,vss,gnd Vdd=2.5;vss=-2.5;

AnalogLib Idc DC current = 30u

Dept of ECE ,Atria Institute of Technology Page 143

Test Schematic :

Settings in ADE L window :

Dept of ECE ,Atria Institute of Technology Page 144

Simulation Results :

Transient Response :

DC & AC Response :

Dept of ECE ,Atria Institute of Technology Page 145

Layout :

Extracted View of Design :

Dept of ECE ,Atria Institute of Technology Page 146

LAB 5 : Operational Amplifier

AIM : To simulate the schematic circuit of the Operational Amplifier.

Theory :

An operational amplifier (often op-amp or op-amp) is a DC-coupled high- gain

electronic voltage amplifier with a differential input and, usually, a single-

ended output. In this configuration, an op-amp produces an output potential

(relative to circuit ground) that is typically hundreds of thousands of times

larger than the potential difference between its input terminals. Operational

amplifiers had their origins in analog computers, where they were used to

perform mathematical operations in many linear, non-linear and frequency-

dependent circuits. The popularity of the op-amp as a building block in analog

circuits is due to its versatility. Due to negative feedback, the characteristics of

an op-amp circuit, its gain, input and output impedance, bandwidth etc. are

determined by external components and have little dependence on

temperature coefficients or manufacturing variations in the op-amp itself.

Op-amps are among the most widely used electronic devices today, being used

in a vast array of consumer, industrial, and scientific devices. Many standard IC

op-amps cost only a few cents in moderate production volume; however some

integrated or hybrid operational amplifiers with special performance

specifications may cost over $100 US in small quantities. Op- amps may be

packaged as components, or used as elements of more complex integrated

circuits. The op-amp is one type of differential amplifier.

The amplifier's differential inputs consist of a non-inverting input (+) with

voltage V + and an inverting input (–) with voltage V − ; ideally the op- amp

amplifies only the difference in voltage between the two, which is called the

differential input voltage. The output voltage of the op-amp V out is given by

the equation:

V out = AOL (V + - V-)

Dept of ECE ,Atria Institute of Technology Page 147

where AOL is the open-loop gain of the amplifier (the term "open-loop" refers
to the absence of a feedback loop from the output to the input).

Schematic Entry :

Symbol Creation :

Dept of ECE ,Atria Institute of Technology Page 148

Design entry for test schematic :

Library name Cellview
name

Properties

myDesignLib cs_amplifier Symbol

analogLib vsin Define pulse specification as AC

Magnitude=1; DC Voltage=0;
Offset Voltage=0;

Amplitude=5m; Frequency=1K

analogLib vdd,vss,gnd Vdd=2.5;vss=-2.5;

analogLib Idc DC current = 30u

Test Schematic of design :

Dept of ECE ,Atria Institute of Technology Page 149

Settings to be made in ADE L Window :

RESULTS :

Transient Response :

Dept of ECE ,Atria Institute of Technology Page 150

DC & AC Response :

Layout View :

Dept of ECE ,Atria Institute of Technology Page 151

Extracted View of design :

LAB 6 : R-2R based DAC

AIM :

To design 4 bit R-2R DAC using Op-amp with given specifications and verifying

the following

1. Schematic:

i) DC Analysis

ii) AC Analysis

iii) Transient Analysis

Dept of ECE ,Atria Institute of Technology Page 152

Specifications :

Library name Cell name Properties

gpdk180 Polyres R=1K

gpdk180 Polyres R=2K

analogLib Idc idc=30u

analogLib gnd -

Pin Names Direction

D0, D1, D2, D3 Input

Vdd, vss Input

Vout Output

Schematic Entry :

Dept of ECE ,Atria Institute of Technology Page 153

Symbol Creation :

Design Entry for Test Schematic :

Library

Name

Cell Name Properties

analogLib vpulse For V0: v1=0, v2=2, Ton=5n,
T=10n For V1: v1=0, v2=2,

Ton=10n, T=20n For V2: v1=0,
v2=2, Ton=20n, T=40n For V3:

v1=0, v2=2, Ton=40n, T=80n

analogLib Vdc,vdc For vdd: DC voltage=2.5

For vss: DC voltage=-2.5

analogLib gnd -

Dept of ECE ,Atria Institute of Technology Page 154

Test Schematic :

Settings in ADE L window :

Dept of ECE ,Atria Institute of Technology Page 155

RESULTS :

Dept of ECE ,Atria Institute of Technology Page 156

VISION

To become a pioneer in developing competent professionals with societal and ethical values through

transformational learning and interdisciplinary research in the field of Electronics and Communication

Engineering.

MISSION

The department of Electronics and Communication is committed to:

M1: Offer quality technical education through experiential learning to produce competent

engineering professionals.

M2: Encourage a culture of innovation and multidisciplinary research in collaboration with

industries/universities.

M3: Develop interpersonal, intrapersonal, entrepreneurial and communication skills among students

to enhance their employability.

M4: Create a congenial environment for the faculty and students to achieve their desired goals and

to serve society by upholding ethical values.

PROGRAM EDUCATIONAL OBJECTIVES (PEOS)

Upon completion of the program, graduates will be able to:

PEO1: Tackle complex engineering problems with the sound knowledge of basic science and

mathematics.

PEO2: Utilize their knowledge and skills to develop solutions in multi-disciplinary environments

through collaborative research.

PEO 3: Inculcate effective communication skills, teamwork and leadership for a successful career in

industry and academia.

PEO4: Exhibit professional ethics and social awareness in their professional career and engage in

lifelong learning.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering problems.

Dept of ECE ,Atria Institute of Technology Page 157

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics, natural

sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for the

public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with an

understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions

in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms

of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write effective

reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one’s own work, as a member and leader in a team, to

manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1

Apply the knowledge of leading-edge hardware and software tools to solve problems in the area of

Embedded Systems, VLSI and IoT.

PSO2

Apply the concepts of Signal and Image Processing to solve problems in communication systems.

Dept of ECE ,Atria Institute of Technology Page 158

Dept of ECE ,Atria Institute of Technology Page 159

	ATRIA INSTITUTE OF TECHNOLOGY
	(Affiliated To Visvesvaraya Technological University, Belgaum)
	Anandanagar, Bangalore-24
	VLSI LAB MANUAL
	2020-21

	Tools used for ASIC Flow:
	Getting Started :
	7. Functional Simulation using Cadence runs in 3 stages:
	Module 3: Synthesis Inputs for Synthesis :
	genus -f rc_script.tcl
	Module 4 : Physical Design Mandatory Inputs for PD :
	Module 4.1 : Importing Design
	Module 4.2 : Floorplan Steps under Floorplan :
	3. Channel Spacing between Core Boundary to IO Boundary
	Module 4.3 : Power Planning Steps under Power Planning :
	Module 4.4.1 : Pre - Placement
	Module 4.5 : Placement
	2. Select Place → Place Standard Cell → Run Full Placement → Mode → Enable ‘Place I/O Pins’ → OK → OK .
	Placed Design
	Report Generation and Optimization :
	→ Analysis Type – Setup → OK
	→ Area Report :
	→ Power report :
	Design Optimization :
	Module 4.6 : Clock Tree Synthesis
	Report Generation and Design Optimization :
	Setup Timing Analysis :
	Design Optimizations :
	Report Generation and Design Optimization : Setup Report :
	Design Optimization : (1)
	Saving Database :
	3. Saving GDS => File → Save → GDS/OASIS → <FileName>.gds → OK
	LAB 1 : INVERTER
	Inverter :
	// Define our own Inverter,
	// Declarations of I/O, Power and Ground Lines
	// Instantiate pmos and nmos switches
	Test Bench of Inverter :
	//Test Bench of Inverter Module
	//Instantiate inverter module
	//Display
	//Apply Stimulus
	Constraints file for Synthesis file : inverter.sdc
	Truth Table :
	csh
	Functional Simulation :
	1. Compilation :
	2. Elaboration :
	3. Simulation :
	Compilation :
	Elaboration :
	Simulation :
	Synthesis :
	Script file is explained below as shown in Figure 19 :
	Constraint File : Not Mandatory
	read_sdc./constraints_top.sdc]
	synthesize -to_mapped -effort medium
	Constraints file :
	genus -f rc_script.tcl -gui
	Area Report :
	Power Report :
	Gate Report :
	GUI :
	Generated Files :
	LAB 2 : BUFFER
	Test Module :
	RESULT :
	Design :
	LAB 3 : Transmission Gate
	Test Module : (1)
	RESULT : (1)
	Test Module : (2)
	RESULT : (2)
	Test Module : (3)
	RESULT : (3)
	Test Module : (4)
	RESULT : (4)
	Test Module : (5)
	RESULT : (5)
	Test module :
	RESULT : (6)
	Test module : (1)
	RESULT : (7)
	LAB 5 : FLIP FLOPS
	Test Module : (6)
	RESULT : (8)
	Test Module : (7)
	SCHEMATIC :
	RESULT : (9)
	Test Module : (8)
	RESULT : (10)
	Test Module : (9)
	RESULT : (11)
	Test Module : (10)
	RESULT : (12)
	Test Module : (11)
	RESULT : (13)
	Test Module : (12)
	RESULT : (14)
	Test Module : (13)
	RESULT : (15)
	Sub Module :
	Test Module : (14)
	RESULT : (16)
	Creating a new Library:
	Creating a schematic cell view:
	Now, Browse gpdk180 --> cell (component) --> symbol (view) .

	Symbol creation:
	Create —> Cellview—> From Cellview.

	Inverter test design:
	Simulation:
	Choosing Analysis:
	Selecting outputs for plotting:
	Running the simulation:
	Saving the simulator state:
	Creating a Layout view of inverter:
	Adding components to Layout:
	Physical Verification :
	Running a DRC:
	Running LVS:
	Running Quantus QRC:
	To Create the configuration view
	File --> Close Window.
	To run the Circuit with Parasitics
	Streaming Out the Design

	Circuit Diagram :
	Symbol Creation :
	Theory :
	Schematic Entry :
	Theory : (1)
	Schematic Entry : (1)
	Theory : (2)
	Schematic Entry : (2)

