
VMware Horizon Session Enhancement 
SDK Programming Guide

For Horizon 7, Horizon 8, and Horizon Cloud Service on 
Microsoft Azure

VMware Horizon Session Enhancement SDK 3.3



You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright 
©

 2021 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 2

https://docs.vmware.com/
https://docs.vmware.com/copyright-trademark.html


Contents

VMware Horizon Session Enhancement SDK Programming Guide 8

1 Overview of the VMware Horizon Session Enhancement SDK 9
Introduction to the VMware Horizon Session Enhancement API 9

What's New in VMware Horizon Session Enhancement SDK 3.3 11

About VMware Horizon Session Enhancement Key Concepts 11

VMware Horizon Session Enhancement Program Flow 13

Query Interface 14

RPC API 17

Overlay API 19

Virtual Channel and Side Channel Security 20

Installation 21

Sample Code 22

2 Data Types and Error Codes 23
Data Types 23

Error Codes 27

3 Channel Interaction Functions 29
v1.Broadcast 30

v1.Connect 31

v1.Disconnect 31

v1.GetChannelState 32

v1.GetConnectionState 32

v1.Poll 33

v1.RegisterChannelNotifySink 33

v1.RegisterObserver 34

v1.ThreadInitialize 34

v1.ThreadUninitialize 35

v1.UnregisterChannelNotifySink 35

v1.UnregisterObserver 36

v2.GetSessionType 36

v2.SwitchToStreamDataMode 37

v3.Poll 37

4 RPC Functions 39
v1.AppendNamedParam 41

v1.AppendNamedReturnVal 41

VMware, Inc. 3



v1.AppendParam 42

v1.AppendReturnVal 42

v1.CreateChannelObject 43

v1.CreateContext 44

v1.DestroyChannelObject 44

v1.DestroyContext 45

v1.GetCommand 45

v1.GetId 46

v1.GetMinimalStreamDataSize 46

v1.GetNamedCommand 47

v1.GetNamedParam 47

v1.GetNamedReturnVal 48

v1.GetObjectName 48

v1.GetObjectState 49

v1.GetParam 49

v1.GetParamCount 50

v1.GetReturnCode 50

v1.GetReturnVal 51

v1.GetReturnValCount 51

v1.GetStreamDataHeaderTail 52

v1.GetStreamDataHeaderTailSize 53

v1.GetStreamDataInfo 53

v1.GetStreamDataSize 54

v1.Invoke 54

v1.SetCommand 55

v1.SetNamedCommand 56

v1.SetReturnCode 56

v1.VariantClear 57

v1.VariantCopy 57

v1.VariantFromBlob 58

v1.VariantFromChar 58

v1.VariantFromDouble 59

v1.VariantFromFloat 59

v1.VariantFromInt32 60

v1.VariantFromInt64 60

v1.VariantFromShort 61

v1.VariantFromStr 61

v1.VariantFromUInt32 62

v1.VariantFromUInt64 62

v1.VariantFromUShort 63

v1.VariantInit 63

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 4



v2.FreeStreamDataPayload 64

v2.GetStreamData 64

v2.GetStreamDataInfo 65

v2.IsSideChannelAvailable 66

v2.RequestSideChannel 66

v2.SetOps 67

v3.CreateContext 68

v3.GetObjectOptions 69

v4.GetObjectStateByName 70

5 Overlay Functions 71
VDPOverlayGuest_Interface Functions 71

v1.DisableOverlay 71

v1.EnableOverlay 72

v1.Exit for the Guest-Side Library 72

v1.GetLayoutMode 73

v1.Init for the Guest-Side Library 73

v1.IsOverlayEnabled 74

v1.IsWindowRegistered 74

v1.RegisterWindow 75

v1.SendMsg for the Guest-Side Library 75

v1.SetLayoutMode 76

v1.UnregisterWindow 78

v2.GetColorkey 78

v3.GetAreaRect 79

v3.GetLayer 80

v3.RegisterWindow 80

v3.SetAreaRect 81

v3.SetLayer 82

v4.GetAreaRect 82

v4.GetBackgroundColor 83

v4.GetHWnd 84

v4.GetInfoString 84

v4.SetAreaRect 85

v4.SetBackgroundColor 86

v4.SetInfoString 86

VDPOverlayClient_Interface Functions 88

v1.Exit for the Client-Side Library 88

v1.GetInfo 88

v1.Init for the Client-Side Library 89

v1.SendMsg for the Client-Side Library 90

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 5



v1.Update 90

v2.CreateOverlay 91

v2.DestroyOverlay 92

v2.DisableOverlay 92

v2.EnableOverlay 93

v2.GetInfo 94

v2.InitLocal 94

v2.SetClipRegion 95

v2.SetColorkey 96

v2.SetLayer 96

v2.SetLayoutMode 97

v2.SetPosition 99

v2.SetSize 99

v2.Update 100

v3.GetTopology 101

v4.GetInfoString 102

v4.GetInfoStringProperties 103

v4.SetInfoString 103

v4.SetInfoStringProperties 105

6 Channel Sinks 106
v1.OnChannelStateChanged 106

v1.OnConnectionStateChanged 107

v1.OnPeerObjectCreated 107

7 RPC Sinks 108
v1.OnAbort 108

v1.OnDone 109

v1.OnInvoke 109

v1.OnObjectStateChanged 110

8 Overlay Sinks 111
VDPOverlayGuest_Sink Functions 111

v1.OnOverlayCreateError 111

v1.OnOverlayReady 112

v1.OnOverlayRejected 112

v1.OnUserMsg (Guest Sink) 112

VDPOverlayClient_Sink Functions 113

v1.OnLayoutModeChanged 113

v1.OnOverlayDisabled 114

v1.OnOverlayEnabled 114

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 6



v1.OnUserMsg (Client Sink) 115

v1.OnWindowObscured 115

v1.OnWindowPositionChanged 116

v1.OnWindowRegistered 116

v1.OnWindowSizeChanged 117

v1.OnWindowUnregistered 117

v1.OnWindowVisible 118

v3.OnLayerChanged 118

v3.OnTopologyChanged 119

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 7



VMware Horizon Session Enhancement SDK 
Programming Guide

This document, VMware Horizon Session Enhancement SDK Programming Guide, provides 
information about developing applications using the VMware Horizon® Session Enhancement 
Application Programming Interface (API). VMware provides several software development kit 
(SDK) products, each of which targets different developer communities and platforms.

Intended Audience

This guide is intended for software developers who want to create applications that are used 
remotely over a VMware Horizon 7, VMware Horizon 8, or VMware Horizon Cloud Service on 
Microsoft Azure connection.

VMware, Inc. 8



Overview of the VMware Horizon 
Session Enhancement SDK 1
With the VMware Horizon Session Enhancement Software Development Kit (SDK), you can 
develop applications that communicate between a client and a remote desktop over a Horizon 
connection using the Blast Extreme or PCoIP display protocol.

The SDK contains resources such as documentation, include files, and code samples, to help you 
develop applications that use the VMware Horizon Session Enhancement API.

This chapter includes the following topics:

n Introduction to the VMware Horizon Session Enhancement API

n What's New in VMware Horizon Session Enhancement SDK 3.3

n About VMware Horizon Session Enhancement Key Concepts

n VMware Horizon Session Enhancement Program Flow

n Query Interface

n RPC API

n Overlay API

n Virtual Channel and Side Channel Security

n Installation

n Sample Code

Introduction to the VMware Horizon Session Enhancement 
API

The VMware Horizon Session Enhancement API specifies how the client side and the desktop 
side of an application can communicate over a Horizon connection. All interactions with the API 
are asynchronous.

Any software that uses the Horizon Session Enhancement API must have two components:

n Application

This is the code that runs on a remote desktop.

VMware, Inc. 9



n Plug-In

This is the code that is installed on a client.

The Horizon Session Enhancement API consists of two distinct APIs:

n Remote Procedure Call (RPC) API

The RPC API provides an asynchronous, callback-driven communication channel between 
applications that run on a remote desktop and a plug-in that runs on a client. The RPC API 
also handles the marshaling and un-marshaling of parameters.

n Overlay API

The Overlay API solves the problem of displaying rendered images on the client. Images 
appear to a user as a local window on the remote desktop.

OpenSSL Issue

The Horizon Session Enhancement API dynamically loads the OpenSSL library to implement its 
security features. If a software's application and plug-in components also dynamically load the 
OpenSSL library in the same way as the Horizon Session Enhancement API, you must adhere to 
the following rules to prevent crashes or exceptions.

1 Plug-in components must not call the CRYPTO_set_locking_callback(), 
CRYPTO_set_id_callback(), and CRYPTO_set_add_lock_callback() functions since vmware-
remotemks already call these functions.

2 Application components must set up the preceding callbacks before loading the Horizon 
Session Enhancement API library. They must also ensure that those callbacks are valid before 
unloading the Horizon Session Enhancement API library.

3 If the code is shared by both the plug-in and application components, you must call the 
preceding three callback functions if CRYPTO_get_locking_callback() returns NULL. You must 
call those three functions to set callbacks at the same time.

Supported Versions of Horizon Software

The Horizon Session Enhancement API supports the following types of pods.

n Horizon pods running Horizon 7 or Horizon 8 (Horizon 2006 and later) software.

To support the latest features and interfaces of the Horizon Session Enhancement API, 
ensure that your Horizon pods are running on the latest release version of Horizon 7 or 
Horizon 8.

n Horizon Cloud pods in Microsoft Azure.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 10



To support the latest features and interfaces of the Horizon Session Enhancement API, 
ensure that your Horizon Cloud pods are running on the latest release version of the pod 
manifest.

Note   If your pods are running on an older release version of Horizon software or of the Horizon 
Cloud Service on Microsoft Azure pod manifest, some features and interfaces of the Horizon 
Session Enhancement API are not supported.

Supported Client Operating Systems

The Horizon Session Enhancement API supports all Windows, Linux, and Mac operating systems 
that the Horizon Client software supports. For more information about supported operating 
systems, see the VMware Horizon Client Documentation.

What's New in VMware Horizon Session Enhancement SDK 
3.3

The following list summarizes the new features and changes found in version 3.3 of the VMware 
Horizon Session Enhancement SDK.

n The Overlay API offers improvements for displaying rendered images.

n This version of the SDK no longer ships with a copy of VDPService.dll. To preserve 
compatibility with previous and future releases of Horizon, you must use the copy of 
VDPService.dll that is installed with the Horizon agent software. For more information, see 
the "Remote Desktop" section under Installation.

n This version of the SDK includes a .cpp file that replaces the import library from previous 
versions. The .cpp file provides API entry points and the code for loading VDPService.dll.

About VMware Horizon Session Enhancement Key Concepts

To effectively use the VMware Horizon Session Enhancement API, it is important to become 
familiar with the key concepts in Horizon Session Enhancement.

Connection

A connection refers to a Horizon session over the Blast Extreme or PCoIP protocol. You cannot 
alter a connection through the Horizon Session Enhancement API, but you can determine the 
current state of a connection. If a connection is not in the connected state, no action can be 
taken with the API. You can receive notification of a change in a connection's state using 
VDPService_ChannelNotifySink through the v1.OnConnectionStateChanged callback. You can also 
retrieve the current state of a connection using the v1.GetConnectionState method that is found in 
the VDPService_ChannelInterface API.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 11

https://docs.vmware.com/en/VMware-Horizon-Client/index.html


Channel

A channel represents the link between a remote application and a local plug-in. The state of a 
channel is not necessarily the same as the state of a connection.

You can receive notification of a change in the state of a channel through the 
VDPService_ChannelNotifySink function that you register with the channel. The 
v1.OnChannelStateChanged callback delivers the state change. You can query the current state of a 
channel using the v1.GetChannelState method in VDPService_ChannelInterface.

Side Channel

A side channel represents an additional link between a remote application and a local plug-in. A 
side channel belongs to a channel object and is set up via channel. A side channel can only be 
established after a channel object is connected. A side channel is designed to reduce application 
response time when there is network congestion in the main channel. For example, an application 
can use the main channel to transfer real-time control messages and use the side channel to 
transfer large amounts of user data.

Channel Context

A channel context is a wrapper for the parameters and return values of a remote call. A channel 
context holds all of the information for the receiver of a remote call to determine which method is 
requested. Interaction with the channel context is done using VDPRPC_ChannelContextInterface.

Overlay

An overlay is a window or image that is displayed over another so that the image or window 
overlay appears to be part of the underlying UI. This is typically done for video that plays locally, 
but needs to appear as if it is playing on the remote machine.

Remote Procedure Call

A remote procedure call (RPC) is an invocation of a method on a non-local machine. Typically, the 
remote machine publishes a set of methods that it responds to, and the client invokes the 
methods through some channel. A call to v1.Invoke initiates an RPC.

Sink

A sink is a structure of function pointers and is used to communicate asynchronously with user 
code. Each API call has one or more sets of sinks. The user must register the sinks to receive the 
necessary callbacks that give the user important information.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 12



Variant

To ease cross-platform communication, all parameters that are used with the VDP RPC API are 
wrapped in the VDP_RPC_VARIANT data type. This data type contains an identifier that indicates the 
type of data in the structure and the data itself. The use of variants is done through 
VDPRPC_VariantInterface.

VMware Horizon Session Enhancement Program Flow

A typical Horizon Session Enhancement program flow involves the initialization of an application, 
a plug-in, threads, and a channel. It also includes sink registration, the calling of RPC and Overlay 
API methods, and shutting down.

Application Initialization

The user controls the startup of the remote side of the Horizon Session Enhancement system. 
Upon application launch, the user code calls the VDPService_ServerInit method and gets the 
VDP_SERVICE_QUERY_INTERFACE structure. The user code then calls the QueryInterface() method to 
fetch all the interfaces that it needs to do its work.

Note   If QueryInterface() returns FALSE, your Horizon software version does not support the 
function interface that you are trying to fetch.

Plug-In Initialization

On the local side, it is the Horizon Session Enhancement system that initializes the plug-in code. In 
the VDPService_PluginInit call, the user code must store the passed-in reference to the 
VDP_SERVICE_QUERY_INTERFACE structure and use it to request all the interfaces that it needs. At this 
point the user code is only loaded. Once the matching application for the loaded plugin starts, 
VDPService_PluginCreateInstance is called. In this callback, the user may return a pointer that is 
returned in each callback, so that the user code can maintain its state. To match a plug-in and an 
application, VDPService calls the plug-in's VDPService_PluginGetTokenName method and compares 
the string that is returned with the string that is given by the application.

Before returning from the VDPService_PluginCreateInstance callback, the user code must call 
Connect from VDPService_ChannelInterface.

Note   Due to a limitation in the underlying protocol used, the TokenName variable must be less 
than 16 bytes in length.

Sink Registration

To receive callbacks from the Horizon Session Enhancement system, you must register sinks for 
different notifications. The first sink to register is VDPService_ChannelNotifySink. This sink notifies 
you of changes to the connection state, the channel state, and when the application has created 
an object. For more information about object creation, see Channel Object. To register the sink, 

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 13



use the v1.RegisterChannelNotifySink method in VDPService_ChannelInterface. After the sink is 
registered, you receive a handle for that sink that you can use to unregister the sink. You must 
register VDPService_ChannelNotifySink before you call v1.Connect to ensure that you receive a 
notification when the channel is available.

After you register VDPService_ChannelNotifySink, you most likely will not receive a callback for a 
connection state change. This is because by the time the application or plug-in is started, the 
connection is likely to be in the connected state. To confirm that the connection is in the proper 
state prior to any actions, use the GetConnectionState method.

In addition to VDPService_ChannelNotifySink, the following sinks exist:

n VDPRPC_ObjectNotifySink

This is for individual channel objects.

n VDPRPC_RequestCallback

This is for callbacks for each RPC call.

n VDPOverlayGuest_Sink

This is for important overlay notifications for the guest.

n VDPOverlayClient_Sink

These are for important overlay notifications for the client.

Thread Initialization

On the application side, the main thread is the one that the user calls VDPService_ServerInit on. 
On the plug-in side, the main thread is the one that the VDPService_PluginCreateInstance callback 
is received on. For other threads, you must call ThreadInitialize before you call any other 
method in the RPC APIs or the Overlay APIs.

If a thread is no longer needed, you must uninitialize it by calling the v1.ThreadUninitialize 
method.

Channel

For communication to occur, the channel between the application and the plug-in must be active. 
To initialize the channel connection, call the v1.Connect method. It must be called on both sides of 
the connection for each channel. To shut down a channel, call the v1.Disconnect method.

After you call v1.Disconnect, or whenever the channel is in a disconnected state, you must free all 
your channel objects using the v1.DestroyChannelObject method. If the channel is connected 
again, you must recreate any required objects.

Query Interface

QueryInterface() returns an interface, or a structure of function pointers. Both applications and 
plug-ins must call QueryInterface() to retrieve the necessary interfaces.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 14



The query interface data type VDP_SERVICE_QUERY_INTERFACE is a structure that is defined in 
vdpService.h. The application and the plug-in receive a reference to this structure differently. 
The structure has two members: a version attribute, and a function pointer. The version attribute 
notifies the user's application which version of the APIs are available. The function pointer is how 
the user's code will access the other APIs in the system. The function pointer has the following 
definition.

Bool (*QueryInterface) (const GUID *iid, void *iface);

The QueryInterface() function fetches the functions that the user needs to interact with the 
Horizon Session Enhancement API. The following table lists the GUIDs that are defined by 
Horizon Session Enhancement and the function lists that the GUIDs return.

Note   If QueryInterface() returns FALSE, your Horizon software version does not support the 
function interface that you are trying to fetch.

Table 1-1. Horizon Session Enhancement GUIDs

GUID Returned Function List Version Header File

GUID_VDPRPC_VariantInterface_V1 VDPRPC_VariantInterface v1 vdprpc_interface.h

GUID_VDPRPC_ChannelObjectInterface_V3 VDPRPC_ChannelObjectInterface v3 vdprpc_interfaces.h

GUID_VDPRPC_ChannelObjectInterface_V4 VDPRPC_ChannelObjectInterface v4 vdprpc_interfaces.h

GUID_VDPRPC_ChannelContextInterface_V2 VDPRPC_ChannelContextInterface v2 vdprpc_interfaces.h

GUID_VDPOverlay_GuestInterface_V2 VDPOverlay_GuestInterface v2 vdpOverlay.h

GUID_VDPOverlay_GuestInterface_V3 VDPOverlay_GuestInterface v3 vdpOverlay.h

GUID_VDPOverlay_GuestInterface_V4 VDPOverlay_GuestInterface v4 vdpOverlay.h

GUID_VDPOverlay_ClientInterface_V2 VDPOverlay_ClientInterface v2 vdpOverlay.h

GUID_VDPOverlay_ClientInterface_V3 VDPOverlay_ClientInterface v3 vdpOverlay.h

GUID_VDPOverlay_ClientInterface_V4 VDPOverlay_ClientInterface v4 vdpOverlay.h

GUID_VDPService_ChannelInterface_V2 VDPService_ChannelInterface v2 vdpService_interface
s.h

GUID_VDPService_ChannelInterface_V3 VDPService_ChannelInterface v3 vdpService_interface
s.h

GUID_VDPService_ChannelInterface_V4 VDPService_ChannelInterface v4 vdpService_interface
s.h

GUID_VDPService_ServerInterface_V1 VDPService_ServerInterface v1 vdpService_interface
s.h

GUID_VDPService_LocalJobInterface_V1 VDPService_LocalJobInterface v1 vdpService_interface
s.h

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 15



Table 1-1. Horizon Session Enhancement GUIDs (continued)

GUID Returned Function List Version Header File

GUID_VDPRPC_StreamDataInterface_V2 VDPRPC_StreamDataInterface v2 vdprpc_interfaces.h

GUID_VDPService_ObserverInterface_V1 VDPService_ObserverInterface v1 vdpService_interface
s.h

The following sample code shows how to request an interface.

VDP_SERVICE_QUERY_INTERFACE qi;

VDPService_ChannelInterface ci;

qi.QueryInterface(&GUID_VDPService_ChannelInterface_V1, &ci);

Application

The user launches the application, which is the component that runs on the remote desktop. 
After the Application starts and vdpService.dll is loaded, the application calls 
VDPService_ServerInit(). When the application exits, it must call VDPService_ServerExit(). The 
following table describes the two server functions.

Table 1-2. Horizon Session Enhancement Server Functions

Function Description

VDPService_ServerInit The application calls this function when it starts. It must pass an identifying string (the 
token) to the function. The function returns a pointer to VDP_SERVICE_QUERY_INTERFACE and 
the channel handle for this application, which uses the channel handle to initialize user 
threads.

VDPService_ServerExit The application calls this function when it closes down.

VDPService_ServerInit2 Same as VDPService_ServerInit but for a different session. Caller needs to have sufficient 
privilege.

VDPService_ServerExit2 Same as VDPService_ServerExit but for a different session. Caller needs to have sufficient 
privilege.

The following sample code shows how an application initializes.

/* program startup (_tWinMain for example) */

VDP_SERVICE_QUERY_INTERFACE qi;

void *channelHandle;

VDPRPC_VariantInterface vi;

VDPOverlay_GuestInterface ogi;

/* other interfaces omitted */

VDPService_ServerInit("example" /* token */, &qi, &channelHandle);

qi.QueryInterface(&GUID_VDPRPC_VariantInterface_V1, &vi);

qi.QueryInterface(&GUID_VDPOverlay_GuestInterface_V1, &ogi);

/* ... */

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 16



Plug-in

The main difference between the plug-in and the application is that the Horizon software loads 
the code on the client. Therefore, the user-compiled code must be in a DLL or a shared object 
that the system loads. The plug-in must export the following functions.

Table 1-3. Horizon Session Enhancement Exported Plug-In Functions

Function Description

VDPService_PluginInit Invoked when the DLL or SO is loaded. The plug-in receives its reference to 
VDP_SERVICE_QUERY_INTERFACE.

VDPService_PluginInitWithPathF

n

Similar to the VDPService_PluginInit function, but with an additional parameter for 
the absolute path to where the plug-in is loaded from the disk.

VDPService_PluginExit Invoked when the DLL or SO is unloaded and the user session ends.

VDPService_PluginGetTokenName Horizon Session Management uses this function to match the plug-in with the 
application. The token that this function returns must match the token that the 
matching application passes to VDPService_ServerInit for communication to occur.

VDPService_PluginCreateInstanc

e

Invoked when a new channel's identifier matches the one that 
VDPService_PlugingetTokenName returns. More than one instance of a plug-in may 
exist. Horizon Session management matches instances of the plug-in to the correct 
channel.

VDPService_PluginDestroyInstan

ce 

Called when the channel this plug-in instance runs on closes.

RPC API

With the RPC API, applications and plug-ins can communicate across channels. You must perform 
all VDPService initialization steps before you call the RPC API.

Channel Object

Before communication can occur, a channel object with the same name must exist on both sides 
of the connection. To create a channel object, call the v1.CreateChannelObject method. It does not 
matter whether the channel object is created in the application or in the plug-in first. The initial 
state of the channel object is disconnected.

When a channel object is created, a message is sent to the other side of the connection, where 
the callback function v1.OnPeerObjectCreated is called. To create a matching object, call the 
v1.CreateChannelObject method. After the matching object is created, the state of the object on 
both sides is connected and both sides receive a state change notification.

After a channel object is connected, you can request a side channel for this object. There are two 
types of side channels: virtual side channel and TCP side channel. A virtual side channel is an 
additional virtual channel. A TCP side channel is a TCP socket connection between a client and an 
agent. When a side channel is established and both sides receive a state change notification, the 
state of the channel object will change to VDP_RPC_OBJ_SIDE_CHANNEL_CONNECTED.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 17



For a TCP side channel, an agent application can switch to stream data mode to save resources. 
In stream data mode, all VDPService internal threads will be exited and an application has to use 
a TCP socket to send data to and receive data from a plug-in. RPC packets can be created and 
parsed by stream data APIs.

Invoke

After you create a channel object, you can invoke an RPC with the v1.Invoke method. You must 
make the v1.Invoke call on the thread that you create the object on, unless the object is 
configured to allow invoke on any thread.

The v1.Invoke call requires a ChannelContext data structure, which is a wrapper for all the data for 
the RPC, such as the command, parameters, and so on. You create a context with the 
v1.CreateContext function. After the context is created, add information for the RPC to the 
context with the VDPRPC_ChannelContextInterface methods and pass the context to v1.Invoke. 
Even though you create the context, if the call to Invoke succeeds, the API is responsible for 
freeing the context. This is because of the asynchronous nature of the API. When the call to 
v1.Invoke returns, the context might still be in use.

Each channel context has a unique ID that you can retrieve with the v1.GetId method. The ID of a 
context that is passed to an v1.Invoke call is returned as a parameter in the v1.OnDone and 
v1.OnAbort handlers. You can use the ID to map the callbacks to the v1.Invoke call that they refer 
to. The ID of a context that is passed to the handlers represents the return values from the other 
end of the connection and does not match the originating context ID.

Variant

All data that you add to a channel context must be in a VDP_RPC_VARIANT data structure. The 
following code sample shows how to add data to a variant and append it to a context.

VDP_RPC_VARIANT var;

VDPRPC_VariantInterface varIface;

VDPRPC_ChannelContextInterface ctxtIface;

void *contextHandle;

// Call VariantInit() before using the variant

// Failure to call VariantInit() can cause memory corruption issues

varIface.v1.VariantInit(&var);

// Add the parameters to the context

varIface.v1.VariantFromInt32(&var, 32);

ctxtIface.v1.AppendParam(contextHandle, &var);

// The same variant can be used for multiple parameters

varIface.v1.VariantFromString(&var, "sample string");

ctxtIface.v1.AppendNamedParam(contextHandle, "sample param", &var);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 18



// Call VariantClear() after all parameters are added to the context

// Failure to call VariantClear() can lead to memory leaks

varIface.v1.VariantClear(&var);

 

It is recommended that you use the RPCVariant class included with the sample code.

You must call v1.VariantInit before using a variant to avoid causing memory corruption.

After each use of a variant, call the v1.VariantClear method to ensure that all resources are 
freed.

OnInvoke

On a successful v1.Invoke call, the peer object receives an v1.OnInvoke callback. In this callback 
you receive a channel context. The context contains all of the information for the call. To 
respond, add the appropriate return code and return values to the channel context, which is 
returned to the caller when the v1.OnInvoke call returns.

Application Shutdown

The application must call VDPService_ServerExit.

Plug-In Shutdown

The following functions are called during the plug-in shutdown process.

n VDPService_PluginDestroyInstance is called when the channel associated with the remote 
desktop application is closed. Each call to VDPService_PluginCreateInstance has a 
corresponding call to VDPService_PluginDestroyInstance.

n VDPService_PluginExit is called when the Horizon session ends, immediately before the plugin 
DLL is unloaded. The plug-in must free all resources and shut down.

Overlay API

With the Overlay API, you can overlay a window or an image on top of another window or image. 
You typically do this to make video that is playing locally appear as if it is playing on a remote 
machine.

Guest Setup

To use the Overlay API, the first step is to initialize the guest interface by calling the v1.Init 
method. After a successful initialization, register the window that you want to overlay by calling 
the v1.RegisterWindow or v3.RegisterWindow method. The size and position of the registered 
window are tracked and sent to the client automatically. If the client does not reject the 
registered window, you receive the v1.OnOverlayReady callback. When you receive this callback, 
you call the v1.EnableOverlay function to display the overlay on the client.

When you are finished with the window, unregister it by calling v1.UnregisterWindow.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 19



Client Setup

On the client, the first step is to initialize the interface by calling v1.Init, which returns a context 
ID. You use the ID to identify the plug-in instance. When the guest registers a window, the client 
is notified through the v1.OnWindowRegistered sink callback, which gives you a window ID. You 
need both the context ID and the window ID to update the overlay.

After you receive the v1.OnOverlayReady callback, you can start displaying your image by calling 
the v1.Update or v2.Update method. The API does not keep a copy of the image unless the 
copyImage flag is set to true. If you do not own the image resource or you need to free it, you 
must set the copyImage flag.

When you are finished with the overlay, call the v1.Exit method.

Virtual Channel and Side Channel Security

This topic describes the security features of virtual channels and side channels which run over 
Horizon session connections.

Virtual Channel Security

Virtual channels run over the session connection that is established by the remote protocol and 
rely on security offered by the protocol. The communication over these supported protocols is 
highly secure and based on industry-recommended security practices. The endpoints negotiate 
the actual session encryption algorithm that is used by the selected protocol.

In addition, you can increase the security of virtual channels by configuring a list of allowed 
channels. This configuration allows only the channels in the list to be opened by legitimate 
requests and prevents all other channels from being opened. To create the allow list, add the 
channels as registry entries to the .reg file included with the SDK. For more information, see 
VMware Knowledge Base (KB) article 84156.

For detailed information about the types of security offered by the supported protocols, see the 
“Understanding Client Connections” topic in the Horizon Architecture Planning guide, which is 
part of the VMware Horizon Documentation.

To configure the cipher suites and protocols used by the client, follow the client-specific 
procedure described in the “Configuring Security Protocols and Cipher Suites for Specific Client 
Types” topic in the Horizon Client and Agent Security guide, which is part of the VMware Horizon 
Documentation.

For information about the security features of Horizon Cloud Service on Microsoft Azure, see the 
VMware Horizon Cloud Service on Microsoft Azure Security Considerations technical white paper, 
available from VMware Digital Workspace Tech Zone.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 20

https://kb.vmware.com/s/article/84156
https://docs.vmware.com/en/VMware-Horizon/index.html
https://docs.vmware.com/en/VMware-Horizon/index.html
https://docs.vmware.com/en/VMware-Horizon/index.html
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/horizon/vmw-wp-horizon-cloud-microsoft-azure-uslet-white-paper.pdf
https://techzone.vmware.com/


Side Channel Security

Side channels rely on the Advanced Encryption Standard (AES) 128-cipher algorithm in Cipher 
Block Chaining (CBC) mode. The algorithm uses an explicit initialization Vector (IV) as a 
confidentiality mechanism within the context of the IPsec. The random number is generated on 
the remote desktop and exchanged through the main virtual channel which is secured by the 
protocol’s security layer. This exchange does not require any negotiation for an SSL/TLS 
handshake. The application using the side channel must opt in to use the encryption.

The following API methods provide the implementation details for the encryption:

n v1.CreateChannelObject(): Use config flags to negotiate the encryption support between 
sender and receiver.

n v3.GetObjectOptions(): Use this function to verify whether both the sender and receiver 
support encryption.

n v3.CreateContext(): Use this function to create the encryption context before send and 
invoke events.

Installation

To use the Horizon Session Enhancement API, you must use vdpService.dll, which is installed 
by the Horizon agent software.

Remote Desktop

The file vdpService.dll must exist on the remote desktop. When you install the Horizon agent 
software, this file is automatically installed on the remote desktop. For the location of the 
installation directory, see the registry at HKLM\Software\VMware, Inc.\VMware VDM
\RemoteExperienceAgent\InstallPath. The 64-bit version of vdpService.dll is installed under 
x64 in the same directory.

To load vdpService.dll, use the code in vdpService_import.cpp which is included with the SDK.

Client

The file vdpService.dll (.so, .dylib) already exists on the client system and is loaded by 
Horizon Client. Your plugin must not load vdpService.dll, because loading extra copies can 
cause problems.

Windows Client

Copy the vdpService RPC plug-ins to the registry at HKLM\Software\VMware, Inc.\VMware 
VDPService\Plugins.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 21



Linux Client

Copy the vdpService RPC plug-ins to /usr/lib/vmware/view/vdpService. Make sure that the 
plug-ins have the execute permission.

Mac Client

For instructions on using the Horizon Session Enhancement SDK with a Mac client, see VMware 
Knowledge Base (KB) article 85186.

Sample Code

The Horizon Session Enhancement SDK includes a directory called samples that contains 
examples of how to use the API.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 22

https://kb.vmware.com/s/article/85186
https://kb.vmware.com/s/article/85186


Data Types and Error Codes 2
The Horizon Session Enhancement API has three groups of data types. The API also specifies 
error codes for various error conditions.

This chapter includes the following topics:

n Data Types

n Error Codes

Data Types

The Horizon Session Enhancement API uses the data types VDP Service, VDP RPC, and Overlay.

VDP Service Data Types
Table 2-1. VDPService Data Types

Data Type Description

VDPService_ConnectionState This enum indicates the current state of the remote connection.

VDPService_ChannelState This enum indicates the current state of a particular channel.

VDPService_SessionType This enum indicates the type of the current session (Blast Extreme or PCoIP).

VDP RPC Data Types

The VDP RPC data types are for use with the VDP RPC API.

Table 2-2. VDP RPC Data Types

Data Type Description

VDP_RPC_VARENUM This enum indicates the type of data that is stored in a VDP_RPC_VARIANT.

VDP_RPC_BLOB Stores data that does not fit in any predefined VDP_RPC_VARENUM. Because VDP 
Service sends the data as is, it cannot protect against changes in byte endianness 
or structure alignment and padding. Use care to avoid errors.

VDP_RPC_VARIANT Wraps the data for the RPC calls. Any data that is sent with the Invoke call must 
be contained in a VDP_RPC_VARIANT.

VMware, Inc. 23



Table 2-2. VDP RPC Data Types (continued)

Data Type Description

VDPRPC_ObjectState Represents the state of an object. Only objects in the VDP_RPC_OBJ_CONNECTED state 
can be used in the Invoke call.

VDPRPC_ObjectConfigurationFlag
s

Used to configure channel objects with 
ChannelObjectInterface.v1.CreateChannelObject.

VDPRPC_ChannelContextOps Used to configure the channel contexts with ChannelContextInterface.v2.SetOps.

VDPRPC_SideChannelType Virtual side channel or TCP side channel.

VDP Overlay Data Types

The VDP Overlay data types are for use with the Overlay API. They are found in vdpOverlay.h.

Table 2-3. VDP Overlay Guest Data Types

Data Type Description

VDPOverlay_WindowId An identifier that represents a remote or guest-side overlay. In earlier versions of 
the API, the windowId and the HWND were the same but in the current version 
they can be different.

VDPOverlay_HWND A representation of the native OS window.

VDPOverlay_UserArgs Parameter that is passed through to the callback on the remote side.

VDPOverlay_LayoutMode This enum represents all of the different layouts that the VDP Overlay API 
supports.

VDPOverlay_Error Returned by many of the Overlay functions. Indicates the results that may occur.

VDP_OVERLAY_INFO_STR_MAX_
LEN

The maximum length, including the NULL terminator, of an information string 
rendered on top of an overlay. The value of this constant is set to 1024 bytes.

Table 2-4. VDP Overlay Client Data Types

Data Type Description

VDPOverlayClient_ContextId Returned from VDPOverlayClient_Init. This ID is used in every call to the 
Client API.

VDPOverlay_OverlayId An identifier that represents a local or client-side overlay that doesn't map to 
a window in the remote desktop. An OverlayId can be used in any function 
that takes a WindowId but a WindowId can not be used as an OverlayId.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 24



Table 2-4. VDP Overlay Client Data Types (continued)

Data Type Description

VDPOverlayClient_OverlayInfo This structure is used in the call to VDPOverlayClient::GetInfo().

In V1 the first member of VDPOverlayClient_OverlayInfo was cbSize which was 
set by the caller to determine the version of the struct. But doing that was 
not backward compatible. For example, a program written to V2 would 
return an error if it called GetInfo() because the size wouldn't be set 
correctly.

Starting with V2 the first member of VDPOverlayClient_OverlayInfo is a 
version and is set by GetInfo() to the version of the function that filled the 
structure. For backward compatibility when calling v1.GetInfo() the caller 
must set version = VDP_OVERLAY_INFO_V1_SIZE before calling v1.GetInfo().

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 25



Table 2-4. VDP Overlay Client Data Types (continued)

Data Type Description

VDPOverlayClient_InfoStringProperties This structure is used in the calls to 
VDPOverlayClient::v4.GetInfoStringProperties() and 
VDPOverlayClient::v4.SetInfoStringProperties().

V1 through V3 of VDPOverlayClient_Interface do not support this structure. 
The members of this structure are defined as follows.

Member Description

enabled A Boolean that activates/deactivates the information 
string.

fgColor An uint32 specifying the foreground/text color used to 
render the information string. 0 specifies the default 
foreground color.

bgColor An uint32 specifying the background color used to 
render the information string. 0 specifies the default 
background color.

xBox An int32 specifying the horizontal distance between 
the background and the edge of the overlay.

Positive numbers position the background on the left. 
Negative numbers position the background on the 
right. 0 uses the default margin.

yBox An int32 specifying the vertical distance between the 
background and the edge of the overlay.

Positive numbers position the background on the top. 
Negative numbers position the background on the 
bottom. 0 uses the default margin.

wBox An int32 defining the width of the background.

Positive numbers denote the maximum width of the 
background. The text will be scaled to fit in this width 
using the LETTERBOX_SHRINK_ONLY layout mode.

Negative numbers denote an absolute width for the 
background. The text will be scaled to fit in this width 
using the LETTERBOX layout mode.

0 sizes the background to the width of the text.

hBox An int32 defining the height of the background.

Positive numbers denote the maximum height of the 
background. The text will be scaled to fit in this height 
using the LETTERBOX_SHRINK_ONLY layout mode.

Negative numbers denote an absolute height for the 
background. The text will be scaled to fit in this height 
using the LETTERBOX layout mode.

0 sizes the background to the height of the text.

VDPOverlay_LayoutMode This enum represents all of the different layouts that the VDP Overlay API 
supports.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 26



Table 2-4. VDP Overlay Client Data Types (continued)

Data Type Description

VDPOverlay_Error Returned by many of the Overlay functions. Indicates the results that may 
occur.

VDPOverlay_ImageFormat This enum defines the pixel format of an image passed to 
VDPOverlayClient_Interface.v2.Update(). Note that 
VDPOverlayClient_Interface.v1.Update() always assumes VDP_OVERLAY_BGRX 
formatted images.

Error Codes

The Horizon Session Enhancement API specifies codes to indicate errors.

OnAbort Reason Error Codes

If the call to the VDPRPC_ChannelObjectInterface.v1.OnInvoke() method fails due to a Horizon 
Session Enhancement error, the supplied OnAbort method is called and the last parameter to this 
method contains one of the following error codes.

Table 2-5. OnAbort Reason Error Codes

Code Description

VDP_RPC_E_APARTMENT_UNINITIALIZED This error occurs if the OnInvoke call is made on a thread that is not 
initialized to be used with the Horizon Session Management API.

VDP_RPC_E_APARTMENT_THREAD This error occurs if the OnInvoke call involves an object that was not 
created on the calling thread and the object is not configured to allow 
OnInvoke calls on different threads.

VDP_RPC_E_OBJECT_NOT_CONNECTED This error occurs if the object handle that is used for the OnInvoke call 
points to an object that is not connected. This error indicates that the 
peer object on the remote side is not yet created.

VDP_RPC_E_PARAMETER One of the required parameters that is passed to the OnInvoke call is 
invalid.

VDP_RPC_E_MEMORY The system fails to allocate the required memory to send the request.

VDP Overlay Error Codes

If an error occurs, many of the methods that are defined in vdpOverlay.h return one of the 
following errors.

Table 2-6. VDP Overlay Error Codes

Code Description

VDP_OVERLAY_ERROR_SUCCESS No error. The call is successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED The call fails because the VDP Overlay components are not properly 
loaded in the Horizon environment.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 27



Table 2-6. VDP Overlay Error Codes (continued)

Code Description

VDP_OVERLAY_ERROR_ALREADY_INITIALI
ZED

This error is only returned from the VDPOverlayGuest_Interface.v1.Init() 
call. The guest Overlay system is already initialized.

VDP_OVERLAY_ERROR_INVALID_PARAME
TER

One of the required parameters that is passed to the call is invalid.

VDP_OVERLAY_ERROR_ALLOCATION_ER
ROR

The system fails to allocate the required memory or system resource to 
handle the call.

VDP_OVERLAY_ERROR_NO_MORE_OVER
LAYS

This error results from a failed attempt to register a window and may be 
received in the VDPOverlayGuest_Sink.v1.OnOverlayCreateError() or 
VDPOverlayClient.v2.CreateOverlay() callback. This error may be due to 
a client-side error. It can also occur if the call tries to register a window 
that is already registered with a different plug-in.

VDP_OVERLAY_ERROR_OVERLAY_REJEC
TED

This error results from a failed attempt to register a window and is 
returned in the reason field of the 
VDPOverlayGuest_Sink.v1.OnOverlayRejected() callback. This error occurs 
if the client does not accept the overlay registration request.

VDP_OVERLAY_ERROR_OVERLAY_NOT_R
EADY

This error occurs when either 
VDPOverlayGuest_Interface.v1.EnableOverlay or 
VDPOverlayGuest_Interface.v1.DisableOverlay fails. It indicates that the 
registered window is not ready, that is, the 
VDPOverlayGuest_Sink.v1.OnOverlayReady() callback is not yet received.

VDP_OVERLAY_ERROR_WINDOW_NOT_R
EGISTERED

The window ID that is specified in the call is not yet registered. Many 
Overlay methods may return this error.

VDP_OVERLAY_ERROR_WINDOW_ALREA
DY_REGISTERED

The window is already registered. This error can be returned from the 
VDPOverlayGuest_Interface.v1.RegisterWindow() method.

VDP_OVERLAY_ERROR_NOT_LOCAL_OVE
RLAY

The overlayId of a guest-side overlay was passed to a function that can 
only be called on a local overlay.

VDP_OVERLAY_ERROR_HOST_OVERLAY_
ERROR

There is an error with a low level library. This error code should be 
treated as similar to INVALID_PARAMETER.

VDP_OVERLAY_ERROR_NOT_SUPPORTED
_BY_CLIENT

The version of the client-side VDP Overlay API does support the feature.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 28



Channel Interaction Functions 3
The Horizon Session Enhancement SDK contains the header file vdpService_interfaces.h. This 
file declares two structures of function pointers, VDPService_ChannelInterface and 
VDPService_ObserverInterface.

You can use the VDPService_ChannelInterface APIs to interact with the remote connection or 
channel. With VDPService_ObserverInterface, two components within the same process can 
communicate with each other.

VDPService_ChannelInterface consists of the following functions:

n v1.Connect

n v1.Disconnect

n v1.GetChannelState

n v1.GetConnectionState

n v1.Poll

n v1.RegisterChannelNotifySink

n v1.ThreadInitialize

n v1.ThreadUninitialize

n v1.UnregisterChannelNotifySink

n v2.GetSessionType

n v2.SwitchToStreamdataMode

n v3.Poll

VDPService_ObserverInterface consists of the following functions:

n v1.Broadcast

n v1.RegisterObserver

n v1.UnregisterObserver

This chapter includes the following topics:

VMware, Inc. 29



n v1.Broadcast

n v1.Connect

n v1.Disconnect

n v1.GetChannelState

n v1.GetConnectionState

n v1.Poll

n v1.RegisterChannelNotifySink

n v1.RegisterObserver

n v1.ThreadInitialize

n v1.ThreadUninitialize

n v1.UnregisterChannelNotifySink

n v1.UnregisterObserver

n v2.GetSessionType

n v2.SwitchToStreamDataMode

n v3.Poll

v1.Broadcast

Broadcasts a given name's message to all observers. Basically, it will call all registered callbacks.

This function is a member of VDPService_ObserverInterface.

Method Signature

BOOL (*v1.Broadcast)(const char *name, const void *cookie, const void *data); 

Parameters

Parameter Description

name The name of the message.

cookie User-defined data. It can be as simple as request ID.

data Message data.

Return Values

Value Description

TRUE Success

FALSE Failure

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 30



v1.Connect

Starts the channel connection. You must call v1.Connect on both the application and the plug-in 
side, though the order does not matter. Call this method prior to exiting the 
VDPService_PluginCreateInstance callback.

This function is a member of VDPService_ChannelInterface.

Method Signature

Bool (*v1.Connect)(void);

Parameters

None

Return Values

Value Description

TRUE Call succeeded.

FALSE Call failed.

v1.Disconnect

Closes the underlying channel connection. You can call this method on either the plug-in or the 
application side.

This function is a member of VDPService_ChannelInterface.

Method Signature

Bool (*v1.Disconnect)(void);

Parameters

None

Return Values

Value Description

TRUE Call succeeded.

FALSE Call failed.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 31



v1.GetChannelState

Queries the current state of the channel connection between application and plug-in instances. 
The channel to query is determined by the ID of the calling thread.

This function is a member of VDPService_ChannelInterface.

Method Signature

VDPService_ChannelState (*v1.GetChannelState)(void);

Parameters

None

Return Values

Value Description

VDP_SERVICE_CHAN_UNINITIALIZED The channel for this thread could not be found.

VDP_SERVICE_CHAN_DISCONNECTED The channel is inactive.

VDP_SERVICE_CHAN_PENDING The channel is open on the calling end, but not yet connected.

VDP_SERVICE_CHAN_CONNECTED The channel is active.

v1.GetConnectionState

Used to query the state of the underlying user session. Note that depending on when a sink was 
registered, you might not receive a callback noting that the connection state has changed. Use 
this method to determine the state of the connection at any time.

This function is a member of VDPService_ChannelInterface.

Method Signature

VDPService_ConnectionState (*v1.GetConnectionState)(void);

Parameters

None

Return Values

Value Description

VDP_SERVICE_CONN_UNINITIALIZED The user session cannot be found.

VDP_SERVICE_CONN_DISCONNECTED The user session is currently inactive.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 32



Value Description

VDP_SERVICE_CONN_PENDING The user session is not connected, but active on the calling end.

VDP_SERVICE_CONN_CONNECTED The user session is active.

v1.Poll

Allows the Horizon Session Enhancement system to process any waiting events. This call is 
required on any thread that the v1.ThreadInitialize call was made to so that the Horizon Session 
Enhancement system can function. If there are no waiting events, this call will just return.

Note   All waiting events will be processed, so control may not be returned to you for some time. 
Most events will cause calls to registered sinks. Callbacks might be fired.

On Windows, if the thread uses its own message loop, using the method is not required.

This function is a member of VDPService_ChannelInterface.

Method Signature

void (*v1.Poll)(void);

Parameters

None

Return Values

None

v1.RegisterChannelNotifySink

Registers the given VDPService_ChannelNotifySink with the channel associated with the calling 
thread. You may register any number of sinks, and each will receive a callback when an event 
occurs.

The sinkHandle parameter will be set to the handle assigned to the given sink. This is used to 
unregister the sink with the channel.

This function is a member of VDPService_ChannelInterface.

Method Signature

Bool (*v1.RegisterChannelNotifySink)(const VDPService_ChannelNotifySink *sink, void *userData, uint32 

*sinkHandle);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 33



Parameters

Parameter Description

sink The sink to register with the channel.

userData Data that will be passed into any callbacks to this sink. Can be NULL.

sinkHandle Set to the handle assigned to this sink.

Return Values

Value Description

TRUE The sink was successfully registered.

FALSE Sink registration failed.

v1.RegisterObserver

Registers an observer with the given name and callbacks.

This function is a member of VDPService_ObserverInterface.

Method Signature

VDPService_ObserverId (*v1.RegisterObserver)(const char *name, void *context, 

VdpServiceObserverCallback cb); 

Parameters

Parameter Description

name The name of message caller is interested.

context Context pointer caller want to passed in callback.

cb Callback function when given name message is available.

Return Values

Value Description

uint32 The ID of the registered observer or 0 (failed).

v1.ThreadInitialize

Initializes the thread for use with the Horizon Session Enhancement APIs. This method must be 
called on any thread that is not the main thread. Do not call this method on the thread that 
received the VDPService_PluginCreateInstance callback or that the VDPService_ServerInit call was 
made from.

This function is a member of VDPService_ChannelInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 34



Method Signature

Bool (*v1.ThreadInitialize)(void *channelHandle, uint32 unusedFlag); 

Parameters

Parameter Description

channelHandle Represents the channel instance that this plug-in instance is running on. The channel handle is returned 
from the VDPService_ServerInit call or passed from the VDPService_PluginCreateInstance method.

unusedFlag Currently unused.

Return Values

Value Description

TRUE The thread was successfully initialized.

FALSE Thread initialization failed.

v1.ThreadUninitialize

Uninitializes the calling thread, freeing all resources associated with Horizon Session 
Enhancement. No API calls must be made from this thread after this call. Only call this method on 
threads that had v1.ThreadInitialize invoked.

This function is a member of VDPService_ChannelInterface.

Method Signature

Bool (*v1.ThreadUninitialize)(void); 

Parameters

None

Return Values

Value Description

TRUE The thread was successfully uninitialized.

FALSE Thread uninitialization failed.

v1.UnregisterChannelNotifySink

Removes the sink associated with the given handle from the list of sinks that the channel 
associated with the calling thread will notify of Horizon Session Enhancement events.

This function is a member of VDPService_ChannelInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 35



Method Signature

(*v1.UnregisterChannelNotifySink)(uint32 sinkHandle);

Parameters

Parameter Description

sinkHandle The handle returned from v1.RegisterChannelNotifySink of the sink to be unregistered.

Return Values

Value Description

TRUE The sink that matches the given handle was successfully unregistered.

FALSE The sink is still registered with the handle.

v1.UnregisterObserver

Unregisters an observer with the given name and callbacks.

This function is a member of VDPService_ObserverInterface.

Method Signature

BOOL (*v1.UnregisterObserver)(VDPService_ObserverId id); 

Parameters

Parameter Description

id The observer id returned from v1.RegisterObserver.

Return Values

Value Description

TRUE Unregister succeeded.

FALSE Unregister failed.

v2.GetSessionType

Gets the current virtual channel type.

This function is a member of VDPService_ChannelInterface.

Method Signature

VDPService_SessionType (*v2.GetSessionType)(void); 

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 36



Parameters

None

Return Values

Value Description

VDP_SERVICE_NONE_SESSION Session type not determined yet.

VDP_SERVICE_PCOIP_SESSION vdpservice is running in a PCoIP session.

VDP_SERVICE_BLAST_SESSION vdpservice is running in a Blast Extreme session.

v2.SwitchToStreamDataMode

Switches vdpservice to TCP socket mode. This is an agent-only feature. In this mode, user can 
use output socket handle to send and receive data via a TCP socket handler. All internal 
vdpservice threads are terminated in order to save resources. Only VDPRPC_StreamDataInterface 
and VDPService_ServerExit APIs can be called for the data processing and final clean-up.

This function is a member of VDPService_ChannelInterface.

Method Signature

BOOL (*v2.SwitchToStreamDataMode)(const char *tcpObjName, void *channelHandle, int *fd);

Parameters

Parameter Description

tcpObjName The name of the object which requested the TCP side channel.

channelHandle Represents the channel interface that this plug-in is running on. The channelHandle is returned from the 
Vdpservice_ServerInit call or passed from the VDPService_PluginCreateInstance method.

fd Output TCP socket handle.

Return Values

Value Description

TRUE Switching to stream data mode succeeded.

FALSE Switching to stream data mode failed.

v3.Poll

Allows the Horizon Session Enhancement system to process any waiting events. This call is 
required on any thread that the v1.ThreadInitialize call was made to so that the Horizon Session 

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 37



Enhancement system can function. If there are no waiting events, this call will be blocked until the 
next event or timeout is reached.

Note   All waiting events will be processed, so control may not be returned to you for some time. 
Most events will cause calls to registered sinks. Callbacks might be fired.

On Windows, if the thread uses its own message loop, using the method is not required.

This function is a member of VDPService_ChannelInterface.

Method Signature

void (*v3.Poll)(int timeout);

Parameters

Parameter Description

timeout The time limit after which the Poll method will return.

Return Values

None

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 38



RPC Functions 4
The vdprpc_interfaces.h header file included in the Horizon Session Enhancement SDK contains 
a set of structures of function pointers to send RPC messages.

This chapter includes the following topics:

n v1.AppendNamedParam

n v1.AppendNamedReturnVal

n v1.AppendParam

n v1.AppendReturnVal

n v1.CreateChannelObject

n v1.CreateContext

n v1.DestroyChannelObject

n v1.DestroyContext

n v1.GetCommand

n v1.GetId

n v1.GetMinimalStreamDataSize

n v1.GetNamedCommand

n v1.GetNamedParam

n v1.GetNamedReturnVal

n v1.GetObjectName

n v1.GetObjectState

n v1.GetParam

n v1.GetParamCount

n v1.GetReturnCode

n v1.GetReturnVal

n v1.GetReturnValCount

VMware, Inc. 39



n v1.GetStreamDataHeaderTail

n v1.GetStreamDataHeaderTailSize

n v1.GetStreamDataInfo

n v1.GetStreamDataSize

n v1.Invoke

n v1.SetCommand

n v1.SetNamedCommand

n v1.SetReturnCode

n v1.VariantClear

n v1.VariantCopy

n v1.VariantFromBlob

n v1.VariantFromChar

n v1.VariantFromDouble

n v1.VariantFromFloat

n v1.VariantFromInt32

n v1.VariantFromInt64

n v1.VariantFromShort

n v1.VariantFromStr

n v1.VariantFromUInt32

n v1.VariantFromUInt64

n v1.VariantFromUShort

n v1.VariantInit

n v2.FreeStreamDataPayload

n v2.GetStreamData

n v2.GetStreamDataInfo

n v2.IsSideChannelAvailable

n v2.RequestSideChannel

n v2.SetOps

n v3.CreateContext

n v3.GetObjectOptions

n v4.GetObjectStateByName

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 40



v1.AppendNamedParam

Append the given Variant as a parameter to the given context and assign it a name. Note that 
the parameter is added to the end of the list with all parameters, even those without assigned 
names.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.AppendNamedParam)(void *contextHandle, const char *name, const VDP_RPC_VARIANT *v); 

Parameters

Parameter Description

contextHandle The context to append the parameter to.

name Name to assign to the parameter.

v The data for the new parameter.

Return Values

Value Description

TRUE Parameter successfully added.

FALSE Unable to append the parameter to the given context.

v1.AppendNamedReturnVal

Similar to v1.AppendReturnVal but also assigns a name to the return value. The return value is 
added to the end of the list of all return values, even those without assigned names.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.AppendNamedReturnVal)(void *contextHandle, const char *name, const VDP_RPC_VARIANT *v);

Parameters

Parameter Description

contextHandle Context to add the return value to.

name Name for the given return value.

v Data for the return value.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 41



Return Values

Value Description

TRUE Name and return value successfully added.

FALSE Failed to add return value.

v1.AppendParam

Adds the given Variant to the context as a parameter for the method. Appends the parameter to 
the end of the list.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.AppendParam)(void *contextHandle, const VDP_RPC_VARIANT *v); 

Parameters

Parameter Description

contextHandle The handle for the context to add the parameter to.

v Variant to store in the context. A copy of the data is made.

Return Values

Value Description

TRUE Data was successfully stored.

FALSE Failed to append the Variant to the context.

v1.AppendReturnVal

Add the given Variant as a return value. The return values can be thought of as out parameters in 
a procedure call. The user can return any data desired here. The Variant is added to the end of 
the return value list.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.AppendReturnVal)(void *contextHandle, const VDP_RPC_VARIANT *v);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 42



Parameters

Parameter Description

contextHandle The handle for the context to append to.

v Data to append.

Return Values

Value Description

TRUE Return value was successfully added.

FALSE Failed to add the given Variant as a return value.

v1.CreateChannelObject

Creates a channel object with the given name. This call, with the same object name, must be 
made on both the plug-in and the application for communication to occur.

Objects begin in the VDP_RPC_OBJ_PENDING state. After the peer object is created, which 
might be prior to the call, the state goes to VDP_RPC_OBJ_CONNECTED. The sink registered 
with the object receives notifications of events involving the new object. A handle for the created 
object is returned in the objectHandle parameter

Note   Objects must be used on the thread on which they are created, unless configured with the 
VDP_RPC_OBJ_CONFIG_INVOKE_ALLOW_ANY_THREAD flag. If this option is used, the user is 
responsible for thread safety.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v1.CreateChannelObject)(const char *name, const VDPRPC_ObjectNotifySink *sink, void *userData, 

VDPRPC_ObjectConfigurationFlags configFlags, void **objectHandle);

Parameters

Parameter Description

name Name for the created object.

sink Sink to be registered with the new object.

userData Data to be sent to all sink callbacks. Can be NULL.

configFlags Set of configuration options for the new object.

objectHandle Handle for the created object is stored here.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 43



Return Values

Value Description

TRUE The object was successfully created.

FALSE Creation of the object failed failed.

v1.CreateContext

Allocates and returns a new channel context to be used for an RPC.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v1.CreateContext)(void *objectHandle, void **ppcontextHandle);

Parameters

Parameter Description

objectHandle A handle for a valid channel object.

ppcontextHandle A handle for the new channel context is returned here.

Return Values

Value Description

TRUE The new context was successfully created and returned.

FALSE Context creation failed.

v1.DestroyChannelObject

Frees all resources associated with the given channel object.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v1.DestroyChannelObject)(void *objectHandle); 

Parameters

Parameter Description

objectHandle The handle, returned from CreateChannelObject, for the object to destroy.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 44



Return Values

Value Description

TRUE The object was successfully destroyed.

FALSE Destruction of the object failed.

v1.DestroyContext

Frees all resources associated with a given context. Call this method only on contexts that you 
have created using CreateContext(). Only contexts that will not be used should be destroyed by 
the user.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v1.DestroyContext)(void *contextHandle); 

Parameters

Parameter Description

contextHandle The handle for the context to destroy.

Return Values

Value Description

TRUE The new context was successfully destroyed.

FALSE Destruction of the context failed.

v1.GetCommand

Queries the command code that was assigned to the given context. Use this method to 
determine the remote method that was being called. Use the SetCommand method to set the 
command code. If 0 is returned, use GetNamedCommand to fetch the command code.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

uint32 (*v1.GetCommand)(void *contextHandle);

Parameters

Parameter Description

contextHandle The handle for the context to query.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 45



Return Values

Value Description

uint32 The uint32 command code set for this context. 0 indicates the command was not set as a uint32.

v1.GetId

Returns the unique ID for the given context. This ID can be used to map callbacks to the Invoke 
call that they refer to.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

uint32 (*v1.GetId)(void *contextHandle);

Parameters

Parameter Description

contextHandle The handle for the context to be queried.

Return Values

Value Description

uint32 The ID for the given context.

v1.GetMinimalStreamDataSize

Gets the minimal stream data size before checking the RPC packet length.

This function is a member of VDPRPC_StreamDataInterface.

Method Signature

int (*v1.GetMinimalStreamDataSize)(int fd);

Parameters

Parameter Description

fd A valid socket handle returned by v2.SwitchToStreamDataMode.

Return Values

Value Description

uint32 The minimal size.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 46



v1.GetNamedCommand

Gets the command code assigned to the given context as a string. If the command was not 
stored as a string, this method returns FALSE, and you must use the GetCommand method instead 
to get the command code.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.GetNamedCommand)(void *contextHandle, char *buffer, int bufferSize);

Parameters

Parameter Description

contextHandle The handle for the context to query.

buffer Out parameter that the name is to be stored in.

bufferSize Size of the buffer to store the name.

Return Values

Value Description

TRUE Named command successfully returned.

FALSE The command was not stored as a string.

v1.GetNamedParam

Fetch the parameter at the given index and return the name, if any, that was assigned to the 
parameter. If no name was given, the name parameter remains untouched.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.GetNamedParam)(void *contextHandle, int index, char *name, int nameSize, VDP_RPC_VARIANT 

*copy); 

Parameters

Parameter Description

contextHandle The context to fetch the parameter from.

index The index of the parameter to return.

name The buffer to store the assigned name in. Can be NULL if you are not interested in the name.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 47



Parameter Description

nameSize Size of the passed-in buffer.

copy Variant into which the parameter data is to be copied.

Return Values

Value Description

TRUE Parameter at the given index returned and name (if any) found.

FALSE Unable to fetch the parameter and name at the given index.

v1.GetNamedReturnVal

Fetches the return value at the given index. Also returns the name assigned to the return value. 
This returned value might be empty, for example, if the length of the name is 0.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.GetNamedReturnVal)(void *contextHandle, int index, char *name, int nameSize, const 

VDP_RPC_VARIANT *v); 

Parameters

Parameter Description

contextHandle Context to query.

index Index of the return value to fetch.

name Buffer to store the name into. Can be NULL.

nameSize Size of the name buffer.

v Variant to copy the return value data into.

Return Values

Value Description

TRUE Successfully fetched the return value and name at the given index.

FALSE Failed to find the return value or the name.

v1.GetObjectName

Queries the given object for the name it was assigned at creation.

This function is a member of VDPRPC_ChannelObjectInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 48



Method Signature

Bool (*v1.GetObjectName)(void *objectHandle, char *buf, uint32 bufSize); 

Parameters

Parameter Description

objectHandle The handle, returned from CreateChannelObject, for the object to query.

buf The name of the object is stored in this parameter.

bufSize Size of the passed-in buf.

Return Values

Value Description

TRUE The name was successfully returned.

FALSE An error occurred and the name was not returned.

v1.GetObjectState

Queries the current state of the given object.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

VDPRPC_ObjectState (*v1.GetObjectState)(void *objectHandle);

Parameters

Parameter Description

objectHandle The handle, returned from CreateChannelObject, for the object to query.

Return Values

Value Description

VDP_RPC_OBJ_UNINITIALIZED Object with the given handle could not be found.

VDP_RPC_OBJ_ DISCONNECTED Matching peer object was destroyed.

VDP_RPC_OBJ_ PENDING Object created locally, waiting for other end to create a peer object.

VDP_RPC_OBJ_ CONNECTED Given object is connected to its peer on the other side of the channel.

v1.GetParam

Fetches the parameter at the given index. The parameter list index begins at zero.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 49



This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.GetParam)(void *contextHandle, int i, VDP_RPC_VARIANT *copy); 

Parameters

Parameter Description

contextHandle The context to query.

i Index of the parameter to fetch.

copy Variant into which the parameter is to be copied.

Return Values

Value Description

TRUE Parameter at the given index was successfully returned.

FALSE Unable to find parameter at the given index.

v1.GetParamCount

Returns the number of parameters appended to the given context.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

 int (*v1.GetParamCount)(void *contextHandle);

Parameters

Parameter Description

contextHandle The handle for the context to query.

Return Values

Value Description

int Number of parameters stored in the given context.

v1.GetReturnCode

Queries the return code of a Remote Procedure Call (RPC). The return code is meant to indicate 
the success or failure of the remote method call, or as an error code.

This function is a member of VDPRPC_ChannelContextInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 50



Method Signature

uint32 (*v1.GetReturnCode)(void *contextHandle);  

Parameters

Parameter Description

contextHandle The handle of the context to query.

Return Values

Value Description

uint32 Return code set for the given context.

v1.GetReturnVal

Fetches the return value at the given index. Index of the return values begin at zero.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.GetReturnVal)(void *contextHandle, int i, const VDP_RPC_VARIANT *v);

Parameters

Parameter Description

contextHandle The context to query.

i Index of the return value to fetch.

v Variant into which the return value data is to be copied.

Return Values

Value Description

TRUE Return value successfully fetched.

FALSE Failed to locate return value at the given index.

v1.GetReturnValCount

Returns the number of Variants stored in the given context as return values.

This function is a member of VDPRPC_ChannelContextInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 51



Method Signature

int (*v1.GetReturnValCount)(void *contextHandle); 

Parameters

Parameter Description

contextHandle The context to query.

Return Values

Value Description

int Number of return values stored in the given context.

v1.GetStreamDataHeaderTail

Obtains the header and tail data for stream data mode to send via the TCP socket. This function 
is mainly for optimization by eliminating a memcpy.

This function is a member of VDPRPC_StreamDataInterface.

Method Signature

Bool (*v1.GetStreamDataHeaderTail)(int fd, int *reqId, int reqCmd, VDP_RPC_BLOB *blob, char *header, 

int headerBufLen, char *tail, int tailBufLen);

Parameters

Parameter Description

fd A valid socket handle return by v2.SwitchToStreamDataMode.

reqId RPC request ID is returned here for the caller to track each request.

reqCmd Request command.

blob Blob data which will be sent using the TCP socket.

header Buffer to hold header data.

headerBufSize Header buffer size. Must be greater than or equal to the size returned by 
v1.GetStreamDataHeaderTailSize.

tail Buffer to hold header data.

tailBufLen Tail buffer size. Must be greater than or equal to the size returned by v1.GetStreamDataHeaderTailSize.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 52



Return Values

Value Description

TRUE Successfully obtained the header and the tail.

FALSE Failure.

v1.GetStreamDataHeaderTailSize

Obtains the size of the header and the tail for stream data mode (TCP socket) if neither 
compression nor encryption is needed. Because stream data mode is an agent-only feature, data 
needs to be encapsulated in RPC format to the client. This API is used to calculate the size of the 
header and the tail.

This function is a member of VDPRPC_StreamDataInterface.

Method Signature

Bool (*v1.GetStreamDataHeaderTailSize)(int fd, int dataSize, int *headerLen, int *tailLen);

Parameters

Parameter Description

fd A valid socket handle returned by SwitchToStreamDataMode.

dataSize The size of the data that the client intends to send.

headerLen The size of the header is returned here.

TailLen The size of the tail is returned here.

Return Values

Value Description

TRUE Successfully obtained the sizes.

FALSE Failure. Must be invalid socket handle.

v1.GetStreamDataInfo

Parses stream data information from received binary data.

This function is a member of VDPRPC_StreamDataInterface.

Method Signature

int (*v1.GetStreamDataInfo)(int fd, const char *recvData, int *reqId, int *reqType, int *reqCmd, 

VDP_RPC_BLOB *blob);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 53



Parameters

Parameter Description

fd A valid socket handle returned by v2.SwitchToStreamDataMode.

recvData Data that needs to be parsed.

reqId RPC request ID is returned here.

reqType RPC request type is returned here.

reqCmd RPC request command is returned here.

blob Blob data that is sent by client is returned here.

Return Values

Value Description

TRUE Successfully parsed recvData as an RPC packet.

FALSE Failure.

v1.GetStreamDataSize

Gets the RPC packet length. The parameter recvData must have at least the minimal-size amount 
of data.

This function is a member of VDPRPC_StreamDataInterface.

Method Signature

int (*v1.GetStreamDataSize)(int fd, const char *recvData);

Parameters

Parameter Description

fd A valid socket handle returned by v2.SwitchToStreamDataMode.

recvData Data that needs to be parsed.

Return Values

Value Description

uint32 The size of the whole RPC packet.

v1.Invoke

Initiates an RPC between the given object and its peer on the other end of the channel.

This function is a member of VDPRPC_ChannelObjectInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 54



Method Signature

Bool (*v1.Invoke)(void *objectHandle, void *contextHandle, const VDPRPC_RequestCallback *callback, 

void *userData);

Parameters

Parameter Description

objectHandle Handle for the object to send the RPC through.

contextHandle A handle for the context containing the data for this RPC callback.

callback User-supplied callbacks to be used after the Invoke call.

userData User-supplied data that will be passed to the callback methods. Can be NULL.

Return Values

Value Description

TRUE Invoke call succeeded and RPC was sent.

FALSE No RPC was sent due to an error.

v1.SetCommand

Sets the command code for the given context. The command code represents the remote 
method that the context is meant to represent.

Note   You can also store the command as a string using SetNamedCommand. However, you can only 
use one method. If you call SetNamedCommand after calling SetCommand, the uint32 command code is 
overwritten. Do not use 0 as the command code because the Horizon Session Enhancement 
system uses 0 to indicate an error.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.SetCommand)(void *contextHandle, uint32 command); 

Parameters

Parameter Description

contextHandle The handle for the context to set.

command The command code for the context.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 55



Return Values

Value Description

TRUE Context command code was successfully set.

FALSE Unable to set the command code.

v1.SetNamedCommand

Sets the command code for the given context with a name. You can either set the command as a 
uint32 (using SetCommand) or as a string, using this method. Use only one method. If you try to use 
both, the second command used will overwrite the previous command.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.SetNamedCommand)(void *contextHandle, const char *command); 

Parameters

Parameter Description

contextHandle The handle for the context to set.

command The command string to use.

Return Values

Value Description

TRUE Command string was successfully set.

FALSE Unable to set the command string.

v1.SetReturnCode

Sets the return code for the given context. This should be done in the OnInvoke callback. This 
value represents the success or failure of the remote call.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v1.SetReturnCode)(void *contextHandle, uint32 code); 

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 56



Parameters

Parameter Description

contextHandle The handle for the context to set.

code Value for the return code.

Return Values

Value Description

TRUE Return code of the context set

FALSE Unable to set the return code.

v1.VariantClear

Clears and frees any resources held by the given Variant. Call this method whenever you are 
finished with a Variant.

This function is a member of VDPRPC_VariantInterface.

Method Signature

Bool (*v1.VariantClear)(VDP_RPC_VARIANT *v);

Parameters

Parameter Description

v The variant to clear.

Return Values

Value Description

TRUE The Variant is returned to initialized state.

FALSE The Variant is unchanged.

v1.VariantCopy

Copies the data held from the Variant src to the Variant target. Any data held by target is 
overwritten. Any data previously held in target is freed before being overwritten with the data in 
src.

This function is a member of VDPRPC_VariantInterface.

Method Signature

Bool (*v1.VariantCopy)(VDP_RPC_VARIANT *target, const VDP_RPC_VARIANT *src);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 57



Parameters

Parameter Description

target The variant to copy the data to.

src The variant to copy the data from.

Return Values

Value Description

TRUE Copy succeeded.

FALSE Copy failed. The target is unchanged.

v1.VariantFromBlob

Stores a copy of the given VDP_RPC_BLOB in the given Variant. Use this method only for data 
that does not fit any of the other types. Data is sent as-is, so changes in architecture (such as 
sending from the Linux client to the Windows guest) and differences in structure padding and 
alignment can cause problems with your data.

This function is a member of VDPRPC_VariantInterface.

Method Signature

Bool (*v1.VariantFromBlob)(VDP_RPC_VARIANT *v, VDP_RPC_BLOB *blob); 

Parameters

Parameter Description

v The variant to set.

blob The VDP_RPC_BLOB to copy.

Return Values

Value Description

TRUE The VDP_RPC_BLOB was successfully copied into the Variant.

FALSE Setting the Variant failed.

v1.VariantFromChar

Stores the given char in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_VariantInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 58



Method Signature

Bool (*v1.VariantFromChar)(VDP_RPC_VARIANT *v, char c);

Parameters

Parameter Description

v The variant to set.

c The char to store.

Return Values

Value Description

TRUE The char was successfully stored in the Variant.

FALSE Setting the Variant failed.

v1.VariantFromDouble

Stores the given double in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_VariantInterface.

Method Signature

Bool (*v1.VariantFromDouble)(VDP_RPC_VARIANT *v, double d);

Parameters

Parameter Description

v The variant to set.

d The double to store.

Return Values

Value Description

TRUE The double was successfully stored in the Variant.

FALSE Setting the Variant failed.

v1.VariantFromFloat

Stores the given float in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_VariantInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 59



Method Signature

Bool (*v1.VariantFromFloat)(VDP_RPC_VARIANT *v, float f);

Parameters

Parameter Description

v The variant to set.

f The float to store.

Return Values

Value Description

TRUE The float was successfully stored in the Variant.

FALSE Setting the Variant failed.

v1.VariantFromInt32

Stores the given int32 in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_VariantInterface.

Method Signature

Bool (*v1.VariantFromInt32)(VDP_RPC_VARIANT *v, int32 i); 

Parameters

Parameter Description

v The variant to set.

i The int32 to store.

Return Values

Value Description

TRUE The int32 was successfully stored in the Variant.

FALSE Setting the Variant failed.

v1.VariantFromInt64

Stores the given int64 in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_VariantInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 60



Method Signature

Bool (*v1.VariantFromInt64)(VDP_RPC_VARIANT *v, int64 i);

Parameters

Parameter Description

v The variant to set.

i The int64 to store.

Return Values

Value Description

TRUE The int64 was successfully stored in the Variant.

FALSE Setting the Variant failed.

v1.VariantFromShort

Stores the given short in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_VariantInterface.

Method Signature

Bool (*v1.VariantFromShort)(VDP_RPC_VARIANT *v, short s);

Parameters

Parameter Description

v The variant to set.

s The short to store.

Return Values

Value Description

TRUE The short was successfully stored in the Variant.

FALSE Setting the Variant failed.

v1.VariantFromStr

Stores a copy of the given const char * in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_VariantInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 61



Method Signature

Bool (*v1.VariantFromStr)(VDP_RPC_VARIANT *v, const char *str);

Parameters

Parameter Description

v The variant to set.

str The const char * to copy.

Return Values

Value Description

TRUE The const char * was successfully copied into the Variant.

FALSE Setting the Variant failed.

v1.VariantFromUInt32

Stores the given uint32 in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_VariantInterface.

Method Signature

Bool (*v1.VariantFromUInt32)(VDP_RPC_VARIANT *v, uint32 ui); 

Parameters

Parameter Description

v The variant to set.

ui The uint32 to store.

Return Values

Value Description

TRUE The uint32 was successfully stored in the Variant.

FALSE Setting the Variant failed.

v1.VariantFromUInt64

Stores the given uint64 in the given variant and sets the internal type properly.

This function is a member of VDPRPC_VariantInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 62



Method Signature

Bool (*v1.VariantFromUInt64)(VDP_RPC_VARIANT *v, uint64 ui); 

Parameters

Parameter Description

v The variant to set.

ui The uint64 to store.

Return Values

Value Description

TRUE The uint64 was successfully stored in the variant.

FALSE Setting the variant failed.

v1.VariantFromUShort

Stores the given unsigned short in the given Variant and sets the internal type properly.

This function is a member of VDPRPC_VariantInterface.

Method Signature

Bool (*v1.VariantFromUShort)(VDP_RPC_VARIANT *v, unsigned short us);

Parameters

Parameter Description

v The variant to set.

us The unsigned short to store.

Return Values

Value Description

TRUE The unsigned short was successfully stored in the Variant.

FALSE Setting the Variant failed.

v1.VariantInit

Initializes the given VDP_RPC_VARIANT. To prevent memory corruption issues, you must initialize a 
variant before using it.

This function is a member of VDPRPC_VariantInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 63



Method Signature

Bool (*v1.VariantInit)(VDP_RPC_VARIANT *v);

Parameters

Parameter Description

v The variant to be initialized.

Return Values

Value Description

TRUE The variant was successfully initialized.

FALSE Initialization failed.

v2.FreeStreamDataPayload

Frees payload memory for the blob data that is returned by v2.GetStreamData or 
v2.GetStreamDataInfo.

This function is a member of VDPRPC_StreamDataInterface.

Method Signature

int (*v2.FreeStreamDataPayload)(VDP_RPC_BLOB *payload);

Parameters

Parameter Description

payload Blob data that needs to be freed.

Return Values

Value Description

TRUE Payload successfully freed.

FALSE Failed to free payload data.

v2.GetStreamData

Obtains the stream data to send via the TCP socket. This API is used when data needs either 
compression or encryption. It also works if neither of them is needed, but the data involves one 
additional memory allocation and memcpy. Be sure to call v2.FreeStreamDataPayload to avoid a 
memory leak.

This function is a member of VDPRPC_StreamDataInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 64



Method Signature

int (*v2.GetStreamData)(int fd, uint32 ctxOptions, int *reqId, int reqCmd, VDP_RPC_BLOB *blob, 

VDP_RPC_BLOB *payload);

Parameters

Parameter Description

fd A valid socket handle returned by v2.SwitchToStreamDataMode.

ctxOptions Compression and encryption options.

reqId RPC request ID is returned here for caller to track each request.

reqCmd Request command.

blob Blob data that needs to be sent.

payload Actual RPC packet data is returned in playload.

Return Values

Value Description

TRUE Payload creation succeeded.

FALSE Payload creation failed.

v2.GetStreamDataInfo

Same as v1.GetStreamDataInfo except for one more parameter, bNeedCleanup, to indicate 
whether the blob data needs to be cleaned up. The size of recvData has to be greater than or 
equal to the size returned by v1.GetStreamDataSize.

This function is a member of VDPRPC_StreamDataInterface.

Method Signature

int (*v2.GetStreamDataInfo)(int fd, const char *recvData, int *reqId, int *reqType, int reqCmd, Bool 

*bNeedCleanup, VDP_RPC_BLOB *blob);

Parameters

Parameter Description

fd A valid socket handle returned by v2.SwitchToStreamDataMode.

recvData Data that needs to be parsed.

reqId RPC request ID is returned here.

reqType RPC request type is returned here.

reqCmd RPC request command is returned here.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 65



Parameter Description

bNeedCleanup Boolean value is returned here to indicate if the blob data need to be freed by v2.FreeStreamDataPayload.

blob Blob data that is sent from the client is returned here.

Return Values

Value Description

TRUE RecvData is parsed as RPC packet successfully.

FALSE Failure.

v2.IsSideChannelAvailable

Determines whether a side channel of the given type is available for use by any channel object. 
Currently, only one object can use an available channel.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v2.IsSideChannelAvailable)(VDPRPC_SideChannelType type);

Parameters

Parameter Description

type Side channel type. Either virtual side channel (VDP_RPC_SIDE_CHANNEL_TYPE_PCOIP) or TCP side channel 
(VDP_RPC_SIDE_CHANNEL_TYPE_TCP)

Return Values

Value Description

TRUE Side channel of the given type is available.

FALSE Side channel of the given type is not available.

v2.RequestSideChannel

Requests a particular type of side channel for a given object.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v2.RequestSideChannel)(void *objectHandle, VDPRPC_SideChannelType type, const char *token);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 66



Parameters

Parameter Description

objectHandle Handle for the object.

type The type of side channel being requested.

token The name of the side channel to use. If NULL, the application token is used.

Return Values

Value Description

TRUE Request succeeded.

FALSE Request failed.

v2.SetOps

Sets channel context options. The most common use is to set the RPC call in post mode, which 
does not expect any response for this channel context.

This function is a member of VDPRPC_ChannelContextInterface.

Method Signature

Bool (*v2.SetOps)(void *contextHandle, VDPRPC_ChannelContextOps option, const VDP_RPC_VARIANT *v);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 67



Parameters

Parameter Description

contextHandle Handle for a valid channel context.

option Specifies how the RPC call should behave. This parameter can take the following 
VDPRPC_ChannelContextOps values:

VDP_RPC_CHANNEL_CONTEXT_OPT_POST

You must set this option before calling Invoke() on the sender side.

If v is set to 0, the RPC is set to the default request mode. In request mode, a response is sent back 
from the peer and delivered to the application through the OnDone callback.

If v is set to 1, the RPC is set to post mode. In post mode, the peer doesn't return a response and no 
OnDone callback is received for this RPC.

VDP_RPC_CHANNEL_CONTEXT_OPT_BEGIN_ASYNC_RESULT

You must set this option before returning from OnInvoke on the receiver side. This option has no 
effect on RPCs in post mode.

If v is set to 0, the RPC operates in default synchronous mode. In synchronous mode, the response 
from the RPC is sent back to the sender immediately after OnInvoke returns.

If v is set to 1, the RPC operates in asynchronous mode. In asynchronous mode, the response from 
the RPC is not sent until v2.SetOps is called with the 
VDP_RPC_CHANNEL_CONTEXT_OPT_END_ASYNC_RESULT option.

RPCs are processed on a single thread through the application's OnInvoke callback. If one RPC call 
takes a long time to execute, other RPC calls will be blocked until it finishes executing. Asynchronous 
mode is a way to process an RPC in a different thread so that other RPCs can be processed in 
parallel.

VDP_RPC_CHANNEL_CONTEXT_OPT_END_ASYNC_RESULT

When you set this option, the result of an asynchronous RPC is immediately sent back to the peer. 
Do not set this option on synchronous RPCs.

v A uint32 that specifies whether a certain option is activated or deactivated. A value of 1 activates and a 
value of 0 deactivates the option.

Return Values

Value Description

TRUE Success

FALSE Failure

v3.CreateContext

Same as v1.CreateContext but supports compression and encryption options.

This function is a member of VDPRPC_ChannelObjectInterface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 68



Method Signature

Bool (*v3.CreateContext)(void *objectHandle, uint32 options, void **ppcontextHandle);

Parameters

Parameter Description

objectHandle Handle for a valid channel object.

options Specifies whether compression and encryption will apply for this context.

You can combine the uint32 values using the bitwise OR operator " | ". However, you can select only 
one encryption option and one compression option. To get the values supported by the current 
channel, use v3.GetObjectOptions.

The following available encryption options are supported on the TCP side channel only. Other side 
channel types transfer data over the main channel, which is already encrypted and secured by the 
remote protocol.

n VDP_RPC_CRYPTO_AES

n VDP_RPC_CRYPTO_SALSA

The following available compression options are supported on the main channel and all side channels.

n VDP_RPC_COMP_SNAPPY

n VDP_RPC_COMP_ZLIB

n VDP_RPC_COMP_MSFT

ppcontextHandle A handle of a new channel context is returned here.

Return Values

Value Description

TRUE A new context was successfully created and returned.

FALSE Context creation failed.

v3.GetObjectOptions

Obtains the following object options after an object is created: (1) encryption and compression 
options which both sides agree on; and (2) side channel types which peer does not support.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

Bool (*v3.GetObjectOptions)(void *objectHandle, uint32 *options);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 69



Parameters

Parameter Description

objectHandle Handle for the object.

options Returns a set of bits that determines which encryption and compression options are supported on this 
channel when calling v3.CreateContext. Bits not included in the returned set are reserved for internal use 
and can be disregarded.

The available encryption options are as follows.

n VDP_RPC_CRYPTO_AES

n VDP_RPC_CRYPTO_SALSA

The available compression options are as follows.

n VDP_RPC_COMP_SNAPPY

n VDP_RPC_COMP_ZLIB

n VDP_RPC_COMP_MSFT

Return Values

Value Description

TRUE Request succeeded.

FALSE Request failed.

v4.GetObjectStateByName

Retrieves the current state of the given object based on the name of the object.

This function is a member of VDPRPC_ChannelObjectInterface.

Method Signature

VDPRPC_ObjectState (*v4.GetObjectStateByName)(const char *name);

Parameters

Parameter Description

name The name of the given object.

Return Values

Value Description

VDP_RPC_OBJ_UNINITIALIZED Object with the given handle could not be found.

VDP_RPC_OBJ_ DISCONNECTED Matching peer object was destroyed.

VDP_RPC_OBJ_ PENDING Object created locally, waiting for other end to create a peer object.

VDP_RPC_OBJ_ CONNECTED Given object is connected to its peer on the other side of the channel.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 70



Overlay Functions 5
The vdpOverlay.h header file defines the set of functions to use in order to support overlay 
functionality in an application.

This chapter includes the following topics:

n VDPOverlayGuest_Interface Functions

n VDPOverlayClient_Interface Functions

VDPOverlayGuest_Interface Functions

With VDPOverlayGuest_Interface functions, you can work with windows; enable and disable the 
client-side overlay; work with the layout mode for the overlay; send a message to the client-side 
plug-in; and release all allocated resources.

v1.DisableOverlay

Deactivates the client-side overlay. Deactivating the overlay is a lightweight way to hide the 
client-side overlay. Unlike v1.UnregisterWindow(), resources used to maintain the overlay are not 
released.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v1.DisableOverlay)(VDPOverlay_WindowId windowId, VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description

windowId The operating system window identifier. It must be previously registered with 
VDPOverlayGuest_RegisterWindow().

userArgs Data that is to be passed to the client-side plug-in when VDPOverlayClient_OverlayEnabled event is sent.

VMware, Inc. 71



Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowId or userArgs parameter was invalid, or there was an error 
with msg.

v1.EnableOverlay

Enables the client-side overlay. Once the window is registered and ready, this function must be 
called to display the client-side overlay.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v1.EnableOverlay)(VDPOverlay_WindowId windowId, VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description

windowId The operating system window identifier. It must be previously registered with 
VDPOverlayGuest_RegisterWindow().

userArgs Data that is to be passed to the client-side plug-in when VDPOverlayClient_OverlayEnabled event is sent.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowId or userArgs parameter was invalid, or there was an error 
with msg.

v1.Exit for the Guest-Side Library

Frees all allocated resources held by the Horizon Session Enhancement Overlay APIs and 
unregisters all windows.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v1.Exit)(void);

Parameters

None

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 72



Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Overlay successfully shut down.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay was never initialized.

v1.GetLayoutMode

Gets the current layout mode for the overlay. The layout mode is used to determine how an 
image is drawn (for example, scaled, cropped, and so on) when the size of the image does not 
match the size of the overlay.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v1.GetLayoutMode)(VDPOverlay_WindowId windowId, VDPOverlay_LayoutMode 

*pLayoutMode);

Parameters

Parameter Description

windowId The window ID of the overlay. It must have been previously registered with 
VDPOverlayGuest_RegisterWindow().

pLayoutMode Current layout mode is stored here.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current layout mode was successfully retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER pLayoutMode is NULL.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowId has not been registered with the Overlay 
API.

v1.Init for the Guest-Side Library

Initializes the guest-side overlay library. This must be the first overlay API function called.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v1.Init)(const VDPOverlayGuest_Sink* sink, void* userData); 

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 73



Parameters

Parameter Description

sink Function pointers called to notify users of overlay events.

userData Parameter that is passed to sink function callbacks.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Initialization succeeded.

VDP_OVERLAY_ERROR_ALREADY_INITIALIZED Init has already been called.

VDP_OVERLAY_ERROR_INVALID_PARAMETER NULL sink parameter, or invalid sink version.

VDP_OVERLAY_ERROR_ALLOCATION_ERROR Internal system error.

v1.IsOverlayEnabled

Queries whether the overlay associated with the given windowId is currently enabled.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

Bool (*v1.IsOverlayEnabled)(VDPOverlay_WindowId windowId); 

Parameters

Parameter Description

windowId The window ID of the overlay. It must have been previously registered with 
VDPOverlayGuest_RegisterWindow().

Return Values

Value Description

TRUE The overlay is enabled.

FALSE The overlay is disabled.

v1.IsWindowRegistered

Determines if a window is currently registered with the guest-side Overlay API.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

Bool (*v1.IsWindowRegistered)(VDPOverlay_WindowId windowId); 

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 74



Parameters

Parameter Description

windowId The window ID of the overlay.

Return Values

Value Description

TRUE Window is currently registered.

FALSE The given window ID is not registered.

v1.RegisterWindow

Registers a window to be overlayed. The position, size, and so on of the window are sent to the 
client so that a client-side plug-in can draw an area of the desktop UI that covers the window, 
giving the illusion that the drawing is happening on the guest side.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v1.RegisterWindow)(VDPOverlay_WindowId windowId, VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description

windowId The window ID of the overlay cast to a VDPOverlay_WindowId. A window can only be registered once.

userArgs Data that is to be passed to the client-side plug-in when the OnWindowRegistered() event handler is called.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Window was successfully registered.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER Invalid window ID.

VDP_OVERLAY_ERROR_ALLOCATION_ERROR Internal system error.

VDP_OVERLAY_ERROR_WINDOW_ALREADY_REGISTERED The given window ID has already been registered with the 
Overlay system.

v1.SendMsg for the Guest-Side Library

Sends a message to the client-side plug-in. The client's OnUserMsg event handler is called with the 
message.

This function is a member of VDPOverlayGuest_Interface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 75



Method Signature

VDPOverlay_Error (*v1.SendMsg)(VDPOverlay_WindowId windowId, void *msg, uint32 msgLen);

Parameters

Parameter Description

windowId The window ID of the overlay. It must have been previously registered with 
VDPOverlayGuest_RegisterWindow(). VDP_OVERLAY_WINDOW_ID_NONE can also be passed if the message is not 
directed to a particular window.

msg Buffer that contains the message.

msgLen Size of the msg buffer.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS The message was sent to the client.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API has not been initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER Error occurred sending the supplied message.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowId has not been registered with the Overlay 
API.

v1.SetLayoutMode

Sets the current layout mode for the overlay. The layout mode is used to determine how an 
image is drawn (for example, scaled, cropped, and so on) when the size of the image doesn't 
match the size of the overlay.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v1.SetLayoutMode)(VDPOverlay_WindowId windowId, VDPOverlay_LayoutMode layoutMode);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 76



Parameters

Parameter Description

windowId The window ID of the overlayr. It must have been previously registered with 
VDPOverlayGuest_RegisterWindow().

layoutMode Determines how the image is drawn. This can be one of the following VDPOverlay_LayoutMode values:

DP_OVERLAY_LAYOUT_CENTER

The image will be drawn centered in the overlay and clipped to the size of the overlay. No scaling will 
take place.

VDP_OVERLAY_LAYOUT_TILE

The image will be tiled to fill the overlay. The image is not scaled but will be clipped on the right/bottom 
edges of the overlay.

VDP_OVERLAY_LAYOUT_SCALE / VDP_OVERLAY_LAYOUT_SCALE_SHRINK_ONLY

The image will be drawn to fill the entire overlay. No attempt at maintaining the aspect ratio of the 
image is made.

VDP_OVERLAY_LAYOUT_CROP / VDP_OVERLAY_LAYOUT_CROP_SHRINK_ONLY

The image will be scaled to fill the entire overlay while maintaining the aspect ratio. Parts of the image 
will be clipped if necessary.

VDP_OVERLAY_LAYOUT_LETTERBOX / VDP_OVERLAY_LAYOUT_LETTERBOX_SHRINK_ONLY

The image will be scaled such that either the width or height of image will match the width/height of the 
overlay. The other dimension will be scaled to maintain the aspect ratio. No part of the image will be 
clipped but the image may not fill the entire overlay.

VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER / VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER

Multiple mode splits the overlay into 9 equal-sized boxes (like a tic-tac-toe board). The image is then 
scaled to fit into the center and corner boxes. This mode can be combined with any of the basic layout 
modes to determine how the image is scaled to fit in the box.

If, after applying the layout mode, the image doesn't fill the entire box, 
VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER places the image in the center of each box and 
VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER justifies the image within each box to the nearest corner 
of the overlay. When combined with basic layout modes that always fill the overlay (e.g. 
VDP_OVERLAY_LAYOUT_SCALE and VDP_OVERLAY_LAYOUT_TILE), the multiple modes 
VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER and VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER 
behave the same.

VDP_OVERLAY_LAYOUT_TO_MULTIPLE (multipleMode, basicMode)

Where multipleMode must be either VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER or 
VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER, and basicMode must be one of the basic layout modes 
listed earlier in this table.

VDP_OVERLAY_LAYOUT_TO_MULTIPLE returns a layout mode from the given multiple and basic 
layout modes.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 77



Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowId or layoutMode parameter was invalid, or there was an 
error with msg.

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayId of a guest-side overlay was passed to a function that 
can only be called on a local overlay.

v1.UnregisterWindow

Unregisters a previously registered window. This method not only deactivates the client-side 
overlay, but also releases any resources allocated to maintain the overlay.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v1.UnregisterWindow)(VDPOverlay_WindowId windowId, VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description

windowId The window ID of the overlay. The windowId must have been previously registered with 
VDPOverlayGuest_RegisterWindow().

userArgs Data that is to be passed to the client-side plug-in when the VDPOverlayClient_WindowUnregistered event is 
sent.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Window was successfully unregistered.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay has not been initialized.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given window ID was never registered with the Overlay 
system.

v2.GetColorkey

Retrieves the color key currently assigned to the windowId.

The color key is VDP_OVERLAY_HOST_COLORKEY_NONE until the windowId is assigned a color key by the 
overlay services.

This function is a member of VDPOverlayGuest_Interface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 78



Method Signature

VDPOverlay_Error (*v2.GetColorkey)(VDPOverlay_WindowId windowId, uint32* colorkey);

Parameters

Parameter Description

windowId The window ID of the overlay, which must have been previously registered with 
VDPOverlayGuest_RegisteredWindow().

colorkey A pointer to a uint32 that contains the color key.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current information retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowId or colorkey parameter was invalid.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowId has not been registered with the Overlay 
API.

v3.GetAreaRect

Gets the current constraining area of the overlay that was set by v3.SetAreaRect().

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v3.GetAreaRect)(VDPOverlay_WindowId windowId, VDPOverlay_Rect* pRect);

Parameters

Parameter Description

windowId The window ID of the overlay. The windowId must have been previously registered.

pRect A pointer to a VDPOverlay_Rect which returns the area of the window that is displaying the overlay. An 
area of all zeros indicates that the overlay doesn't have a constraining area set on it.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Constraining area of the overlay was successfully retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowId has not been registered with the Overlay 
API.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 79



v3.GetLayer

Gets the layer of an overlay as set by v3.SetLayer().

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v3.GetLayer)(VDPOverlay_WindowId windowId, uint32* pLayer);

Parameters

Parameter Description

windowId The window ID of the overlay. The windowId must have been previously registered.

pLayer Returns the layer of the overlay.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Layer of the overlay was successfully retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER pLayer is NULL.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowId has not been registered with the Overlay 
API.

v3.RegisterWindow

Registers a window to be overlayed. The position, size, and so on, of the window are sent to the 
client so that a client-side plug-in can draw an area of the desktop UI that covers the window, 
giving the illusion that the drawing is happening on the guest side.

This function performs the same operations as v1.RegisterWindow() but supports additional 
options.

n A window can be registered multiple times, allowing you to use different areas of the window 
to display the overlay image. Use SetAreaRect() to define the area within the window for 
displaying the overlay image.

n The first parameter is a VDPOverlay_HWND instead of a VDPOverlay_WindowId. The size of 
a VDPOverlay_WindowId is 32-bits but on 64-bit Windows an HWND is 64 bits. The 
parameter VDPOverlay_HWND, which is defined as an HWND, removes the need to cast the 
HWND to a VDPOverlay_WindowId. This solution guarantees that bits are not lost when 
casting.

This function is a member of VDPOverlayGuest_Interface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 80



Method Signature

VDPOverlay_Error (*v3.RegisterWindow)(VDPOverlay_HWND hWnd, VDPOverlay_UserArgs userArgs, 

VDPOverlay_WindowId* pWindowId);

Parameters

Parameter Description

hWnd The operating system window identifier. A window can be registered mutiple times.

userArgs Data that is to be passed to the client-side plug-in when the OnWindowRegistered() event handler is called.

pWindowId Returns a VDPOverlay_WindowId for use in other VDPOverlayGuest_Interface API calls.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Window was successfully registered.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER Invalid window ID.

VDP_OVERLAY_ERROR_ALLOCATION_ERROR Internal system error.

VDP_OVERLAY_ERROR_WINDOW_ALREADY_REGISTERED The given window ID has already been registered with the 
Overlay system.

v3.SetAreaRect

Sets the area of the window for displaying the overlay.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v3.SetAreaRect)(VDPOverlay_WindowId windowId, VDPOverlay_Rect* pRect);

Parameters

Parameter Description

windowId The operating system window identifier. The windowId must have been previously registered.

pRect A pointer to a VDPOverlay_Rect which defines the area of the window for displaying the overlay. Passing 
NULL removes the constraining area and displays the image in the entire area of the window.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 81



Value Description

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowId has not been registered with the Overlay 
API.

v3.SetLayer

Sets the layer on an overlay. If two overlays registered to the same window have overlapping 
area rectangles, you can specify which overlay is on top by setting its layer. Layers have no 
effect on overlays registered to different operating system windows.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v3.SetLayer)(VDPOverlay_WindowId windowId, uint32 layer);

Parameters

Paramater Description

windowId The operating system window identifier. The windowId must have been previously registered.

layer The layer of the overlay. Overlays with a higher layer value will be on top of overlays with a lower layer 
value. If two overlays have the same layer value the overlay created last will be on top.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowId parameter was invalid.

v4.GetAreaRect

Gets the current constraining area of the overlay that was set by v4.SetAreaRect().

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v4.GetAreaRect)(VDPOverlay_WindowId windowId, Bool* pEnabled, Bool* pClipToWindow, 

VDPOverlay_Rect* pRect);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 82



Parameters

Parameter Description

windowId The window ID of the overlay. The windowId must have been previously registered.

pEnabled A pointer to a Bool which returns the enabled flag passed to v4.SetAreaRect(). Pass NULL to not return 
the value.

pClipToWindow A pointer to a Bool which returns the clipToWindow flag passed to v4.SetAreaRect(). Pass NULL to not 
return the value.

pRect A pointer to a VDPOverlay_Rect which returns the rectangle passed to v4.SetAreaRect(). Pass NULL to 
not return the value.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Constraining area of the overlay was successfully retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowId has not been registered with the Overlay 
API.

v4.GetBackgroundColor

Gets the current color used to paint the background of the overlay.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v4.GetBackgroundColor)(VDPOverlay_WindowId windowId, uint32* pBackgroundColor);

Parameters

Parameter Description

windowId The window ID of the overlay. The windowId must have been previously registered.

pBackgroundColor A pointer to a uint32 which returns the color passed to v4.SetBackgroundColor().

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS The current background color was successfully retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowId or pBackgroundColor parameter was invalid.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowId has not been registered with the Overlay 
API.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 83



v4.GetHWnd

With v1.RegisterWindow() the HWND and windowId are the same but v3.RegisterWindow() returns 
a unique windowId. This function provides a way to retrieve the original HWND used to register 
the window.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v4.GetHWnd)(VDPOverlay_WindowId windowId, VDPOverlay_HWND* pHWnd);

Parameters

Parameter Description

windowId The window ID of the overlay. The windowId must have been previously registered.

pHWnd A pointer to a VDPOverlay_HWND which returns the window handle used to register the window.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS The original HWND used to register the window was 
successfully retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER pHWnd is NULL.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowId has not been registered with the Overlay 
API.

v4.GetInfoString

Gets the current information string for the overlay as set by v4.SetInfoString().

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v4.GetInfoString)(VDPOverlay_WindowId windowId, char* infoStr, int32 infoStrSize);

Parameters

Parameter Description

windowId The window ID of the overlay. The windowId must have been previously registered.

infoStr A pointer to a buffer that is filled with the current information string.

infoStrSize The size of the infoStr buffer.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 84



Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current information retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowId has not been registered with the Overlay 
API.

v4.SetAreaRect

Sets the area of the window for displaying the overlay. Same as v3.SetAreaRect(), but with 
additional parameters for turning on and off the rectangle area and for clipping the rectangle 
area to the window.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v4.SetAreaRect)(VDPOverlay_WindowId windowId, Bool enabled, Bool clipToWindow, 

VDPOverlay_Rect* pRect);

Parameters

Parameter Description

windowId The window ID of the overlay. The windowId must have been previously registered.

enabled Determines when the area rectangle is enabled. If TRUE, the overlay is constrained to the given rectangle. 
If FALSE, the overlay will be displayed in the entire area of the window.

clipToWindow Determines if the given area rectangle is clipped to the window.

Note   The image displayed in the overlay is always clipped to the window.

When this flag is TRUE, the given area rectangle is clipped to the window before the layout mode is 
applied, such that the image is scaled down to fit inside the clipped area rectangle.

When this flag is FALSE, the layout mode is applied first and then the image is clipped to the window. In 
this case, the image doesn't shrink when the bounds of the area rectangle extend past the bounds of the 
window, but less of the image is shown.

pRect A pointer to a VDPOverlay_Rect which defines the area of the window for displaying the overlay. Passing 
NULL removes the constraining area and displays the image in the entire area of the window.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 85



Value Description

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowId has not been registered with the Overlay 
API.

v4.SetBackgroundColor

Sets the background color to use when painting the area of the window that the overlay covers. 
This color is visible in the area of the overlay that the image does not cover, for example, the 
borders of the image when the layout mode is VDP_OVERLAY_LAYOUT_LETTERBOX. The 
background color is also visible if the image has an alpha channel.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v4.SetBackgroundColor)(VDPOverlay_WindowId windowId, uint32 bgColor);

Parameters

Parameter Description

windowId The operating system window identifier. The windowId must have been previously registered.

bgColor The color to use when painting the overlay, in XXRRGGBB format. The alpha value in the color is ignored and 
set to 0xFF. Pass 0 to turn off painting the background, which allows the application to show through.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The windowId or bgColor parameter was invalid.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

v4.SetInfoString

Sets a string that is rendered on top of the overlay. The string can contain arbitrary information 
which can assist with closed captioning or debugging information.

This function is a member of VDPOverlayGuest_Interface.

Method Signature

VDPOverlay_Error (*v4.SetInfoString)(VDPOverlay_WindowId windowId, const char* infoStr);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 86



Parameters

Parameter Description

windowId The window ID of the overlay. The windowId must have been previously registered.

infoStr The information string. The maximum string length is VDP_OVERLAY_INFO_STR_MAX_LEN bytes, including 
the NULL terminator.

The information string can contain the following macros:

Macro Definition

$(FPS) FPS or image format (default)

$(IMAGE_SIZE) Source image size (WxH)

$(IMAGE_FORMAT) Source image format

$(OVERLAY_ID) Overlay ID

$(OVERLAY_POS) Overlay position (X,Y)

$(OVERLAY_SIZE) Overlay size (WxH)

$(OVERLAY_LAYER) Overlay layer

$(OVERLAY_LAYOUT) Overlay layout mode

$(OVERLAY_SURFACE) Overlay surface type

$(OVERLAY_FPS) Overlay frame rate

$(OVERLAY_FRAME_NUM) Overlay frame number

$(VIEW_FPS) Horizon Client frame rate

$(VIEW_FRAME_NUM) Horizon Client frame number

$(VIEW_WINDOW_SIZE) Horizon Client window size

$(VIEW_PROTOCOL) Horizon Client protocol (Blast/PCoIP)

$(TIME) Current time

$(DATE) Current date

The following escape characters are recognized, assuming that the string is read from a file or the registry. 
When hardcoding the information string in C/C++ code, you must also escape the backslash character itself.

Escape Character Definition

\n New line; the LF character ('\n' in C/C++) is also a new line

\$ Dollar sign

\\ Backslash

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 87



Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_WINDOW_NOT_REGISTERED The given windowId has not been registered with the Overlay 
API.

VDPOverlayClient_Interface Functions

With VDPOverlayClient_Interface functions, you can work with an overlay, send a message to the 
guest-side plug-in, and release all allocated resources.

v1.Exit for the Client-Side Library

Performs cleanup operations and releases all allocated resources.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v1.Exit)(VDPOverlayClient_ContextId contextId);

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Overlay API was properly shut down.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER contextId was invalid.

v1.GetInfo

Retrieves the current information about the overlay.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v1.GetInfo)(VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId windowId, 

VDPOverlayClient_OverlayInfo* pOverlayInfo);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 88



Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

windowId Window ID that was cached from a previous OnWindowRegistered() event.

pOverlayInfo A pointer to a VDPOverlayClient_OverlayInfo structure which will be filled in with information about the 
overlay.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current information retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId or windowID parameter was invalid, or pOverlayInfo 
was NULL.

v1.Init for the Client-Side Library

This function initializes the client-side overlay library. This method must be the first method called 
in the client-side Overlay API.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v1.Init)(const VDPOverlayClient_Sink* sink, void* userData, 

VDPOverlayClient_ContextId* pContextId);

Parameters

Parameter Description

sink Function pointers called when events are generated by the Overlay API.

userData Parameter that is passed to sink callbacks. Can be NULL.

pContextId Returns an ID that identifies the instance of the API for this plug-in instance.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Overlay client API was initialized.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Internal Horizon Session Enhancement initialization error.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The sink or pContextId parameter is NULL or sink reported an invalid 
version.

VDP_OVERLAY_ERROR_ALLOCATION_ERROR Internal system error.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 89



v1.SendMsg for the Client-Side Library

Sends a message to the guest-side plug-in. The guest's OnUserMsg() event handler is called with 
the message.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v1.SendMsg)(VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId windowId, 

void* msg, uint32 msgLen);

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

windowId The window ID that was cached from a previous OnWindowRegistered() event. You may also pass 
VDP_OVERLAY_WINDOW_ID_NONE if the message is not directed to a particular window.

msg A pointer to a buffer that contains the message.

msgLen Size of the msg buffer in bytes. The maximum message length is VDP_OVERLAY_USER_MSG_MAX_LEN bytes.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS The message was sent.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId or windowID parameter was invalid, or there was an 
error with msg.

v1.Update

Updates the overlay with a new image. The updated image is displayed when the next frame is 
drawn.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v1.Update)(VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId windowId, 

void* pImage, int32 width, int32 height, int32 pitch, Bool copyImage);

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

windowId Window ID that was received from a previous OnWindowRegistered() event.

pImage A pointer to the RGBX pixels to copy to the overlay.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 90



Parameter Description

width Width, in pixels, of the image pointed to by pImage. If the width of the image does not match the width of 
the overlay, the given image is drawn according the layout mode of the overlay.

height Height, in pixels, of the image pointed to by pImage. If the height of the image does not match the height of 
overlay, the given image is drawn according the layout mode of the overlay.

pitch Number of bytes that a single row of the image occupies. In the normal case, for BGRX images, this value is 
width multiplied by 4.

copyImage If TRUE, a copy of the image data is made. If FALSE, no copy is made and the image data must remain valid 
until another call to VDPOverlayClient_Update() is made.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Image was updated.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId, windowID, or pImage parameter was invalid.

v2.CreateOverlay

Creates a local overlay.

The overlay is not tied to a window on the guest (such an overlay is referred to as a "guest 
created overlay"). Locally created overlays give the client complete control over the overlay but 
also require the client to do more of the work.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.CreateOverlay)(VDPOverlayClient_ContextId contextId, VDPOverlay_OverlayId* 

pOverlayId);

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

pOverlayId Returns a VDPOverlay_OverlayId that can be used to set properties on the overlay. This ID may also be 
passed to functions that take a VDPOverlay_WindowId, for example, Update(), GetInfo(), and so on.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId parameter was invalid, or there pOverlayId is NULL.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 91



Value Description

VDP_OVERLAY_ERROR_ALLOCATION_ERROR The system fails to allocate the required memory or system resource 
to handle the call.

VDP_OVERLAY_ERROR_NO_MORE_OVERLAYS This error is returned when too many overlays have been created.

v2.DestroyOverlay

Destroys a local overlay.

All the resources associated with the overlay are released. This function cannot be called on 
guest-created overlays.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.DestroyOverlay)(VDPOverlayClient_ContextId contextId, VDPOverlay_OverlayId 

overlayId);

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

overlayId An overlay ID that was returned from a previous call to CreateOverlay().

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId or overlayId parameter was invalid.

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayId of a guest-side overlay was passed to a function that 
can only be called on a local overlay.

v2.DisableOverlay

Deactivates an overlay.

Deactivating an overlay is a lightweight way to hide an overlay. Unlike DestroyOverlay(), 
resources used to maintain the overlay are not released.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.DisableOverlay)(VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId 

windowId);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 92



Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

windowId A window ID that was cached from a previous OnWindowRegistered() event.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId or windowID parameter was invalid.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

v2.EnableOverlay

Activates an overlay that was previously deactivated.

An overlay can be deactivated if either the guest or client calls DisableOverlay() for the given 
window ID.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.EnableOverlay)(VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId 

windowId);

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

windowId A window ID that was cached from a previous OnWindowRegistered() event.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId or windowId parameter was invalid.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 93



v2.GetInfo

Retrieves current information about the overlay.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.GetInfo)(VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId windowId, 

VDPOverlayClient_OverlayInfo* pOverlayInfo);

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

windowId Window ID that was cached from a previous OnWindowRegistered() event.

pOverlayInfo A pointer to a VDPOverlayClient_OverlayInfo structure which will be filled in with information about the 
overlay.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current information retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId or windowID parameter was invalid, or pOverlayInfo 
was NULL.

v2.InitLocal

Initializes the client-side overlay library for use with local overlays only.

The overhead of creating an RPC connection to track guest side windows is not performed. You 
do not need to call this function if you have already called v1.Init().

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v1.InitLocal)(const VDPOverlayClient_Sink* sink, void* userData, 

VDPOverlayClient_ContextId* pContextId);

Parameters

Parameter Description

sink Contains the function pointers that are called when events are generated by the Overlay library.

userData The parameter that is passed to event handler whenever an event is delivered.

pContextId Returns an ID that is used to identify the instance of the API. This ID must be passed to all other API 
functions. This ID is also passed when calling the sink handlers.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 94



Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The sink or userData parameter was invalid, or pContextId is NULL.

VDP_OVERLAY_ERROR_ALLOCATION_ERROR The system fails to allocate the required memory or system resource 
to handle the call.

v2.SetClipRegion

Sets the clipping region on the overlay.

This function cannot be called on guest-created overlays.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.SetClipRegion)(VDPOverlayClient_ContextId contextId, VDPOverlay_OverlayId 

overlayId, VMRect* pClipRects, int32 nClipRects);

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

overlayId An overlay ID that was returned from a previous call to CreateOverlay().

pClipRects An array of VMRect's that describe the visible area of the overlay. The clipping information is relative to the 
screen. For example, 0,0 is the top-left corner of the screen. This means that the clipping information 
describes a specific area of the screen that does not change when the overlay is moved. A copy of the 
VMRect array is made so that the caller does not have to maintain the memory.

nClipRects The number of VMRects in the pClipRects array. Passing the value of 0 for nClipRects removes the clip 
region.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId or overlayId parameter was invalid, or pClipRects is 
NULL.

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayId of a guest-side overlay was passed to a function that 
can only be called on a local overlay.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 95



v2.SetColorkey

Sets the color key on a local overlay.

Note   The use of color keys is discouraged because they do not work well with the Blast 
protocol. To limit the area of the guest UI for rendering the overlay, use v2.SetClipRegion instead.

This function cannot be called on guest-created overlays.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.SetColorkey)(VDPOverlayClient_ContextId contextId, VDPOverlay_OverlayId 

overlayId, uint32 colorkey);

Parameters

Paramater Description

contextId The ID returned from VDPOverlayClient_Init().

overlayId An overlay ID that was returned from a previous call to CreateOverlay().

colorkey An RGB value that will limit the area of the guest UI where the overlay is drawn. When a color key is set on 
an overlay only the pixels on the guest's UI that match the color key value will be updated. It is the caller's 
responsibility to draw the color key to an area on the guest's desktop that corresponds to the position of 
the overlay as set by SetPosition(). Passing VDP_OVERLAY_COLORKEY_NONE will remove the color key from the 
overlay.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId, overlayId or colorkey parameter was invalid.

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayId of a guest-side overlay was passed to a function that 
can only be called on a local overlay.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

v2.SetLayer

Sets the layer on a local overlay.

This function cannot be called on guest-created overlays.

This function is a member of VDPOverlayClient_Interface.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 96



Method Signature

VDPOverlay_Error (*v2.SetLayer)(VDPOverlayClient_ContextId contextId, VDPOverlay_OverlayId overlayId, 

uint32 layer);

Parameters

Paramater Description

contextId The ID returned from VDPOverlayClient_Init().

overlayId An overlay ID that was returned from a previous call to CreateOverlay().

layer The layer of the overlay. Overlays with a higher layer value will be on top of overlays with a lower layer 
value. If two overlays have the same layer value the overlay created last will be on top.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId or overlayId parameter was invalid.

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayId of a guest-side overlay was passed to a function that 
can only be called on a local overlay.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

v2.SetLayoutMode

Sets the current layout mode for the overlay.

The layout mode is used to determine how an image is drawn, for example, scaled, cropped, and 
so on, when the size of the image doesn't match the size of the overlay.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.SetLayoutMode)(VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId 

windowId, VDPOverlay_LayoutMode layoutMode);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 97



Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

windowId A window ID that was cached from a previous OnWindowRegistered() event.

layoutMode Determines how the image is drawn. This can be one of the following VDPOverlay_LayoutMode values:

DP_OVERLAY_LAYOUT_CENTER

The image will be drawn centered in the overlay and clipped to the size of the overlay. No scaling will 
take place.

VDP_OVERLAY_LAYOUT_TILE

The image will be tiled to fill the overlay. The image is not scaled but will be clipped on the right/bottom 
edges of the overlay.

VDP_OVERLAY_LAYOUT_SCALE / VDP_OVERLAY_LAYOUT_SCALE_SHRINK_ONLY

The image will be drawn to fill the entire overlay. No attempt at maintaining the aspect ratio of the 
image is made.

VDP_OVERLAY_LAYOUT_CROP / VDP_OVERLAY_LAYOUT_CROP_SHRINK_ONLY

The image will be scaled to fill the entire overlay while maintaining the aspect ratio. Parts of the image 
will be clipped if necessary.

VDP_OVERLAY_LAYOUT_LETTERBOX / VDP_OVERLAY_LAYOUT_LETTERBOX_SHRINK_ONLY

The image will be scaled such that either the width or height of image will match the width/height of the 
overlay. The other dimension will be scaled to maintain the aspect ratio. No part of the image will be 
clipped but the image may not fill the entire overlay.

VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER / VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER

Multiple mode splits the overlay into 9 equal-sized boxes (like a tic-tac-toe board). The image is then 
scaled to fit into the center and corner boxes. This mode can be combined with any of the basic layout 
modes to determine how the image is scaled to fit in the box.

If, after applying the layout mode, the image doesn't fill the entire box, 
VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER places the image in the center of each box and 
VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER justifies the image within each box to the nearest corner 
of the overlay. When combined with basic layout modes that always fill the overlay (e.g. 
VDP_OVERLAY_LAYOUT_SCALE and VDP_OVERLAY_LAYOUT_TILE), the multiple modes 
VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER and VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER 
behave the same.

VDP_OVERLAY_LAYOUT_TO_MULTIPLE (multipleMode, basicMode)

Where multipleMode must be either VDP_OVERLAY_LAYOUT_MULTIPLE_CENTER or 
VDP_OVERLAY_LAYOUT_MULTIPLE_CORNER, and basicMode must be one of the basic layout modes 
listed earlier in this table.

VDP_OVERLAY_LAYOUT_TO_MULTIPLE returns a layout mode from the given multiple and basic 
layout modes.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 98



Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId or windowID parameter was invalid.

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayId of a guest-side overlay was passed to a function that 
can only be called on a local overlay.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

v2.SetPosition

Sets the position of a local overlay.

This function cannot be called on guest-created overlays.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.SetPosition)(VDPOverlayClient_ContextId contextId, VDPOverlay_OverlayId 

overlayId, int32 x, int32 y);

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

overlayId An overlay ID that was returned from a previous call to CreateOverlay().

x,y The position of the overlay. The position is specified as the upper-left corner of the overlay in guest UI 
coordinates.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId or overlayId parameter was invalid.

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayId of a guest-side overlay was passed to a function that 
can only be called on a local overlay.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

v2.SetSize

Sets the size of a local overlay.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 99



This function cannot be called on guest-created overlays.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.SetSize)(VDPOverlayClient_ContextId contextId, VDPOverlay_OverlayId overlayId, 

int32 width, int32 height);

Parameters

Paramater Description

contextId The ID returned from VDPOverlayClient_Init().

overlayId An overlay ID that was returned from a previous call to CreateOverlay().

width, height The size of the overlay in pixels. If the size of the image specified in Update() does not match the size of 
the overlay, the image is drawn as specified by the layout mode.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId or overlayId parameter was invalid.

VDP_OVERLAY_ERROR_NOT_LOCAL_OVERLAY The overlayId of a guest-side overlay was passed to a function that 
can only be called on a local overlay.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

v2.Update

Updates the overlay with a new image. The updated image is displayed when the next frame is 
drawn.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v2.Update)(VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId windowId, 

void* pImage, int32 width, int32 height, int32 pitch, VDPOverlay_ImageFormat format, uint32 flags);

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

windowId Window ID that was received from a previous OnWindowRegistered() event.

pImage A pointer to the RGBX pixels to copy to the overlay.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 100



Parameter Description

width Width, in pixels, of the image pointed to by pImage. If the width of the image does not match the width of 
the overlay, the given image is drawn according the layout mode of the overlay.

height Height, in pixels, of the image pointed to by pImage. If the height of the image does not match the height of 
overlay, the given image is drawn according the layout mode of the overlay.

pitch Number of bytes that a single row of the image occupies. In the normal case, for BGRX images, this value is 
width multiplied by 4.

format The pixel format of the image. This is one of the values in VDPOverlay_ImageFormat.

flags n VDP_OVERLAY_UPDATE_FLAG_NONE - Place holder denoting that no flags are being passed.

n VDP_OVERLAY_UPDATE_FLAG_COPY_IMAGE - If set, a copy of the image data is made. If FALSE, no copy is 
made and the image data must remain valid until another call to Update() is made.

n VDP_OVERLAY_UPDATE_FLAG_SHARED_SURFACE - Allows a DirectX surface handle to be passed in place of a 
pointer to the image. Shared surfaces are not supported on all video cards or with all image formats, so 
the application must be prepared to fall back to not using this flag and passing a pointer to the image in 
system memory.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Image was updated.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER The contextId, windowID, or pImage parameter was invalid.

v3.GetTopology

Retrieves the topology of the Horizon desktop.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v3.GetTopology)(VDPOverlayClient_ContextId contextId, VDPOverlay_Rect* 

desktopBounds, int32* pszDesktopTopology, VDPOverlay_Rect* desktopTopology);

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

desktopBounds Returns a rectangle which contains the bounding box for the entire Horizon desktop. Pass NULL to 
avoid returning this information.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 101



Parameter Description

pszDesktopTopology A pointer to an int32. On input the value is the size of the desktopTopology array which will return 
the Horizon desktop topology. On output the value is the number of rectangles required to hold 
the entire desktop topology. This value may be larger than the size passed in if the 
desktopTopology array is too small to hold the entire desktop topology. Passing NULL is treated 
the same as *pszDesktopTopology == 0.

desktopTopology A pointer to an array which returns the rectangles that make up the the Horizon desktop 
topology. Can be NULL only if pszDesktopTopology is NULL or *pszDesktopTopology == 0.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current information retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

v4.GetInfoString

Gets the current information string for the overlay as set by v4.SetInfoString().

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v4.GetInfoString)(VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId 

windowId, char* infoStr, int32 infoStrSize); 

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

windowId The window ID that was cached from a prior OnWindowRegistered() event.

infoStr A pointer to a buffer that is filled with the current information string.

infoStrSize The size of the infoStr buffer.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current information retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 102



v4.GetInfoStringProperties

Gets the current information string for the overlay as set by v4.SetInfoString().

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v4.GetInfoStringProperties)(VDPOverlayClient_ContextId contextId, 

VDPOverlay_WindowId windowId, VDPOverlayClient_InfoStringProperties *pProperties); 

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

windowId The window ID that was cached from a prior OnWindowRegistered() event.

pProperties A pointer to a VDPOverlayClient_InfoStringProperties structure.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS Current information retrieved.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

v4.SetInfoString

Sets a string that is rendered on top of the overlay. The string can contain arbitrary information 
which can assist with closed captioning or debugging information.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v4.SetInfoString)(VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId 

windowId, const char* infoStr);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 103



Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

windowId The window ID that was cached from a prior OnWindowRegistered() event.

infoStr The information string. The maximum string length is VDP_OVERLAY_INFO_STR_MAX_LEN bytes, including 
the NULL terminator.

The information string can contain the following macros:

Macro Definition

$(FPS) FPS or image format (default)

$(IMAGE_SIZE) Source image size (WxH)

$(IMAGE_FORMAT) Source image format

$(OVERLAY_ID) Overlay ID

$(OVERLAY_POS) Overlay position (X,Y)

$(OVERLAY_SIZE) Overlay size (WxH)

$(OVERLAY_LAYER) Overlay layer

$(OVERLAY_LAYOUT) Overlay layout mode

$(OVERLAY_SURFACE) Overlay surface type

$(OVERLAY_FPS) Overlay frame rate

$(OVERLAY_FRAME_NUM) Overlay frame number

$(VIEW_FPS) Horizon Client frame rate

$(VIEW_FRAME_NUM) Horizon Client frame number

$(VIEW_WINDOW_SIZE) Horizon Client window size

$(VIEW_PROTOCOL) Horizon Client protocol (Blast/PCoIP)

$(TIME) Current time

$(DATE) Current date

The following escape characters are recognized, assuming that the string is read from a file or the registry. 
When hardcoding the information string in C/C++ code, you must also escape the backslash character itself.

Escape Character Definition

\n New line; the LF character ('\n' in C/C++) is also a new line

\$ Dollar sign

\\ Backslash

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 104



Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

v4.SetInfoStringProperties

Sets properties for how the information string is rendered.

This function is a member of VDPOverlayClient_Interface.

Method Signature

VDPOverlay_Error (*v4.SetInfoStringProperties)(VDPOverlayClient_ContextId contextId, 

VDPOverlay_WindowId windowId, VDPOverlayClient_InfoStringProperties *pProperties); 

Parameters

Parameter Description

contextId The ID returned from VDPOverlayClient_Init().

windowId The window ID that was cached from a prior OnWindowRegistered() event.

pProperties A pointer to a VDPOverlayClient_InfoStringProperties structure. As a best practice, initialize the structure 
by calling v4.GetInfoStringProperties() if there are properties that you don't want to change.

Return Values

Value Description

VDP_OVERLAY_ERROR_SUCCESS No error. The function was successful.

VDP_OVERLAY_ERROR_NOT_INITIALIZED Overlay API was not initialized.

VDP_OVERLAY_ERROR_INVALID_PARAMETER One of the parameter entries was invalid.

VDP_OVERLAY_ERROR_HOST_OVERLAY_ERROR There is an error with a low-level library. This error code should be 
treated as similar to INVALID_PARAMETER.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 105



Channel Sinks 6
To interact with and receive notifications of changes, you must register sinks with the Horizon 
Session Enhancement APIs. Channel sinks are common sinks.

These functions are members of VDPService_ChannelNotifySink.

This chapter includes the following topics:

n v1.OnChannelStateChanged

n v1.OnConnectionStateChanged

n v1.OnPeerObjectCreated

v1.OnChannelStateChanged

This method is invoked when there is a change in the channel connection that this plug-in 
instance uses.

This function is a member of VDPService_ChannelNotifySink.

Method Signature

void (*v1.OnChannelStateChanged)(void *userData, VDPService_ChannelState currentState, 

VDPService_ChannelState transientState, void *reserved);

Parameters

Parameter Description

userData Parameter passed in to the v1.RegisterChannelNotifySink method. May be NULL.

currentState The current state of the connection.

transientState The state change that caused the callback. This can be different from currentState if other state 
changes have already taken place and are waiting to be processed.

reserved Unused parameter.

Return Values

None

VMware, Inc. 106



v1.OnConnectionStateChanged

This method is invoked when the connection in the underlying user session has changed its state.

This function is a member of VDPService_ChannelNotifySink.

Method Signature

void (*v1.OnConnectionStateChanged)(void *userData, VDPService_ConnectionState currentState, 

VDPService_ConnectionState transientState, void *reserved); 

Parameters

Parameter Description

userData Parameter passed in to the v1.RegisterChannelNotifySink method. May be NULL.

currentState The current state of the connection.

transientState The state change that caused the callback. This can be different from currentState if other state 
changes have already taken place and are waiting to be processed.

reserved Unused parameter.

Return Values

None

v1.OnPeerObjectCreated

This method is invoked when an object was created on the other side of the channel connection, 
and no object with the same name exists locally.

This function is a member of VDPService_ChannelNotifySink.

Method Signature

void (*v1.OnPeerObjectCreated)(void *userData, const char *objName, void *reserved);

Parameters

Parameter Description

userData Parameter passed in to the v1.RegisterChannelNotifySink method. May be NULL.

objName The name of the object created by the peer.

reserved Unused parameter.

Return Values

None

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 107



RPC Sinks 7
You must register RPC sinks to interact with and receive notifications of changes to RPC-specific 
Horizon Session Enhancement APIs.

This chapter includes the following topics:

n v1.OnAbort

n v1.OnDone

n v1.OnInvoke

n v1.OnObjectStateChanged

v1.OnAbort

This method is called when the Invoke call that this sink is registered with fails due to a Horizon 
Session Enhancement error.

This function is a member of VDPRPC_RequestCallback.

Method Signature

void (*v1.OnAbort)(void *userData, uint32 contextId, Bool userCancelled, uint32 reason); 

Parameters

Parameter Description

userData The userData parameter passed to the Invoke method.

contextId ID of the context that was passed to the Invoke method.

userCancelled FALSE.

reason A VDP_RPC_E_* error code.

Return Values

None

VMware, Inc. 108



v1.OnDone

This method is called when the Invoke method that this sink is registered with returns from the 
peer. The contextId parameter maps to the ID of the context that is passed to the Invoke call. 
This ID does not match the ID of the context that contextHandle points to. The contextHandle 
parameter holds all of the return codes and values given by the peer.

This function is a member of VDPRPC_RequestCallback.

Method Signature

void (*v1.OnDone)(void *userData, uint32 contextId, void *contextHandle);

Parameters

Parameter Description

userData The userData parameter passed to the Invoke method.

contextId ID of the context that was passed to the Invoke method.

contextHandle Handle for the context that holds all of the return data from the peer.

Return Values

None

v1.OnInvoke

This method is invoked when the peer on the other end of the channel calls Invoke. The 
contextHandle parameter is used to retrieve the data given by the peer, using 
VDPService_ChannelContextInterface. This same context should be altered to hold the return 
values, and the context will be returned to the caller when this method returns.

This function is a member of VDPRPC_ObjectNotifySink.

Method Signature

void (*v1.OnInvoke)(void *userData, void *contextHandle, void *reserved);  

Parameters

Parameter Description

userData The userData parameter passed in to the CreateChannelObject method. May be NULL.

contextHandle Handle for the context that will contain the data for the call, and to hold the return values.

reserved Unused parameter.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 109



Return Values

None

v1.OnObjectStateChanged

Called when the state of the object this sink was registered with has changed.

This function is a member of VDPRPC_ObjectNotifySink.

Method Signature

void (*v1.OnObjectStateChanged)(void *userData, void *reserved);

Parameters

Parameter Description

userData The userData parameter passed in to the CreateChannelObject method. May be NULL.

reserved Unused parameter.

Return Values

None

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 110



Overlay Sinks 8
You must register overlay sinks to interact with and receive notifications of changes to overlay-
specific Horizon Session Enhancement APIs.

This chapter includes the following topics:

n VDPOverlayGuest_Sink Functions

n VDPOverlayClient_Sink Functions

VDPOverlayGuest_Sink Functions

The following topics describe the VDPOverlayGuest_Sink functions.

v1.OnOverlayCreateError

This event handler is called when the client-side overlay is not created due to an error. Note that 
the window that is associated with the overlay is automatically unregistered.

This function is a member of VDPOverlayGuest_Sink.

Method Signature

void (*v1.OnOverlayCreateError)(void *userData, VDPOverlay_WindowId windowId, VDPOverlay_Error error);

Parameters

Parameter Description

userData The userData parameter passed in to the Init call.

windowId The window ID that this callback corresponds to.

error The error that was encountered.

Return Values

None

VMware, Inc. 111



v1.OnOverlayReady

This event handler is called when the client-side overlay is ready to be displayed. It does not 
mean that the overlay is enabled or even that the client-side has loaded an image into the 
overlay. It means only that the overlay was properly created and is ready to display an image.

This function is a member of VDPOverlayGuest_Sink.

Method Signature

void (*v1.OnOverlayReady)(void *userData, VDPOverlay_WindowId windowId, uint32 response);

Parameters

Parameter Description

userData The userData parameter that was passed to the Init call.

windowId The window ID that this callback corresponds to.

response Client-side plug-in response.

Return Values

None

v1.OnOverlayRejected

This event handler is called when the client-side overlay is not created because the client-side 
plug-in rejected it. Note that the window that is associated with the overlay is automatically 
unregistered.

This function is a member of VDPOverlayGuest_Sink.

Method Signature

void (*v1.OnOverlayRejected)(void *userData, VDPOverlay_WindowId windowId, uint32 reason);

Parameters

Parameter Description

userData The userData parameter passed in to the Init call.

windowId The window ID that this callback corresponds to.

reason The client-side plug-in reason given for rejecting the overlay.

Return Values

None

v1.OnUserMsg (Guest Sink)

This event handler is called in response to a call to v1.SendMsg from the client.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 112



This function is a member of VDPOverlayGuest_Sink.

Method Signature

void (*v1.OnUserMsg)(void *userData, VDPOverlay_WindowId windowId, void *msg, uint32 msgLen);

Parameters

Parameter Description

userData The userData parameter passed in to the Init call.

windowId The window ID that this message is sent to, or VDP_OVERLAY_WINDOW_ID_NONE if the message was not 
sent to a particular window.

msg The message data. Not valid after the call returns.

msgLen Length of msg, in bytes.

Return Values

None

VDPOverlayClient_Sink Functions

The following topics describe the VDPOverlayClient_Sink functions.

v1.OnLayoutModeChanged

This event handler is called when the layout mode for the overlay is changed. This event handler 
is for information only. No action is required by the plug-in.

This function is a member of VDPOverlayClient_Sink.

Method Signature

void (*v1.OnLayoutModeChanged)(void *userData, VDPOverlayClient_ContextId contextId, 

VDPOverlay_WindowId windowId, VDPOverlay_LayoutMode layoutMode);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.

contextId The context ID returned from the Init call.

windowId Window ID that corresponds to the referenced overlay.

layoutMode The new layout mode.

Return Values

None

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 113



v1.OnOverlayDisabled

This event handler is called when the guest side deactivates the overlay using the DisableOverlay 
method, causing the current image in the overlay to be hidden. The overlay image data is 
maintained and will be re-displayed when the overlay is re-activated.

This function is a member of VDPOverlayClient_Sink.

Method Signature

void (*v1.OnOverlayDisabled)(void *userData, VDPOverlayClient_ContextId contextId, 

VDPOverlay_WindowId windowId, VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.

contextId The context ID returned from the Init call.

windowId Window ID that corresponds to the deactivated overlay.

userArgs Value passed by the guest side to the DisableOverlay call.

Return Values

None

v1.OnOverlayEnabled

This event handler is called when the guest side activates the overlay using the EnableOverlay 
method. This event handler causes the current image in the overlay to be displayed.

This function is a member of VDPOverlayClient_Sink.

Method Signature

void (*v1.OnOverlayEnabled)(void *userData, VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId 

windowId, VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.

contextId The context ID returned from the Init call.

windowId Window ID that corresponds to the activated overlay.

userArgs Value passed by the guest side to the EnableOverlay call.

Return Values

None

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 114



v1.OnUserMsg (Client Sink)

This event handler is used when the guest-side application has called the SendMsg method.

This function is a member of VDPOverlayClient_Sink.

Method Signature

void (*v1.OnUserMsg)(void *userData, VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId 

windowId, void *msg, uint32 msgLen);

Parameters

Parameter Description

userData The userData parameter passed in to the Init call.

contextId The context ID returned from the Init call.

windowId The window ID that this message is sent to, or VDP_OVERLAY_WINDOW_ID_NONE if the message was not 
sent to a particular window.

msg The message data. Not valid after the call returns.

msgLen Length of msg, in bytes.

Return Values

None

v1.OnWindowObscured

This event handler is called when the guest-side window that the overlay is tracking is completely 
obscured. The client-side can use this event as a hint to scale back drawing to the overlay.

This function is a member of VDPOverlayClient_Sink.

Method Signature

void (*v1OnWindowObscured)(void *userData, VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId 

windowId);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.

contextId The context ID returned from the Init call.

windowId Window ID that corresponds to the obscured overlay.

Return Values

None

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 115



v1.OnWindowPositionChanged

This event handler is called when the guest-side window that the overlay is tracking changes 
position. The overlay is drawn at the new location. This event handler is for information only. No 
action is required by the plug-in.

This function is a member of VDPOverlayClient_Sink.

Method Signature

void (*v1.OnWindowPositionChanged)(void *userData, VDPOverlayClient_ContextId contextId, 

VDPOverlay_WindowId int32 x, int32 y);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.

contextId The context ID returned from the Init call.

windowId Window ID that corresponds to the repositioned overlay.

x New X position with the display.

y New Y position with the display.

Return Values

None

v1.OnWindowRegistered

This event handler is called when the guest-side application registers a window using the 
RegisterWindow method. You can reject the request by setting reject to TRUE. Use the response 
parameter to return a reason to the guest. You can also use response to send a message to the 
guest in the non-rejected case.

Note   Cache the windowId parameter because it is required to identify the overlay to the Overlay 
API.

This function is a member of VDPOverlayClient_Sink.

Method Signature

void (*v1.OnWindowRegistered)(void *userData, VDPOverlayClient_ContextId contextId, 

VDPOverlay_WindowId windowId, VDPOverlay_UserArgs userArgs, Bool *reject, uint32 *response);

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 116



Parameters

Parameter Description

userData The userData parameter passed in to the Init call.

contextId The context ID returned from the Init call.

windowId The window ID representing the new overlay.

userArgs Value sent by the guest-side in the RegisterWindow call.

reject Set to TRUE to deny the request to create an overlay.

response Response sent back to the guest.

Return Values

None

v1.OnWindowSizeChanged

This event handler is called when the guest-side window that the overlay is tracking changes size. 
The old overlay image is redrawn according to the layout mode of the overlay. This event 
handler is for information only. No action is required by the plug-in.

This function is a member of VDPOverlayClient_Sink.

Method Signature

void (*v1.OnWindowSizeChanged)(void *userData, VDPOverlayClient_ContextId contextId, 

VDPOverlay_WindowId windowId, int32 width, int32 height);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.

contextId The context ID returned from the Init call.

windowId Window ID that corresponds to the resized overlay.

width New width of the window.

height New height of the window.

Return Values

None

v1.OnWindowUnregistered

This event handler is called when the guest-side unregisters a window using the UnregisterWindow 
method. The window ID is no longer valid, and the overlay associated with the window ID is 
destroyed.

This function is a member of VDPOverlayClient_Sink.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 117



Method Signature

void (*v1.OnWindowUnregistered)(void *userData, VDPOverlayClient_ContextId contextId, 

VDPOverlay_WindowId windowId, VDPOverlay_UserArgs userArgs);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.

contextId The context ID returned from the Init call.

windowId Window ID for the window that was unregistered.

userArgs Value sent by the guest-side application in the UnregisterWindow call.

Return Values

None

v1.OnWindowVisible

This event handler is called when the guest-side window that the overlay is tracking was 
obscured but now is at least partially visible.

This function is a member of VDPOverlayClient_Sink.

Method Signature

void (*v1.OnWindowVisible)(void *userData, VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId 

windowId);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.

contextId The context ID returned from the Init call.

windowId Window ID that corresponds to the overlay that is now partially visible.

Return Values

None

v3.OnLayerChanged

This event handler is called when the layer for the overlay is changed. This event handler is for 
information only. No action is required by the plugin.

This function is a member of VDPOverlayClient_Sink.

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 118



Method Signature

void (*v3.OnLayerChanged)(void* userData, VDPOverlayClient_ContextId contextId, VDPOverlay_WindowId 

windowId, uint32 layer);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.

contextId The context ID returned from the Init call.

windowId The window ID.

layer The new layer.

Return Values

None

v3.OnTopologyChanged

This event handler is called when the desktop topology of the Horizon client has changed. The 
desktopTopology array is only valid during the callback. This event handler is for information only. 
No action is required by the plugin.

This function is a member of VDPOverlayClient_Sink.

Method Signature

void (*v3.OnTopologyChanged)(void* userData, VDPOverlayClient_ContextId contextId, const 

VDPOverlay_Rect* desktopBounds, int32 szDesktopTopology, const VDPOverlay_Rect* desktopTopology);

Parameters

Parameter Description

userData The userData parameter passed to the Init method.

contextId The context ID returned from the Init call.

desktopBounds The desktop bounding box.

szDesktopTopology The size of the desktopTopology array.

desktopTopology The desktop topology.

Return Values

None

VMware Horizon Session Enhancement SDK Programming Guide

VMware, Inc. 119


	VMware Horizon Session Enhancement SDK Programming Guide
	Contents
	VMware Horizon Session Enhancement SDK Programming Guide
	Overview of the VMware Horizon Session Enhancement SDK
	Introduction to the VMware Horizon Session Enhancement API
	What's New in VMware Horizon Session Enhancement SDK 3.3
	About VMware Horizon Session Enhancement Key Concepts
	VMware Horizon Session Enhancement Program Flow
	Query Interface
	RPC API
	Overlay API
	Virtual Channel and Side Channel Security
	Installation
	Sample Code

	Data Types and Error Codes
	Data Types
	Error Codes

	Channel Interaction Functions
	v1.Broadcast
	v1.Connect
	v1.Disconnect
	v1.GetChannelState
	v1.GetConnectionState
	v1.Poll
	v1.RegisterChannelNotifySink
	v1.RegisterObserver
	v1.ThreadInitialize
	v1.ThreadUninitialize
	v1.UnregisterChannelNotifySink
	v1.UnregisterObserver
	v2.GetSessionType
	v2.SwitchToStreamDataMode
	v3.Poll

	RPC Functions
	v1.AppendNamedParam
	v1.AppendNamedReturnVal
	v1.AppendParam
	v1.AppendReturnVal
	v1.CreateChannelObject
	v1.CreateContext
	v1.DestroyChannelObject
	v1.DestroyContext
	v1.GetCommand
	v1.GetId
	v1.GetMinimalStreamDataSize
	v1.GetNamedCommand
	v1.GetNamedParam
	v1.GetNamedReturnVal
	v1.GetObjectName
	v1.GetObjectState
	v1.GetParam
	v1.GetParamCount
	v1.GetReturnCode
	v1.GetReturnVal
	v1.GetReturnValCount
	v1.GetStreamDataHeaderTail
	v1.GetStreamDataHeaderTailSize
	v1.GetStreamDataInfo
	v1.GetStreamDataSize
	v1.Invoke
	v1.SetCommand
	v1.SetNamedCommand
	v1.SetReturnCode
	v1.VariantClear
	v1.VariantCopy
	v1.VariantFromBlob
	v1.VariantFromChar
	v1.VariantFromDouble
	v1.VariantFromFloat
	v1.VariantFromInt32
	v1.VariantFromInt64
	v1.VariantFromShort
	v1.VariantFromStr
	v1.VariantFromUInt32
	v1.VariantFromUInt64
	v1.VariantFromUShort
	v1.VariantInit
	v2.FreeStreamDataPayload
	v2.GetStreamData
	v2.GetStreamDataInfo
	v2.IsSideChannelAvailable
	v2.RequestSideChannel
	v2.SetOps
	v3.CreateContext
	v3.GetObjectOptions
	v4.GetObjectStateByName

	Overlay Functions
	VDPOverlayGuest_Interface Functions
	v1.DisableOverlay
	v1.EnableOverlay
	v1.Exit for the Guest-Side Library
	v1.GetLayoutMode
	v1.Init for the Guest-Side Library
	v1.IsOverlayEnabled
	v1.IsWindowRegistered
	v1.RegisterWindow
	v1.SendMsg for the Guest-Side Library
	v1.SetLayoutMode
	v1.UnregisterWindow
	v2.GetColorkey
	v3.GetAreaRect
	v3.GetLayer
	v3.RegisterWindow
	v3.SetAreaRect
	v3.SetLayer
	v4.GetAreaRect
	v4.GetBackgroundColor
	v4.GetHWnd
	v4.GetInfoString
	v4.SetAreaRect
	v4.SetBackgroundColor
	v4.SetInfoString

	VDPOverlayClient_Interface Functions
	v1.Exit for the Client-Side Library
	v1.GetInfo
	v1.Init for the Client-Side Library
	v1.SendMsg for the Client-Side Library
	v1.Update
	v2.CreateOverlay
	v2.DestroyOverlay
	v2.DisableOverlay
	v2.EnableOverlay
	v2.GetInfo
	v2.InitLocal
	v2.SetClipRegion
	v2.SetColorkey
	v2.SetLayer
	v2.SetLayoutMode
	v2.SetPosition
	v2.SetSize
	v2.Update
	v3.GetTopology
	v4.GetInfoString
	v4.GetInfoStringProperties
	v4.SetInfoString
	v4.SetInfoStringProperties


	Channel Sinks
	v1.OnChannelStateChanged
	v1.OnConnectionStateChanged
	v1.OnPeerObjectCreated

	RPC Sinks
	v1.OnAbort
	v1.OnDone
	v1.OnInvoke
	v1.OnObjectStateChanged

	Overlay Sinks
	VDPOverlayGuest_Sink Functions
	v1.OnOverlayCreateError
	v1.OnOverlayReady
	v1.OnOverlayRejected
	v1.OnUserMsg (Guest Sink)

	VDPOverlayClient_Sink Functions
	v1.OnLayoutModeChanged
	v1.OnOverlayDisabled
	v1.OnOverlayEnabled
	v1.OnUserMsg (Client Sink)
	v1.OnWindowObscured
	v1.OnWindowPositionChanged
	v1.OnWindowRegistered
	v1.OnWindowSizeChanged
	v1.OnWindowUnregistered
	v1.OnWindowVisible
	v3.OnLayerChanged
	v3.OnTopologyChanged




