

Vocab Study Pack
by Emily Brown
\qquad
12 Activities to Reinforce
Key Terms for Light/Optics

Thank you so much for your purchase! I hope that you find my Light Vocab Activity pack as useful as I do in my classroom! This activity pack is meant to accompany the lessons that you teach on Light/Optics. For me and my students, having these extra reinforcers was really helpful in identifying and remembering key terms throughout this unit of study.

The Table of Contents on the next page outlines each activity that is included in this pack. I have included directions/use suggestions for each activity. I have also included a list of the vocabulary words with their definitions so that you know exactly what words are covered in these activities.

I would appreciate any feedback that you have to offer! I hope you enjoy these activities and I hope they help your students retain the definitions for these important vocabulary words!

Please visit my blog at thesciencelife.blogspot.com for a peek in my classroom, freebies, and lots more activities!

Vocabulary Overview
List of Words and Definitions 4-5
Vocab Map Booklet
Directions and Template 6-8
Interactive Diagrams and Answer Keys
Description and Suggested Use 9
Blocking the Light \{Transparent, Translucent, \& Opaque Objects\} 10-13
Refraction 14-15
Color \{Where Does Color Come From? Why Do Objects Have Different Colors?\} 16-17
Lenses 18-21
Mirrors 22-25
How Do Our Eyes Work? 26-30
Corrective Lenses 31-33
Crossword Puzzles \{Review Activities\} and Answer Keys
Light/Color Crossword 34-35
Mirrors/Optics Crossword 36-37
Light-O!
A Light/Optics Bingo Game to Review Key Concepts/Vocabulary Words
Directions, Questions, and Answers 38-40
Light-O! Gameboards 41-58
Vocab Match-Up - A Memory Game
Directions and Suggested Use 59
Word and Definition Cards 60-71

Energy - the ability to do work
Radiant Energy - Energy that is transmitted in the form of electromagnetic radiation. It's energy that exists in the absence of matter. Includes visible light, x-rays, gamma rays, and radio waves.

Luminous/non-luminous - a luminous object is something that can produce its own light (the sun). A non-luminous object is something that cannot produce its own light, but can reflect light.

Transparent - objects that light can transmit through
Translucent - objects that absorb some light and transmit some light
Opaque - objects that block and reflect light. No light can travel through an opaque object.
Reflection (reflect) - the "throwing back" or "bouncing" of light.
Absorption (absorb) - the "soaking up" of light.
Transmission (transmit) - to go (or travel) through.
Refraction - the bending of light
Visible spectrum - the distribution of colors produced when white light goes through a prism. This includes the colors that we can see: ROY G BIV

Convex mirror - a mirror that is bent outward. Light is directed outward (diverges)when reflected off of a convex mirror. Objects reflected from a convex mirror look very small and you can see more objects in a convex mirror. Uses - security mirrors in stores, side mirrors on cars (to be able to see more, but they look smaller, so they might appear like they are farther away from you than they really are. That's why there is a warning message on them!)
Concave mirror - a mirror that is bent inward. Light is directed inward (converges) when reflected off of a concave mirror. Light rays from a concave mirror cross over each other, to form a focal point. If you are behind the focal point when looking into a concave mirror, your image will appear upside down. If you are in front of the focal point, objects reflected will look very large and close up. Uses - makeup mirrors.

Plane mirror - a flat mirror
Convex lens - a lens that is bent outward. Light is refracted and converges (comes together) when it exits a convex lens. Uses - to correct farsighted vision. Magnifying glasses are also convex.

Concave lens - a lens that is bent inward. Light is refracted and diverges (spreads out) when it exits a concave lens. Uses - to correct nearsighted vision.

Nearsighted - This is when the images are focused in front of the retina in the eye. People with nearsighted vision can see things close up, but have a hard time seeing things farther away.

Farsighted - This is when the images are focused behind the retina in the eye. People with farsighted vision can see things far away, but have a hard time seeing things close up.

Diverge - to spread out
Converge - to come together
White Light - made up of all of the colors of a rainbow. It's the kind of light that we see from the sun and from lamp lights.
ROY G BIV - The colors that we see in a visible spectrum (red, orange, yellow, green, blue, indigo, violet)
Retina - part of the eye that acts like a screen and responds to light
Pupil - Black hole in the center of the eye where light passes through
Iris - this is the circular band of muscles surrounding the pupil and controls the movement of the pupil. It's also what gives they eyes their color. (It's the colored part of the eye)
Lens - the human eye has a convex lens covering it. The lens bends the light that passes through the eye. To focus light, the human lens can actually change shape by bending! The lens is what causes the light that enters the eye to converge, or come together, inside of the eye. The human lens actually causes the images in the eye to be upside down (since convex lenses bend light inward - similar to what a CONCAVE mirror does - it's the opposite).
Optic nerve - this is the nerve that sends images to the brain. The optic nerve takes the images that are produced upside down and flips them upright so that we can see things the "right" way!

Cel

Vocabulary Maps are very helpful for students to work with new science vocabulary words. Instead of just writing a simple definition, vocab maps have students interact with the new words in depth by asking for an example, a drawing (if applicable), and in this case, a helpful way for them to remember the meaning of the word.

Print as many copies as you need for each booklet. \{This will all depend upon which vocabulary words you are needing to cover.\} I printed my pages front and back to save paper and I had the students cut their own pages. Just have them cut right down the middle on the dotted line. Then once all of the pages are cut, staple the booklets down the left hand side. \{I left a little bit of a larger space on the left side so that two staples can be placed vertically without affecting the print.\} Students can fill out the packet as you introduce new terms.

Tip: The "helpful hint" square was intended for students to write small hints that would help them remember what each word meant. For example, for the word "diverge", we talked about how this word began with the same word that "divide" begins with. Divide and diverge have similar meanings, so this little hint helped them to remember the meaning of the word diverge. Students got very creative with these little hints!

\&

Cle

These interactive diagrams were created so that students had more practice with the intensive - and sometimes confusing - vocabulary words throughout this unit. I created these diagrams so that students could be actively engaged with how light interacts with certain objects, how we perceive color, how mirrors work, how lenses work, how the eye works, and which lenses correct common eye problems. The directions for each respective interactive diagram is on each page. Answer keys follow.

Suggested Use: I used these diagrams as mini assessments throughout the unit. I would introduce a new concept and the following day, I would give them the diagram to complete upon coming into the classroom, before we started on a new concept. These helped me to see what we needed to review and which students were struggling with certain concepts.
\qquad Blocking the Light: How does light interact with different materials?

Transparent

Brief definition in your own words: \qquad

Draw (and label) a few examples of transparent objects. Draw arrows to show how light behaves when it reaches a transparent object. \{The arrows will represent light.\}
\square

Translucent

Brief definition in your own words: \qquad

Draw (and label) a few examples of translucent objects. Draw arrows to show how light behaves when it reaches a translucent object. \{The arrows will represent light.\}

Opaque

Brief definition in your own words:

Draw (and label) a few examples of opaque objects. Draw arrows to show how light behaves when it reaches an opaque object. \{The arrows will represent light.\}

Answer the following questions about transparent, translucent, and opaque objects and how they interact with light. Use either the term translucent, transparent, or opaque to answer each question.

Which type of object is most likely to absorb light? \qquad

Which type of object is most likely to transmit light? \qquad

Which type of object is most likely to reflect light?

Answer the following questions about transparent, translucent, and opaque objects and how they interact with light. Use either the term transmitted, reflected, or absorbed to answer each question.

When light hits a transparent object, most of the light is \qquad

When light hits a translucent object, most of the light is \qquad .

When light hits an opaque object, most of the light is \qquad . Blocking the Light: How does light interact with different materials?

Transparent

Brief definition in your own words: \qquad
Transparent objects transmit light, or allow light to
travel through them completely. You can completely see through these objects.

Draw (and label) a few examples of transparent objects. Draw arrows to show how light behaves when it reaches a transparent object. \{The arrows will represent light.\}
\{Answers will vary - Students may draw glass, plastic, windows, etc.\}

Translucent

Brief definition in your own words: Transparent objects absorb most light, while transmitting some light. You can partially see through these objects.

Draw (and label) a few examples of translucent objects. Draw arrows to show how light behaves when it reaches a translucent object. \{The arrows will represent light.\}
\{Answers will vary - Students may stained glass, tissue paper, a wax candle, etc.

Opaque

Brief definition in your own words: Opaque objects reflect light. You cannot see through these objects at all.

Draw (and label) a few examples of opaque objects. Draw arrows to show how light behaves when it reaches an opaque object. \{The arrows will represent light.\}
\{Answers will vary - Students can draw whatever opaque object they see fit.\}

Answer the following questions about transparent, translucent, and opaque objects and how they interact with light. Use either the term translucent, transparent, or opaque to answer each question.

Which type of object is most likely to absorb light?
Translucent

Which type of object is most likely to transmit light? Transparent

Which type of object is most likely to reflect light?

Answer the following questions about transparent, translucent, and opaque objects and how they interact with light. Use either the term transmitted, reflected, or absorbed to answer each question.
When light hits a transparent object, most of the light is transmitted

When light hits a translucent object, most of the light is absorbed

When light hits an opaque object, most of the light is
\qquad
 Refraction: What is refraction?

When light is transmitted through a new material (or a substance), it sometimes refracts. What does refraction mean?
Brief definition in your own words:

Draw how a pencil would look in this cup of water. \{The line in the middle of the cup represents water.\}

Think of other substances or objects that light would refract when traveling through. Where else have you seen refraction?
In the box below, draw and label your own example of when you might see light refracting. Refraction: What is refraction?

When light is transmitted through a new material (or a substance), it sometimes refracts. What does refraction mean?
Brief definition in your own words:

Refraction means the bending of light.

Draw how a pencil would look in this cup of water. \{The line in the middle of the cup represents water.\}

Think of other substances or objects that light would refract when traveling through. Where else have you seen refraction?
In the box below, draw and label your own example of when you might see light refracting.

Answers may vary. Examples include at the swimming pool when half of your body is in the pool and the other half is out; when fishing, when wearing sunglasses and looking out of the side of them, or glasses/contacts.
\qquad

Color: Where does color come from? Why do objects have different colors?

Prisms and the Visible Spectrum

Using COLORED PENCILS, draw what happens to white light as it travels through a prism. \{Make sure you put the colors in the correct order!\}

White Light

We learned that white light isn't really white at all. What colors actually make up white light?

What's the acronym that helps us remember these colors?

Seeing Color

Color the car any color that you choose. On the lines below, explain why we see the car in the color that you chose. What happens to white light? Are there any colors absorbed? What color is reflected? Make sure to include all of this information in your explanation.

Color: Where does color come from? Why do objects have different colors?

Prisms and the Visible Spectrum

Using COLORED PENCILS, draw what happens to white light as it travels through a prism. \{Make sure you put the colors in the correct order!\}

White Light

We learned that white light isn't really white at all. What colors actually make up white light?
Red, Orange, Yellow, Green, Blue, Indigo, Violet

What's the acronym that helps us remember these colors?

ROY G BIV

Seeing Color

Color the car any color that you choose. On the lines below, explain why we see the car in the color that you chose. What happens to white light? Are there any colors absorbed? What color is reflected? Make sure to include all of this information in your explanation.

We see the \{whatever color the student has
chosen to color the car\} because white light
hits the car, and \{that color\} is reflected
back into our eyes. All of the other colors
that make up white light are

absorbed when they hit the car.
\qquad

Lenses: What happens to light as it travels through different types of lenses?

Convex Lens

Draw a convex lens in the box below. Then, on the outside of the box, draw arrows to represent how light would travel once it leaves the convex lens.

Concave Lens

Draw a concave lens in the box below. Then, on the outside of the box, draw arrows to represent how light would travel once it leaves the concave lens.

Fill in these blanks using the words diverge, converge, convex, and concave. Do not use any word more than once.

\qquad

Lenses: What happens to light as it travels through different types of lenses?

Convex Lens

Draw a convex lens in the box below. Then, on the outside of the box, draw arrows to represent how light would travel once it leaves the convex lens.

Concave Lens

Draw a concave lens in the box below. Then, on the outside of the box, draw arrows to represent how light would travel once it leaves the concave lens.

Fill in these blanks using the words diverge, converge, convex, and concave. Do not use any word more than once.

When light diverges | means that it spreads apart. Light that |
| :--- |
| dravels through a concave |
| does this. | lens

\qquad

Mirrors: What happens to light as it is reflected from different types of mirrors?

Which type of mirror is this? \qquad

Explain what happens to light as it is reflected off of this type of mirror. What happens to the image that is being reflected off of this type of mirror?

Which type of mirror is this? \qquad
Explain what happens to light as it is reflected off of this type of mirror. What happens to the image that is being reflected off of this type of mirror?
\qquad
\qquad
\qquad

What is the name of the type of mirror that we use every day?

Explain what happens to light as it is reflected off of this type of mirror. What happens to the image that is being reflected off of this type of mirror?

Mirrors: What happens to light as it is reflected from different types of mirrors?

Which type of mirror is this? concave mirror

Explain what happens to light as it is reflected off of this type of mirror. What happens to the image that is being reflected off of this type of mirror?

When light reflects off of a concave mirror, the light converges, or comes together and creates a focal point (where the two reflection rays meet). If you are standing in front of the focal point, your image will appear very large and magnified.

If you are standing behind the focal point, the image will appear upside down.

Draw arrows to show how light would be reflected off of this type of mirror.

Which type of mirror is this? convex mirror
Explain what happens to light as it is reflected off of this type of mirror. What happens to the image that is being reflected off of this type of mirror?

When light reflects off of a convex mirror, it diverges, or
spreads out. This causes the reflected image to appear
smaller and farther away than the object really is.

What is the name of the type of mirror that we use every day? plane mirror

Explain what happens to light as it is reflected off of this type of mirror. What happens to the image that is being reflected off of this type of mirror? When light reflects off of a plane mirror, it reflects an image that is reversed front to back. That is, the front of the image
is facing back at you.
\qquad

How do our eyes work?

Use the terms below to complete the diagram.
Retina Cornea Lens Pupil Iris

When light enters the human eye, the light converges \{comes together\}. This is where the image is focused within the eye and it's called the focal point.

Where \{inside of a normal human eye\} should the light come together within the eye to form this image? \qquad

On the diagram below, draw arrows inside of the eye to represent the light entering the eye and converging. Make sure you draw the focal point on the correct place within the eye!

(Light Rays)

FARSIGHTED

When someone is farsighted, that means that they have a difficult time seeing things that are \qquad .

This is because the eye is too short. On the diagram below, draw how light enters a farsighted eye and creates a focal point \{in the wrong place\}. Make sure you draw the focal point to indicate farsightedness!

NEARSIGHTED

When someone is nearsighted, that means that they have a difficult time seeing things that are \qquad .

This is because the eye is too long. On the diagram below, draw how light enters a nearsighted eye and creates a focal point \{in the wrong place\}. Make sure you draw the focal point to indicate nearsightedness!

How do our eyes work?

Use the terms below to complete the diagram.

Retina Cornea Lens Pupil Iris

When light enters the human eye, the light converges \{comes together\}. This is where the image is focused within the eye and it's called the focal point.

Where \{inside of a normal human eye\} should the light come together within the eye to form this image? on the retina

On the diagram below, draw arrows inside of the eye to represent the light entering the eye and converging. Make sure you draw the focal point on the correct place within the eye!

FARSIGHTED

When someone is farsighted, that means that they have a difficult time seeing things that are close up \{they can see things that are FAR.\}

This is because the eye is too short. On the diagram below, draw how light enters a farsighted eye and creates a focal point \{in the wrong place\}. Make sure you draw the focal point to indicate farsightedness!
\{behind the retina too FAR away\}

NEARSIGHTED

When someone is nearsighted, that means that they have a difficult time seeing things that are far away \{they can see things that are NEAR.\}

This is because the eye is too long. On the diagram below, draw how light enters a nearsighted eye and creates a focal point \{in the wrong place\}. Make sure you draw the focal point to indicate nearsightedness!
\{in front of the retina - too NEAR\}

\qquad

Corrective Lenses: Which type of lens helps correct vision problems?

FARSIGHTEDNESS

We have learned that when someone is farsighted, that means that they have a difficult time seeing things that are close up. \{They can see things that are far.\}

Inside of a farsighted eye, the focal point \{or where the image is formed\} is created behind the retina instead of on the retina because the eye is shorter than it should be. Which type of corrective lenses would correct this problem?

Explain your answer. What would this type of lens help the light do?

For the diagram below, draw either a convex or a concave lens in the box in front of it. Then draw how the light would travel through the lens and then through the eye to correct farsightedness.

Corrective Lens

NEARSIGHTEDNESS

We have learned that when someone is nearsighted, that means that they have a difficult time seeing things that are far away. \{They can see things that are near.\}

Inside of a nearsighted eye, the focal point \{or where the image is formed\} is created in front of the retina instead of on the retina because the eye is longer than it should be. Which type of corrective lenses would correct this problem?

Explain your answer. What would this type of lens help the light do?

For the diagram below, draw either a convex or a concave lens in the box in front of it. Then draw how the light would travel through the lens and then through the eye to correct nearsightedness.

Corrective Lens

Nearsighted Eye
\qquad

 Corrective Lenses: Which type of lens helps correct vision problems?

FARSIGHTEDNESS

We have learned that when someone is farsighted, that means that they have a difficult time seeing things that are close up. \{They can see things that are far.\}

Inside of a farsighted eye, the focal point \{or where the image is formed\} is created behind the retina instead of on the retina because the eye is shorter than it should be. Which type of corrective lenses would correct this problem?
Convex lens
Explain your answer. What would this type of lens help the light do?
A convex lens converges light, or brings it together. This would help to bring the light closer together. This way, the image would be formed on the retina where it needs to, instead of way behind it.

For the diagram below, draw either a convex or a concave lens in the box in front of it. Then draw how the light would travel through the lens and then through the eye to correct farsightedness.

(Light Rays)

NEARSIGHTEDNESS

We have learned that when someone is nearsighted, that means that they have a difficult time seeing things that are far away. \{They can see things that are near.\}

Inside of a nearsighted eye, the focal point \{or where the image is formed\} is created in front of the retina instead of on the retina because the eye is longer than it should be. Which type of corrective lenses would correct this problem?

Concave lens

Explain your answer. What would this type of lens help the light do?
A concave lens diverges light, or spreads it apart. A concave lens would
help spread out the light farther so that it could travel farther back into the eye and create the image on the retina, instead of before it.

For the diagram below, draw either a convex or a concave lens in the box in front of it. Then draw how the light would travel through the lens and then through the eye to correct nearsightedness.

(Light Rays)

Corrective Lens

Nearsighted Eye

Name: \qquad

ACROSS

This word means "to soak up".
What type of object transmits light?
This word means "to bounce off".
This word means "to go through"
What type of object is most likely to reflect light?
Light is invisible until something
\qquad it.

DOWN
2 This is the bending of light.
4 Which type of object is most likely to absorb light?
6 This is the color that we see when all of the colors of light mix together. Light travels in a \qquad line.
Light is a type of \qquad _.
Light travels very \qquad .

ACROSS
1 This word means "to soak up".
What type of object transmits light?
This word means "to bounce off".
This word means "to go through"
What type of object is most likely to reflect light?
Light is invisible until something

DOWN
\qquad it.

2 This is the bending of light.
4 Which type of object is most likely to absorb light?
6 This is the color that we see when all of the colors of light mix together.
7 Light travels in a \qquad line.
$9 \quad$ Light is a type of \qquad .
10 Light travels very \qquad .

Name:

Crossword Puzzle Review

ACROSS
4 If someone is nearsighted, things that are \qquad look blurry.
5 This word means "to come together".
6 \qquad mirror and lens bulges outward.
8 This is the type of mirror that we use every day.
9 This is the band of muscles that controls the pupil within the human eye.

DOWN

1
A \qquad lens would correct nearsighted vision.
2 This is the part of the eye where the image forms.
This word means "to spread out". If someone is farsighted, things that are \qquad look blurry. adjusts in order to let light in..

Crossword Puzzle Review

ACROSS
4

5 This word means "to come together".
6
A A \qquad mirror and lens bulges outward.
8 This is the type of mirror that we use every day.
9 This is the band of muscles that controls the pupil within the human eye.
If someone is nearsighted, things that are \qquad look blurry.

DOWN
A \qquad lens would correct nearsighted vision.
2 This is the part of the eye where the image forms.
This word means "to spread out". If someone is farsighted, things that are \qquad look blurry. This is the part of the eye that adjusts in order to let light in..

Directions: \{Recommended- print out the Light-O cards on cardstock and laminate for future use!\} Pass out the "Light-O" cards to students. \{There are 18 different boards on subsequent pages.\} Have them use pennies, scraps of paper, or whatever else you might have on hand to use as markers. Call out the questions (on the next page) in a random order. Have a scratch piece of paper so that you can jot down the number of the questions that you called out. Students cover the answer to the question, if they have it ANYWHERE on their card. When someone calls out "Light-O!", You can use your scratch paper to double check that they have the correct answers marked. You can play any version of traditional Bingo that you like! (Four Corners, Cover-all, or a line of 5 in a row, any way. - It's up to you!)

1 - This type of lens can correct nearsighted vision
2 - This is where the image is formed in the eye of a human with normal vision
3 - When we see our reflection in a mirror, we are seeing the reflection reversed which way?
4 - This word means to spread apart
5 - This is an object that is likely to reflect light
6 - A black sweatshirt reflects what color or colors?
7 - When light travels through a convex lens, what happens to the light?
8 - If you are in a dimly lit room, will your pupil expand or shrink?
9 - How would tissue paper most likely interact with light?
10 - When light hits a concave mirror, what happens to the light that reflects off of it?
11 - This is the type of lens or mirror that curves outward
12- Light energy can also be referred to as this type of energy
13 - This is the word that describes what happens to light when it passes through a glass prism
14 - What colors are reflected off of a white car?
15 - This is the protective tissue that covers the front of the eye
16 - Which type of lens can correct farsighted vision?
17 - White light is actually made of what colors?
18 - If you can see completely through an object, it is what?
19 - This eye problem occurs because the focal point is created behind the retina
20 - This is the word that describes what happens to light as it goes through a concave lens
21 - This is the color that is reflecting from a red apple
22 - Which type of lens is thicker in the middle and thinner on the outsides?
23 - This is the band of muscles that control the pupil
24 - If you cannot see through an object at all, it is what?
25 - What happens to your pupil when you are in a room that is very bright?
26 - This eye problem occurs because the focal point is created before the retina.
27 - This is the type of lens or mirror that bends inward
28 - This word means to come together

$1-$	Concave
$2-$	(On the) retina
$3-$	Front to back
$4-$	Diverge
$5-$	Mirror
$6-$	No colors
$7-$	Converges
$8-$	Expand
$9-$	Absorb
$10-$	Diverge
$11-$	Convex
$12-$	Radiant
$13-$	Refracts
$14-$	All colors
$15-$	Cornea
$16-$	Convex
$17-$	All colors
$18-$	Transparent
$19-$	Farsighted
$20-$	Diverge
$21-$	Red light
$22-$	Convex
$23-$	Iris
$24-$	Opaque
$25-$	Shrinks
$26-$	Nearsighted
$27-$	Concave
$28-$	Converge
10	

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
\square ■

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
$\mathbf{L} \quad \mathbf{I} \quad \mathbf{G} \quad \mathbf{H} \quad \mathbf{T}$

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
■ \square

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
L I \mathbf{G} H
T

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
■

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
$\mathbf{L} \quad \mathbf{I} \quad \mathbf{G} \quad \mathbf{H} \quad \mathbf{T}$

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
\square ■

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
$\mathbf{L} \quad \mathbf{I} \quad \mathbf{G} \quad \mathbf{H} \quad \mathbf{T}$

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
$\mathbf{L} \quad \mathbf{I} \quad \mathbf{G} \quad \mathbf{H} \quad \mathbf{T}$

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
$\mathbf{L} \quad \mathbf{I} \quad \mathbf{G} \quad \mathbf{H} \quad \mathbf{T}$

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
$\mathbf{L} \quad \mathbf{I} \quad \mathbf{G} \quad \mathbf{H} \quad \mathbf{T}$

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
\square ■

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
\square ?

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
\square ■

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
$\mathbf{L} \quad \mathbf{I} \quad \mathbf{G} \quad \mathbf{H} \quad \mathbf{T}$

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
$\mathbf{L} \quad \mathbf{I} \quad \mathbf{G} \quad \mathbf{H} \quad \mathbf{T}$

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
L I \mathbf{G} H T

Listen carefully to the questions. When you know the answer, check to see if it is anywhere on your light board. If it is, cover it with a marker! When you think you have "Light-O", call it out!
■

Vocab Match-Up
 A Review Game

Vocab Match-Up: Light/Optics Edition

This game is intended to be played as "Memory". Each page has a front (the gray chevron background) and a back (either the word card or the definition card). Print these pages front and back (with the chevron background on one side). This way, when the students lay the cards face down, the background pattern will be showing. I recommend printing these on card stock and laminating. Print as many sets as you need for your class. You can check the definitions by using the provided list of vocabulary words at the beginning of this packet.

Directions: This game is for two players. Mix up the entire set of cards. Place face down. Take turns choosing two cards, with the goal of making a match of a vocab word to its definition. If you don't know the definition of one of the vocab words, you can't play! So make sure to study prior to playing this game. The partner with the most matches once all cards are gone is the winner.

Vocab Match-Up Word Cards

Vocalb Match-Up Word Cards

Concave Lens

Nearsighted

Vocalb Match-Up
 Word Cards

Vocab Match-Up Definition Cards

Vocab Match-Up Definition Cards

A lens that is bent inward. Used to correct nearsightedness.

This is when the images are focused in front of the retina in the eye. People with this type of vision can see things close up, but have a hard time seeing things farther away.

This is when the images are focused behind the retina in the eye. People with farsighted vision can see things far away, but have a hard time seeing things close up.

Made up of all of the colors of a rainbow. It's the kind of light that we see from the sun and from lamp lights.

The colors that we see in a visible spectrum (red, orange, yellow, green, blue, indigo, violet).

Part of the eye that acts like a screen and responds to light.

Black hole in the center of the eye where light passes through.

Vocab Match-Up Definition Cards

