Congruent Figures

Vocabulary

Review

1. Underline the correct word to complete the sentence.

A *polygon* is a two-dimensional figure with two / three or more segments that meet exactly at their endpoints.

2. Cross out the figure(s) that are NOT *polygons*.

Vocabulary Builder

congruent (adjective) kahng GROO unt

Main Idea: Congruent figures have the same size and shape.

Related Word: congruence (noun)

• Use Your Vocabulary

3. Circle the triangles that appear to be *congruent*.

Write T for *true* or F for *false*.

- 4. Congruent angles have different measures.
- **5.** A prism and its net are *congruent* figures.
- 6. The corresponding sides of *congruent* figures have the same measure.

Problem 3 Finding Congruent Triangles

 $\angle A \cong \angle D$ and $\angle B \cong \angle E$

D

 $\angle C \cong \angle F$

angles

,		
19. If $m \angle B = 44$, then $m \angle E =$		
20. If $m \angle C = 62$, then $m \angle F =$		
Problem 4 Proving Tr	iangles Congruent	
Got lt? Given: $\angle A \cong \angle D$, \overline{A}	$\overline{A} \simeq \overline{DC}$ A_{Σ}	C
$\overline{EB} \cong \overline{CB}, \overline{BA}$. <u> </u>	
Prove: $\triangle AEB \cong \triangle D$	СВ	Ĕ
21. You are given four pairs of c	ongruent parts. Circle the additi	onal information you
need to prove the triangles	congruent.	
A third pair	A second pair	A third pair
of congruent	of congruent	of congruent

angles

sides

If two angles of one triangle

angles are congruent.

are congruent to two angles of

another triangle, then the third

Use $\triangle ABC$ and $\triangle DEF$ above. **18.** If $m \angle A = 74$, then $m \angle D =$

Lesson Check • Do you UNDERSTAND?

If each angle in one triangle is congruent to its corresponding angle in another triangle, are the two triangles congruent? Explain.

23. Underline the correct word to complete the sentence.

To disprove a conjecture, you need one / two / many counterexample(s).

24. An equilateral triangle has three congruent sides and three 60° angles. Circle the equilateral triangles below.

25. Use your answers to Exercise 24 to answer the question.

Math Success		
Check off the vocabulary words	that you understand.	
congruent	polygons	
Rate how well you can <i>identify co</i>	ongruent polygons.	
Need to review 0 2 4	6 8 10	Now I get it!

4-2

Triangle Congruence by SSS and SAS

Vocabulary

Review

1. Use the diagram at the right. Find each.

included angle between \overline{AB} and \overline{CA} *included* side between $\angle A$ and $\angle C$ *included* angle between \overline{BC} and \overline{CA} *included* side between $\angle B$ and $\angle C$ *included* angle between \overline{BC} and \overline{AB} *included* side between $\angle B$ and $\angle A$

Vocabulary Builder

postulate (noun) PAHS chuh lit

Definition: A **postulate** is a statement that is accepted as true without being proven true.

Main Idea: In geometry, you use what you know to be true to prove new things true. The statements that you accept as true without proof are called **postulates** or axioms.

• Use Your Vocabulary

2. Underline the correct word to complete the sentence.

You can use properties, *postulates*, and previously proven theorems as reasons / statements in a proof.

- **3. Multiple Choice** What is a *postulate*?
 - (A) a convincing argument using deductive reasoning
 - B a conjecture or statement that you can prove true
 - C a statement accepted as true without being proven true
 - D a conclusion reached by using inductive reasoning

9. $\triangle ABC \cong$

by SSS.

Problem 2 Using SAS

Is your friend correct? Explain. 23. Are two pairs of corresponding sides congruent? 24. Is there a pair of congruent angles? 25. Are the congruent angles the included angles between the corresponding congruent sides? 26. Are the congruent sides? 27. Are the congruent angles the included angles between the corresponding congruent sides? 28. Are the congruent sides? 29. Are the congruent angles the included angles between the corresponding congruent sides? 29. Are the congruent sides? 29. Are the congruent angles the included angles between the corresponding congruent sides?	22. Would you use SSS or SAS to prove the triangles congruent? Explain	1.	
Error Analysis Your friend thinks that the triangles below are congruent by SAS. is your friend correct? Explain. 23. Are two pairs of corresponding sides congruent? 24. Is there a pair of congruent angles? 25. Are the congruent angles the included angles between the corresponding congruent sides? 26. Are the congruent sides?			
Error Analysis Your friend thinks that the triangles below are congruent by SAS. Is your friend correct? Explain. 23. Are two pairs of corresponding sides congruent? 24. Is there a pair of congruent angles? 25. Are the congruent angles the included angles between the corresponding congruent sides? 26. Are the congruent angles the included angles between the corresponding congruent sides?			
 Error Analysis Your friend thinks that the triangles below are congruent by SAS. Is your friend correct? Explain. 23. Are two pairs of corresponding sides congruent? 24. Is there a pair of congruent angles? 25. Are the congruent angles the included angles between the 			
Error Analysis Your friend thinks that the triangles below are congruent by SAS. Is your friend correct? Explain. 23. Are two pairs of corresponding sides congruent? 24. Is there a pair of congruent angles? 25. Are the congruent angles the included angles between the corresponding congruent sides? 26. Are the congruent angles the included angles between the corresponding congruent sides?			
Is your friend correct? Explain. 23. Are two pairs of corresponding sides congruent? 24. Is there a pair of congruent angles? 25. Are the congruent angles the included angles between the corresponding congruent sides? 26. Are the congruent angles the included angles between the corresponding congruent sides?	Lesson Check • Do you UNDERSTAND?		
 Are two pairs of corresponding sides congruent? Are two pairs of corresponding sides congruent? Is there a pair of congruent angles? Are the congruent angles the included angles between the corresponding congruent sides? Yes / No 		ent by SAS.	
24. Is there a pair of congruent angles? Yes / No 25. Are the congruent angles the included angles between the corresponding congruent sides? Yes / No			
25. Are the congruent angles the included angles between the corresponding congruent sides? Yes / No	23. Are two pairs of corresponding sides congruent?	Yes / No	
corresponding congruent sides? Yes / No	24. Is there a pair of congruent angles?	Yes / No	
26. Are the triangles congruent by SAS? Explain.		Yes / No	
	26. Are the triangles congruent by SAS? Explain.		
	Math Success		
Math Success	Check off the vocabulary words that you understand.		
Check off the vocabulary words that you understand.	congruent corresponding		
Check off the vocabulary words that you understand.	Rate how well you can use SSS and SAS to prove triangles congruent.		
Check off the vocabulary words that you understand.	Need to review 0 2 4 6 8 10 Now I get it!		

Triangle Congruence by ASA and AAS

Vocabulary

Review

1. Cross out the figure(s) that are NOT *triangle*(s).

3. A *triangle* with a right angle is called a(n) obtuse / right / scalene *triangle*.

Vocabulary Builder

corresponding (adjective) kawr uh spahn ding

Other Word Forms: correspond (verb); correspondence (noun)

Definition: Corresponding means similar in position, purpose, or form.

Math Usage: Congruent figures have congruent corresponding parts.

• Use Your Vocabulary

Draw a line from each part of $\triangle ABC$ in Column A to the *corresponding* part of $\triangle XYZ$ in Column B.

Column A	Column B	
4. <i>BC</i>	$\angle Z$	
5. ∠ <i>A</i>	$\angle Y$	
6. <i>AB</i>	\overline{YZ}	7
7. ∠ <i>C</i>	$\angle X$	A
8. <i>AC</i>	\overline{XY}	
9. ∠ <i>B</i>	\overline{XZ}	

Got It? Which two triangles are congruent by ASA? Explain.

11. Name the triangles. List the vertices in corresponding order: list the vertex with the one arc first, the vertex with the two arcs second, and the third vertex last.

12. $\angle G \cong \angle$

13. $\angle H \cong \angle$ $\cong \angle$

 \cong

14. *HG* ≅

15. The congruent sides that are included between congruent angles are

16. Write a congruence statement. Justify your reasoning.

Copyright © by Pearson Education, Inc. or its affiliates. All Rights Reserved.

Copyright © by Pearson Education, Inc. or its affiliates. All Rights Reserved.

Using Corresponding Parts of Congruent Triangles

Vocabulary

Review

Underline the correct word(s) to complete each sentence.

- 1. The *Reflexive* Property of Congruence states that any geometric figure is congruent / similar to itself.
- 2. The *Reflexive* Property of Equality states that any quantity is equal to / greater than / less than itself.
- 3. Circle the expressions that illustrate the *Reflexive* Property of Equality.

a = a	If $AB = 2$, then $2 = AB$.
3(x+y)=3x+3y	5 + c = 5 + c

4. Circle the expressions that illustrate the *Reflexive* Property of Congruence.

If $\angle A \cong \angle B$, then $\angle B \cong \angle A$. $\angle ABC \cong \angle ABC$ If $\overline{CD} \cong \overline{LM}$ and $\overline{LM} \cong \overline{XY}$, then $\overline{CD} \cong \overline{XY}$. $\overline{CD} \cong \overline{CD}$

Vocabulary Builder

proof (noun) proof

Related Word: prove (verb)

Definition: A **proof** is convincing evidence that a statement or theory is true.

Math Usage: A proof is a convincing argument that uses deductive reasoning.

Use Your Vocabulary

Complete each statement with proof or prove.

- **5.** In geometry, a <u>?</u> uses definitions, postulates, and theorems to prove theorems.
- **6.** No one can <u>?</u> how our universe started.
- **7.** He can <u>?</u> when he bought the computer because he has a receipt.

Copyright © by Pearson Education, Inc. or its affiliates. All Rights Reserved.

Lesson Check • Do you UNDERSTAND? **Error Analysis** Find and correct the error(s) in the proof. **Given:** $\overline{KH} \cong \overline{NH}$, $\angle L \cong \angle M$ **Prove:** *H* is the midpoint of \overline{LM} . **Proof:** $\overline{KH} \cong \overline{NH}$ because it is given. $\angle L \cong \angle M$ because it is given. $\angle KHL \cong \angle NHM$ because vertical angles are congruent. So, $\triangle KHL \cong \triangle MHN$ by ASA Postulate. Since corresponding parts of congruent triangles are congruent, $\overline{LH} \cong \overline{MH}$. By the definition of midpoint, *H* is the midpoint of \overline{LM} . Place a \checkmark in the box if the statement is correct. Place an \checkmark if it is incorrect. **19.** $\angle KHL \cong \angle NHM$ because vertical angels are congruent. **20.** \triangle *KHL* $\cong \triangle$ *MHN* by ASA Postulate. Underline the correct word to complete each sentence. 21. When you name congruent triangles, you must name corresponding vertices in a different / the same order. 22. To use the ASA Postulate, you need two pairs of congruent angles and a pair of included / nonincluded congruent sides. **23.** To use the AAS Theorem, you need two pairs of congruent angles and a pair of included / nonincluded congruent sides. **24.** Identify the error(s) in the proof. **25.** Correct the error(s) in the proof.

		that you understand.	
congruent		corresponding	proof
te how well you	can use congr	uent triangles.	

Isosceles and Equilateral Triangles

Vocabulary

Review

Underline the correct word to complete each sentence.

- **1.** An *equilateral* triangle has two/ three congruent sides.
- **2.** An *equilateral* triangle has acute / obtuse angles.
- **3.** Circle the *equilateral* triangle.

Vocabulary Builder

isosceles (adjective) eye SAHS uh leez

Related Words: equilateral, scalene

Definition A triangle is **isosceles** if it has two congruent sides.

Main Idea: The angles and sides of **isosceles** triangles have special relationships.

• Use Your Vocabulary

4. Use the triangles below. Write the letter of each triangle in the correct circle(s) at the right.

isosceles

Problem 2 Using Algebra

If a triangle is equilateral, then the triangle is equiangular.

Corollary to Theorem 4-4

If a triangle is equiangular, then the triangle is equilateral.

15. Underline the correct number to complete the sentence.

The corollary illustrated below is Corollary to Theorem 4-3 / 4-4.

Problem 3 Finding Angle Measures

Got lt? Suppose the triangles at the right are isosceles triangles, where $\angle ADE$, $\angle DEC$, and $\angle ECB$ are vertex angles. If the vertex angles each have a measure of 58, what are $m \angle A$ and $m \angle BCD$?

16. Which triangles are congruent by the Side-Angle-Side Theorem?

17. Which angles are congruent by the Isosceles Triangle Theorem?

18. By the Triangle Angle-Sum	Theorem, $m \angle A + 58 + m \angle DEA =$.
19. Solve for $m \angle A$.	
20. Since $\cong \angle ECD, m \angle B$	ECD =
21. Using the Angle Addition F	Postulate, $m \angle BCD = 58 + m \angle ECD =$
Lesson Check •	Do you UNDERSTAND?
What is the relationship betwe	een sides and angles for each type of triangle?
isosceles equil	ateral
Complete.	
22. An isosceles triangle has	congruent sides.
23. An equilateral triangle has	congruent sides.
Complete each statement with	n congruent, isosceles, or equilateral.
24. The Isosceles Triangle The the congruent sides are _?	eorem states that the angles opposite
25. Equilateral triangles are also	so <u>?</u> triangles.
26. The sides and angles of an	<u>?</u> triangle are <u>?</u> .
Math Success	
Check off the vocabulary word	ls that you understand.

corollary

Need to

review

0

2

base of an isosceles triangle

base angles of an isosceles triangle

Now I get it!

legs of an isosceles triangle

8

10

vertex angle of an isosceles triangle

4

Rate how well you understand isosceles and equilateral triangles.

Congruence in Right Triangles

Vocabulary

Review

Write T for true or F for false.

- **1.** Segments that are *congruent* have the same length.
- **2.** Polygons that are *congruent* have the same shape but are not always the same size.
- **3.** In *congruent* figures, corresponding angles have the same measure.

Vocabulary Builder

hypotenuse (noun) hy ран tuh noos

Related Word: leg

Definition: The **hypotenuse** is the side opposite the right angle in a right triangle.

Main Idea: The **hypotenuse** is the longest side in a right triangle.

• Use Your Vocabulary

Underline the correct word(s) to complete each sentence.

- **4.** One side of a right triangle is / is not a *hypotenuse*.
- **5.** A right triangle has one / two / three *legs*.
- **6.** The length of the *hypotenuse* is always equal to / greater than / less than the lengths of the *legs*.

Use the triangles at the right for Exercises 7 and 8.

7. Cross out the side that is NOT a *hypotenuse*.

eq

leg

Copyright © by Pearson Education, Inc. or its affiliates. All Rights Reserved.

110

 \overline{FD}

 \overline{ED}

You can prove that two triangles are congruent without having to show that *all* corresponding parts are congruent. In this lesson, you will prove right triangles congruent by using one pair of right angles, a pair of hypotenuses, and a pair of legs.

Use the information in the Take Note for Exercises 10-12.

- **10.** How do the triangles in the Take Note meet the first condition in Exercise 9? Explain.
- **11.** How do the triangles in the Take Note meet the second condition in Exercise 9? Explain.
- **12.** How do the triangles in the Take Note meet the third condition in Exercise 9? Explain.

Congruence in Overlapping Triangles

Vocabulary

Review

1.	Circle the com	<i>non</i> side of $\triangle ABC$	and $\triangle ADC$.	
	\overline{AB}	\overline{AC}	\overline{AD}	\overline{BC}
2.	Circle the com	<i>non</i> side of $\triangle XWZ$	and $\triangle YWZ$.	
	\overline{WZ}	WX	\overline{WY}	\overline{ZY}
3.	Circle the com	<i>non</i> side of $\triangle RST$	and $ riangle RPT$.	
	\overline{RP}	\overline{RS}	\overline{RT}	\overline{ST}

Vocabulary Builder

overlapping (adjective) oh vur LAP ing

Other Word Form: overlap (noun)

Definition: Overlapping events or figures have parts in common.

Moth Usage: Two or more figures with common regions are overlapping figures.

• Use Your Vocabulary

Circle the common regions of the *overlapping* figures in the diagram at the right.

4. \triangle *FGD* and \triangle *CBE*

	$\triangle ABG$	$\triangle ACF$	$\triangle EHD$	$\triangle GHB$
5.	$\triangle BEC$ and	riangleHED		
	$\triangle BEC$	$\triangle GBH$	$\triangle GDF$	$\triangle HED$
6.	$\triangle ACF$ and	$\triangle ABG$		
	$\triangle ABG$	$\triangle ACF$	$\triangle GBH$	$\triangle EHD$
7.	$\triangle ACF$ and	$\triangle GBH$		
	$\triangle ABG$	$\triangle ACF$	$\triangle GBH$	riangle HED

18.	How can you prove $\overline{BD} \cong \overline{FD}$?		
	Lesson Check • Do you UNDERSTAND? he figure at the right, which pair of triangles could you prove agruent first in order to prove that $\triangle ACD \cong \triangle CAB$? Explain.	A	B
19.	Is the hypotenuse of $\triangle ACD$ congruent to the hypotenuse of $\triangle CAB$? Explain.	D	× c
20.	What else do you need to prove right angles congruent using HL?		
21.	Which triangles can you prove congruent to find this? Explain.		
	Math Success		
Che	eck off the vocabulary words that you understand. congruent corresponding e how well you can identify congruent overlapping triangles.	over	apping