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ABSTRACT: This paper deals with the design of a model reference direct inverse control that is applied to the liquid 
level process of a conical tank. We approximate the process by linear local models based on Takagi-Sugeno fuzzy 
modeling. Therefore, a fuzzy identification is performed by means of a fuzzy clustering algorithm. From the obtained 
fuzzy model and the specifications of the reference model, we implement in a neural network the controller. A set of 
comparisons against published results demonstrates the advantages of the proposed approach. In particular, the neural 
network is obtained without training and testing and its complexity in terms of neuron number is reduced. Furthermore, 
the robustness of the proposed controllers to changes in the plant model is demonstrated. 
 
 Keywords: Inverse control, reference model, neural networks, fuzzy logic, fuzzy clustering, nonlinear system, conical 
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I. INTRODUCTION 

A basic problem in process industries is to control of liquid level and the flow in tanks. Conical tanks find wide 
applications in such industries, and they have been used by many authors in control literature for performance testing of 
control systems. The conical tank with gravity flow presents a strong nonlinearity because the extreme changes in area. 

We propose, in this paper, a model reference direct inverse control strategy based on linear local models. In contrast 
to other works, the plant to be controlled is approximated by using Takagi-Sugeno fuzzy models. We demonstrate that 
the proposed control strategy is robust and simple. As shown in comparisons against other published papers, the 
setpoints of the process are reached fast and without overshoots. 

The paper is organized as follows. Section II introduces the related work based on state-of-the-art of liquid level 
control for conical tanks. In Section III the parameters of the conical tank and the differential equation that defines its 
nonlinear mathematical model is introduced. Section IV explains in detail the proposed modeled of the tank. In order to 
obtain the TS fuzzy model, first we describe the TS fuzzy model and then the Fuzzy Clustering Algorithm. Also, in this 
section, we explain the identification stage and how we measure the accuracy of the model identified by means of the 
validation process. Section IV follows with the identification of two tanks showing the results obtained. In Section V 
we expose the theory about the Model Reference Direct Inverse Control. We begin this section with the inversion 
concept and its realizability and then we show the general structure to control a plant with reference model. To finish 
this section, we explain our proposal to implement the controller. In Section VI, we present two examples of design of 
level liquid control of two conical tanks and we compare and analyze the results obtained by our methodology with 
others control strategies applied to theses two cases. Finally, Section VII makes concluding remarks. 

II. RELATED WORK 

Because the level process of a conical tank has nonlinear characteristics, normally the plant is represented as a 
piecewise linearized model for a number of operating points. So, the process is identified through a number of transfer 
functions of First Order Plus Time Delay (FOPTD) representing an approximation to the real system [1]. From this 
viewpoint, the control is focused on FOPTD plants, also called First Order Plus Dead Time plants (FOPDT) [2]. In [3], 
the authors identified four first order transfer functions, with zero dead time, in four operating points, by process 
reaction curve method [4]. They propose a Proportional Integral (PI) controller [4] for each transfer function by using 
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Direct Synthesis method [5] and Skogestad's method [6]. The results obtained showed the better behavior of Direct 
Synthesis method. 

In addition, by using the process reaction curve method, a continuously tuned adaptive [7] PI controller according to 
the tank operating point is designed in [8]. The authors identified five FOPTD models, for five operating points. The 
estimated model parameters are used to calculate the controller based on the controller parameters and its operating 
points, and a tuning system was created. A comparison with a conventional PI, tuned by the Ziegler-Nichols (ZN-PI) 
rules [9], was performed and the results showed better performance of the adaptive PI controller. 

In [10] a system identification using the process reaction curve method, to obtain four FOPTD models for four 
operative points, is introduced. The authors proposed the design of a Fuzzy Controller (FC) [11] and it is compared 
with a Proportional Integral Derivative (PID) controller [4]. The PID controller is based on Chien and Fruehauf 
proposal [12] that is an Internal Model Controller (IMC) based technique [13]. Results in [10] demonstrate the best 
performances of the FC. 

A Fuzzy PI (FPI) controller [14] is proposed in [15] and compared with a ZN-PI controller. Results demonstrate the 
superior performance of the FPI controller. The design of the controllers is based on the linearized model in an 
operating point. 

Genetic Algorithms (GA) [16] are used in [17] to design a PID, an IMC and a Transfer Function based controller. 
Three FOPTD transfer functions are identified by process reaction curve method. The performance of proposed 
controllers are compared against controllers tuned using ZN methods. The best controller was the IMC tuned by a GA. 

More control techniques have been applied to control a conical tank. Thus, in [18] a Model Predictive Control 
(MPC) [13] has been applied and compared against a PID controller tuned by IMC technique. As in the previous cases, 
a FOPTD model was identified to design the two controllers. MPC gives better performances than PID controller. 

In [19] a MPC, tuned by Sridhar and Cooper method [20], is proposed and compared against a PI controller based on 
Skogestad’s settings. The tank is approximated to a FOPTD model. It was observed that MPC shows a better tracking 
capability than a PI controller. 

A GA also is used to tune the membership functions of the input variables of a Mamdani type FC [21] in [22]. The 
results of the FC are compared with a PI to evaluate its performances. The PI controller is designed using IMC 
technique. The results obtained show that FC performs better than PI controller. 

Use of Soft Computing (SC) [23] is an alternative to control nonlinear systems. Thus, in [24] a FC, a FPI controller 
and a GA tuned controller are designed. A PI, tuned according to Skogestad’s method, is used as comparison. The 
results demonstrated that the controllers designed using SC techniques work better than the PI controller. 

In [25] a ZN-PI controller is compared with a Particle Swarm Optimization [26] based PI (PSO-PI) controller [27] 
and with a Fractional Order PI (FO-PI) controller [28]. From the analysis, the proposed PSO-PI controller and FO-PI 
controller gives better performance compared to ZN-PI controller. 

Two linear Generalized Predictive Controllers ([29], [30]) are designed and are compared in [31]. Also in [31] a 
Direct Inverse Control (DIC) [32] is introduced. This DIC was implemented by a neural network [33]. According to the 
results, they demonstrate the best behavior provided by the DIC. 

In [34] a Time Optimal Control (TOC) system [35] and an Adaptive Control (AC) using neural networks are 
proposed. TOC is used to setpoint changes and AC is designed for the process parameters variations. Performance is 
compared with a PID tuned by ZN rules using process reaction curve method for six regions. The results prove the 
effectiveness of the TOC and AC. 

As described previously, most of the authors make an approximation of the process through a number of transfer 
functions of First Order Plus Time Delay and then they apply some control technique. In this work, we make an 
approximate by mean of linear local models which have been obtained of a Takagi-Sugeno (TS) fuzzy model. Once the 
Takagi-Sugeno model is obtained, we apply the Model Reference Direct Inverse Control technique to control the liquid 
level in a conical tank. In [31], the authors apply the inverse control technique, but without to do an approximation of 
the model and training a neural network like the exact inverse. However, the controller obtained in [31] is more 
complex than our proposal although the results obtained are similars. 

III. MATHEMATICAL MODEL OF A CONICAL TANK 

Fig. 1 ilustrates the geometry relationship of the conical tank under study. As is shown, the shape is a cone and 
therefore the geometrical relationship is nonlinear. Conical tank parameters are: inflow rate (   ), outflow rate (    ), 
top radius ( ) and total height ( ). The control goal is to keep up the level ( ) of liquid at a constant value and for it we 
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have to control the inflow rate. The radius of the cone is   for the level  . The outflow rate is due to the hydrostatic 
pressure and it is not controlled. 

For the level   the liquid volume   is given by:                      }  [          ]                   (1) 

 
Volume variation is the difference between the inflow and the outflow and it depends on the discharge coefficient     , as follows: 
                        √       (2) 

 
By differentiating the equation (1), then: 
      [       ]                (3) 

 
Equalling (2) and (3): 
                                   ⁄                           ⁄     (4) 

 

 

Fig. 1 The liquid conical tank 

IV. TAKAGI-SUGENO FUZZY MODEL OF THE PLANT 

Because the strong nonlinearity of the system under study, the plant is represented by a number of linear models. 
Thus the output of a model is calculated as an interpolation of locally linear models. The local linear models follow a 
TS fuzzy model. The fuzzy models are obtained by the Fuzzy Clustering Algorithm. 

A. Takagi-Sugeno Model 

The Takagi-Sugeno fuzzy model ([36], [37]), of a nonlinear dynamic system, interpolates local linear LTI (Linear 
Time Invariant) ARX (AutoRegressive with eXogenous input) models, as follows: 

                                                      ∑             ∑                              (5) 

 

Each fuzzy rule (  ) in the equation (5) is formed by an antecedent (                                   ) and a 

consequent (      ∑             ∑                            ). The antecedent is a fuzzy 

proposition while the consequent is a crisp function of the input variables. The antecedent is composed by the 

antecedent variables (       ) and the fuzzy set (           ). In the consequent,    and    are the maximum lags 

http://www.ijareeie.com/


 

                 ISSN (Print)  : 2320 – 3765 

                 ISSN (Online): 2278 – 8875 

 

International Journal of Advanced Research in  Electrical, 

Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 2, Issue 11, November 2013 

 

Copyright to IJAREEIE                                                              www.ijareeie.com                                                                         5330          

 

considered for the output ( ) and input ( ) terms, respectively;    is the discrete dead time,    is an offset or bias and      and      are constants. 

B. Fuzzy Clustering Algorithm 

The plant identification [38] consists obtaining a mathematical model applying test signals to the plant. The 
mathematical model is obtained by applying any identification algorithm, however, the complexity of the obtained 
model depends on the identification methodology. We use the fuzzy clustering algorithm as an identification algorithm 
in order to obtain the TS model. 

Fuzzy Clustering Algorithms ([39], [40]) are best suited for fuzzy identification. Fuzzy C-Means (FCM) method [20] 
and the Gustafson-Kessel (GK) method [23] are the most used. Fuzzy clustering analytical techniques are based on the 
optimization (minimization) of the objective function c-means (Equation 6): 

        ∑ ∑         ‖     ‖            (6) 
 

where,   {          } are the data to be classified,   [   ] is a fuzzy partition matrix of  ,   [          ] is 

the vector of centroids to determine, ‖     ‖                is a norm that is determined by the choice of 

the   matrix and   (  ∞) is an exponent that determinates the fuzzification of the resultant classes. 

The major disadvantage of the FCM algorithm is that the obtained classes have hyper-ellipsoidal form. For control 
applications it is desirable that those classes have a linear form. 

An alternative to FCM is the GK algorithm [41] that is adaptive with the distance. That is, the B matrix in (6) is 
different for each class   . However, the objective function (6) cannot be directly minimized with respect to   , since 
it is linear in   . To obtain a feasible solution,    must be constrained in some way. The usual way is to constrain the 
determinant of   : 

                        (7) 
 
Using the Lagrange multiplier method, the expression for    is obtained: 
    [       ]  ⁄             (8) 
 

where    is the fuzzy covariance matrix of the  th cluster defined by: 
    ∑                    ∑                 (9) 

 
This algorithm detects quasi-linear behaviors quite well. However, the standard GK clustering algorithm presents 

numerical problems when the number of data samples is small or when the data within a cluster are linearly correlated. 
In such a case, the fuzzy covariance matrix    (9) cannot be inverted to calculate the norm-inducing matrix    (8), 
because     may become singular. Babuška ([42], [43]) proposed a solution to this problem applying a technique to 
calculate of the fuzzy covariance matrix. However, as a result one can get clusters that have little relationship with the 
real distribution of the data and consequently one obtains a poor TS fuzzy model. This problem occurs mainly when the 
number of data points in a cluster becomes too low. Babuška ([42], [43]) proposed a solution to this problem too, 
resulting a modified GK algorithm. 

We use in this work the Fuzzy Modeling and Identification Toolbox (FMIT) developed by Babuška [44], that has 
been implemented the techniques for solving the problems of GK algorithm, i.e., the FMIT implements the modified 
GK algorithm. 

C. Identification and Validation 

For computing the height  , at each time instant, we use Simulink® [45]. The differential equation (4) and some 
variables inflows,    , functions are simulated for obtaining the height   in terms of time.. From the input (   ) and the 
output ( ) vectors and applying the FMIT we get the TS model. We use the half of the input samples in the 
identification process and the other half to the validation process. The validation process is used to calculate the 
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identified model accuracy. For comparison between the computed output with the output of the plant we use the     
(Variance Accounted For) index measurement, as follows: 

     [        ̂    ]             (10) 

 
where,   is the plant real output,  ̂ is the model output and     is the variance. If the model is exact, the     index is 
equal to     .     index is used by FMIT. 

D. Takagi-Sugeno Model of the Conical Tank 

We will make the identification of two tanks. First, we will identify the tank presented in [31]. The characteristics of 

this tank are (pp. 227-233):                ⁄ ,              ⁄  ⁄ ,         y     °. 

In Fig. 2, we observe the input and output signals and the obtained output (            ) for four clusters and 
a fuzzification coefficient        . The obtained TS model is shown in Fig. 3. 

 

Fig. 2 Signals for identification and validation 

                                                                                                               
                                                                                                               
                                                                                                          
                                                                                                           

 

Fig. 3 First TS model of the conical tank of [31] 

A factor that determines the quality obtained in the mathematical model of the process is the choice of the used 
signals in system identification. To make a comparison with the obtained control, we have calculated other fuzzy model 
by adding a small random signal to the input (see Fig. 4), to ensure that the model will be able to accurately reproduce 
high frequency outputs of small magnitude. 

In this case, we have obtained, with a fuzzification coefficient       , a            , the TS model that is 
described in Fig. 5. 

Although the second fuzzy model is less accuracy in the validation process, it gives best results in the subsequent 
quality control signal. 
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The second tank to identify is presented in [3]. The characteristics of this tank are:               (Liters Per 
Hour),             ⁄ ,         y           . 

In Fig. 6, we observe the input and output signals and the obtained output (            ) for four clusters and 
a fuzzification coefficient        . The obtained TS model is shown in Fig. 7. 

 

Fig. 4 Signals for identification and validation 

                                                                                                          
                                                                                                               
                                                                                                      
                                                                                                               

 

Fig. 5 Second TS model of the conical tank of [31] 

 
Fig. 6 Signals for identification and validation 
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Fig. 7 TS model of the conical tank of [3] 

V. MODEL REFERENCE DIRECT INVERSE CONTROL 

The inverse model based control has made several appearances in the literature demonstrating its strength in 
improving parameters such as settling time, tracking and other performance metrics. In the Direct Inverse Control, the 
controller is a perfect inverse model of the plant. So, the plant output will equal to the reference signal. In the practice, 
however, it is impossible to get a perfect inverse. Furthermore, it is better to follow a smoothed version of the reference 
signal, like in the case of step reference. The smoothed version of the reference signal is the desired output of the 
controlled system and it is modeled by the reference model. The reference model is a filter and it is designed as a 
function of some parameters, such as the rising time, the settling time, maximum overshoot and steady-state error. 

A. Inversion Concept and Realizability 

A system has an input    and an output    which are related by the model       ,    . In this 
description    is a generalized stable operator, and the output follows a bounded arbitrary reference signal   . The 
right choice for      is such that         and      , where          (see Fig. 8). 

 
Fig. 8 Fundamental problem of tracking 

 
To achieve      , the control law is         , that is, the controller must do the inverse operation 

performed by the operator   , this equation condenses the basic paradigm of inversion. However,     might have 
only mathematical meaning because there are reasons why this inverse is physically unrealizable, therefore, the 
controller implements an approximate inverse of the process. Some criteria to consider are: 

 Stability: the operator      must be stable, that is, it must generate a    bounded for all    bounded. 
 Causality: the controller must be physically realizable. For example, a system with dead time isn't causal. 
 Limited action: in a real application, the control signal    must be constrained within certain limits, and this 

may prevent the obtaining of a perfect reverse. Similarly, there are limits to the speed of variation for the control 
signal. 

 Uncertainty: any model, to describe the system to be controlled, is inaccurate. Therefore, a controller must be 
able to control the model, but this does not necessarily mean that it can control the plant. 

Because the perfect inverse cannot be achieved, there are some techniques to find an approximate inverse [32] and 
[46]. 

B. Model Reference Control 

The idea of the reference model was due to Whitaker [47] and it consists in that the output of closed loop system is 
equal to the output of a reference model or similar to it. 
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Fig. 9 shows the general structure to control a plant with reference model. The controller attempts to make the output 
of the plant coincides with the output of the reference model in an asymptotic form. 

The error at the output   , i.e. the difference between the output of the reference model     and the output of the 
plant   , depends on the error in obtaining the plant model (uncertainty), the variations in the output of the plant due 
to disturbance and the error in the model output representing the controller. 

 

Fig. 9 General structure to control a plant with reference model 

 
The reference model, which should be of exponentially stable dynamic, is chosen to have the same dynamic 

response that to the designer would like for the controlled system. Therefor, the designer must have enough knowledge 
of the plant to define the desired behavior through the model. 

C. Implementation of the controller 

Fig. 10 shows the basic scheme of the system. The main aim is that the output of the plant,   , being equal to the 
output of the reference model,    . Suppose the reference is as follows: 

                         (11) 

 
Doing the Z inverse transform, the difference equation of the output of the reference model is: 
                  (12) 
 

Fig. 10 Basic scheme of the system 

 
By equating     to the consequents of the TS model (      ), the expression of the control signal    is 

obtained. For example, for the TS model of Fig. 3 and the rule   : 
                                                                                                                                     

                                   (13) 
 

The expression of the control signal in equation (13) is implemented by a neural network ([31], [33]). This neuron 

has weights    , bias    and linear activation function, that is, the neuron is a ADAptive LInear NEuron (ADALINE), 

that was introduced by Widrow in 1959 (see Fig. 11). In general, a neuron generates an output given by: 
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    (∑              )        (14) 

 
In equation (14),   is the neuron number and   is the input number. 
 

Fig. 11 Adaptive linear neuron 

 
The final system is a feedback system because the control signal in equation (13) depends on the output of the 

system. The number of rules of the TS fuzzy model will determine the number of neurons of the controller. Each 
neuron will have one output. We have designed a fuzzy logic which uses the antecedents of the rules. 

Because the connective of the antecedent is the "and", it is necessary to active the three fuzzy sets to activate a rule. 
For example, to activate the rule    it is necessary that the fuzzy sets    ,     and     are activated. The designed 
fuzzy logic will generate a value in the deffuzification process indicating the active rules. For example, if only the rule    is activated, the fuzzy logic will give the value 1 and the control signal of the plant will be generated by that rule, 
i.e., only one neuron will generate the control signal. When more than one rule is activated, i.e., the rules    and   , the 
fuzzy logic will give a value between 3 and 4, for example 3.65 (see Fig. 12). It indicates that the rule    has     of 
weight in the control signal and the rule    has     of weight. Fig. 12 shows an example when two rules are activated 
simultaneously 

 

Fig. 12 Fuzzy logic for selection of active rules 
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VI. DESIGN AND COMPARATIVE EXAMPLES 

In this section, the design of the control system for two conical tanks is illustrated. Comparisons against [31] and [3] 
demonstrate the advantages of the proposed approach. 

A. Example 1 

In [31], two linear Generalized Predictive Controllers (GPC) in two different linearized points are designed. Fig. 13 

shows the response for the linearized GPC in the process point                                ⁄  and Fig. 

14 shows the response for the linearized GPC in the other point                               ⁄ . 
 

Fig. 13 Response for the linearized GPC in the point    obtained in [31] 

Fig. 14 Response for the linearized GPC in the point    obtained in [31] 

 
Predictably, the first controller works well for small levels, while the latter performs better for larger levels. 
Also in [31] is designed a Direct Inverse Control (DIC). The response obtained, as shown in Fig. 15, has a better 

behavior and it is as fast as, physically, is possible. When there is a change of setpoint, to fill up the tank, the control 
signal is maximum until nearly to get the desired height. Thus, the control signal type "bang-bang" has been ideal to 
control this tank. The design of this DIC, by trial and error method, was implemented by a neural network with seven 
hidden neurons. The network was trained by Levenberg-Marquardt algorithm with 500 iterations and the inverse model 
is used like a controller. 

Now, we will see the results with our proposal by choosing a reference model equal to the equation (11). Fig. 16 
shows the results for the TS model of Fig. 3. As is shown, to keep up stable the achieved levels, the control signal 
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varies very fast and, in practice, this is a problem due to the speed of opening and closing of the valve that supplies the 
inflow. This variation of the control signal is because the designed system switches between two of the rules to 
maintain a constant level. 

Fig. 17 illustrates the response of the TS model of Fig. 5. Here, the control signal is better and practically equal to 
that of Fig. 15. Here the control system uses only one rule to maintain a constant level and for it the control signal is 
constant. 

 

Fig. 15 Response for the DIC obtained in [31] 
 

Fig. 16 Response to our first proposal 

 
An advantage of our method is that in [31] the architecture of the neural network by trial and error testing was 

obtained, while we obtained the architecture of the neural network from the identification phase. This means that we 
don’t need to test the architecture, to train it, and to check the results. Following our proposal, the architecture of the 
neural network is obtained without training and testing. Another advantage of our method is the reduction of the 
number of neurons, because our neural network uses four neurons against the seven of the DIC [31]. Thus, the 
hardware or software that implements the neural network will be simpler. 

Although in [31] a robustness study has not presented, we show in Fig. 18 that our system is robust against changes 
of      and the behavior of the control signal continues being ideal. 

 

http://www.ijareeie.com/


 

                 ISSN (Print)  : 2320 – 3765 

                 ISSN (Online): 2278 – 8875 

 

International Journal of Advanced Research in  Electrical, 

Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 2, Issue 11, November 2013 

 

Copyright to IJAREEIE                                                              www.ijareeie.com                                                                         5338          

 

Fig. 17 Response to our second proposal 
 

Fig. 18 Response of our proposal for different coefficients      
 

B. Example 2 

In this second example, we use the conical tank controller introduced in [3]. The authors identified a first order 
model for four points: 1.44 cm, 5.76 cm, 12.83 cm and 23.04 cm of height. For each operating point, a PI controller 
was designed by the direct synthesis method and by the Skogestad's method. Fig. 19 shows the obtained results. 

Following our approach, and by applying the same method of the example 1, the controller is obtained from the 
model illustrated in Fig. 7. Fig. 20 shows the behavior of the proposed controller. 

As is shown, our design has a much faster behavior because the controller uses the maximum inflow rate when there 
is a change of setpoint. However, the design made in [3], by Synthesis method and Skogestad’s method, do not use the 
maximum inflow rate and furthermore the inflow rate increases, progressively, and it is not of type “bang-bang” which 
is ideal for this type of application. 

Table 1 summarizes the settling time in seconds, which is measured around the ±2% of the final value, for the graphs 
of Figures 19 and 20. 

Fig. 21 demonstrates that our proposal is robust. In this case, we show that if we vary the coefficient      around      and      the system is stable and only varies the filling up speed. The discharging coefficient is related with 
the stability of the system, while the rest of the parameters are kept almost constant. 
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Fig. 19 Response obtained in [3] 
 

Fig. 20 Response of our proposal for different setpoints 
 

 

 Synthesis method in [3] Skogestad method in [3] Our proposal 

0.2 cm → 1.44 cm 9.00 4.50 0.02 

1.44 cm → 5.76 cm 31.00 20.00 0.05 

5.76 cm → 12.83 cm 137.00 226.00 0.60 

12.83 cm → 23.04 cm 600.00 > 600.00 4.44 

Table I. Settling time in seconds of figures 19 and 20 
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Fig. 21 Response of our proposal for different coefficients      
 

VII. CONCLUSION 

In this work, a new model reference direct inverse control strategy based on linear local models has been proposed. 
We approximate the process by using Takagi-Sugeno fuzzy modeling. The proposed approach is applied to liquid level 
and flow control of conical tanks. Despite conical tank control is a hard nonlinear problem, the obtained controller 
following the proposed approach results robust and its implementation simple in hardware. We demonstrate that the 
controller is robust against variation of the discharge coefficient      up to     . The controller implementation is 
built of four ADALINE neurons and a fuzzy logic for selecting those neurons that generate the control signal. The 
identification phase is offline, therefore the neural network is obtained without training and testing. As shown in 
comparisons against other published results, the setpoints of the process are reached as fast as possible without 
overshoots. 
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