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MANAGEMENT SCIENCE 
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Printed in U.S.A. 

EVALUATING FORECAST PERFORMANCE IN AN 
INVENTORY CONTROL SYSTEM* 

EVERETTE S. GARDNER, JR. 
College of Business Administration, University of Houston, Houston, Texas 77204-6282 

This paper analyzes the impact of forecasting on inventory decisions in a large physical distri- 
bution system. Alternative forecasting models are evaluated by developing tradeoff curves between 
inventory investment and customer service. The results demonstrate that the choice of forecasting 
model is an important factor in determining the amount of investment needed to support any 
target level of customer service. 
(FORECASTING-TIME SERIES, APPLICATIONS; INVENTORY/PRODUCTION- 
PARAMETRIC ANALYSIS; SIMULATION-APPLICATIONS; MILITARY-LOGISTICS) 

1. Introduction 

Forecasting is a prerequisite to inventory decisions in practice. Unfortunately most 
research in inventories ignores forecasting altogether and simply assumes that the dis- 
tribution of demand and all its parameters are known. Only a few studies are available 
on the interactions between forecasting and inventory decisions. Lee and Adam (1986) 
show that the size of forecast errors influences the choice of lot-sizing rule in material 
requirements planning systems for manufacturing inventories. In distribution inventories, 
Croston (1972), Brown (1982), Watson (1987), and Eppen and Martin (1988) show 
that forecast errors can seriously distort projections of customer service. 

From the research to date, it is not clear how managers should evaluate alternative 
forecasting models in the inventory context. This paper is a study of the impact of fore- 
casting on inventory control in a large physical distribution system. We show that alter- 
native forecasting models define unique tradeoff curves between aggregate inventory 
investment and customer service. The differences between the tradeoff curves are signif- 
icant. Careful selection of the forecasting model for an inventory system can increase 
the customer service provided by a fixed investment. Another possibility is to reduce 
investment while maintaining previous levels of customer service. 

The plan of this paper is as follows. ?2 introduces the concept of tradeoff curves for 
inventory analysis. This is followed in ?3 by a summary of the forecasting and inventory 
decision rules used in the physical distribution system. ?4 analyzes the characteristics of 
the time series of inventory demands in order to identify alternative forecasting models. 
These models are reviewed in ?5, while ?6 develops the research design for testing the 
models. The savings available to management from improved forecasting are discussed 
in ?7. Finally, conclusions are offered in ?8. The results of this study are presently under 
implementation and should be useful in other inventory systems. The results also point 
to further research opportunities in forecasting for operational decisions. 

2. Tradeoff Curves in Inventory Control 

The setting for this study is a large military physical distribution system managed 
under centralized decision rules. Headquarters inventory managers determine system- 
wide requirements for about 50,000 inventory items, procure these items from industry, 
and make allocations of the items to a network of eleven supply centers. The supply 
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INVENTORY CONTROL SYSTEM FORECASTING 491 

centers have little decision-making authority and act as warehousing and distribution 
agents to serve customers in their geographic areas. 

Customer service in this system is measured by delay time, the average number of 
days that a customer requisition is backordered before it can be delivered. When an 
inventory item is not available for issue at one of the supply centers, headquarters managers 
contact manufacturers and attempt to expedite procurements. The chief performance 
goal of management is thus to minimize average delay time for customer requisitions. 

Prior to this study, management believed that the only important influence on delay 
time was the amount of aggregate inventory investment, defined as the sum of average 
order quantity stocks and safety stocks for all items in the inventory. As the amount of 
aggregate investment is increased, more funds are available for safety stocks to protect 
against forecast errors and delay time is reduced. The tradeoff curves in Figure 1 illustrate 
the relationship between investment and delay time. Consider the curve labeled "simple 
smoothing." At an investment level of $375 million, the curve shows that delay time to 
fill customer requisitions is 43 days. At the other end of the curve, an investment of $425 
million reduces delay time to 33 days. The curve has a negative slope as should be 
expected. At a relatively small investment level, safety stocks are small and delay time 
is high. Moving to the right on the investment axis, safety stocks are increased and delay 
time falls. Since it is very difficult to measure the cost of delay time in any inventory 
system, it is not clear exactly where management should operate on the tradeoff curve. 
The curve simply shows the range of possible operating positions. The correct position 
is a matter of managerial judgment. 

Tradeoff curves between aggregate inventory investment and customer service are 
widely used as analytical tools in inventory control. However, it is generally accepted 
practice to consider only one forecasting model for an inventory and thus to develop 
only one tradeoff curve. See for example the analysis in Brown (1982) or Silver and 
Peterson ( 1983). This research shows that different forecasting models define a range of 
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different tradeoff curves between aggregate inventory investment and customer service. 
The reason is that forecast errors are the primary determinant of the safety stock com- 
ponent of inventory investment. In general, the better the forecast accuracy, the smaller 
the inventory investment needed to reach any particular target value for customer service. 
As forecast accuracy improves the best tradeoff curve shifts down and to the left. For 
example, in Figure 1 the random walk yields a poor tradeoff curve. Forecasting with a 
linear trend improves the tradeoff curve, while simple smoothing yields even further 
improvement. Finally, forecasting with a damped trend shifts the tradeoff curve to the 
position where management is able to achieve the minimal investment to meet any 
customer service target. 

3. Inventory Decision Rules 

To understand how the aggregate inventory investment totals in Figure 1 are deter- 
mined, it is necessary to review the decision rules for order quantities and safety stocks. 
The decision rules generally follow the classic text by Hadley and Whitin ( 1960, Chapter 
4), although there are some differences worth discussion here. The objective in inventory 
decisions is to minimize the sum of total variable costs: 

TVC = A(4D/Q) + IC(Q/2 + R - LD + B) + SE(B/ U) where (1) 

A = administrative cost of placing an order on procurement plus the manufacturer's 
production set-up cost. 

D = quarterly demand forecast. 
Q = order quantity. 
I = inventory holding cost rate including storage, obsolescence, and opportunity costs. 
C = unit purchase cost of the item. 
R = reorder point, composed of leadtime demand plus safety stock. 
L = procurement leadtime expressed in number of quarters. 
B = expected number of units of stock backordered at any random point in time. 
S = shortage cost per customer requisition backordered. 
E = essentiality code for the inventory item. 
U = number of units of stock per customer requisition. 
The first term in (1) is the expected ordering cost for one year. While Hadley and 

Whitin assume that all parameters of the distribution of demand are known, in this 
system simple exponential smoothing is used to produce D, the quarterly forecast. Since 
simple smoothing yields the same forecast for every quarter in the future, 4D is taken 
to be annual demand and 4D/ Q is an estimate of the expected number of procurement 
orders per year. 

The second term in (1) approximates the carrying costs for the expected number of 
units of stock on hand at any random point in time. Expected units are defined as average 
cycle stock investment (approximated by Q/2) plus the reorder point minus leadtime 
demand plus backorders. The sum of the second term in (1) for all inventory items is 
the aggregate inventory investment (the X axis in Figure 1 ). 

The third term in (1), for shortage costs, contains two differences from Hadley and 
Whitin. First, shortage costs are weighted by an essentiality index ranging from one to 
five. These indices reflect the importance of the inventory item to the missions of cus- 
tomers. Another difference is that Hadley and Whitin compute shortage costs as a function 
of the number of units of stock on backorder while in (1) shortage costs depend on the 
number of customer requisitions on backorder. A requisition is defined as a demand 
from a single customer for any number of units of stock, all required for immediate 
delivery. Thus B! U estimates the number of requisitions on backorder by assuming that 
the number of units per requisition is constant. 
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Differentiating the cost expression and solving the first-order conditions leads to the 
following decision rule for order quantities: 

Q = [8DA/(IC(1 _ p))] 1/2. (2) 

This is the same as the well-known EOQ formula except that it is adjusted by 1 - P, 
where P is the probability of being out of stock at any random point in time. As this 
probability increases, the order quantity increases. P can be written as: 

rR+Q 

P= 1/Q J [1-F(x)]dx (3) 

where F(x) is the cumulative probability distribution of leadtime demand. F(x) is assumed 
to be normal and simple exponential smoothing is used to estimate the mean and variance 
of the distribution. As one of the referees for this paper pointed out, a normality as- 
sumption for inventory demands is usually suspect. However, there seems to be no rea- 
sonable alternative to use of the normal distribution in this application. Extensive study 
showed that no other standard distribution gave better results. Iterative methods are used 
to solve these equations simultaneously for Q, P, and R. Details of the solution routine 
are available in Hadley and Whitin. 

One problem with implementing these decision rules is that the inventory costs are 
unknown. The problem of cost measurement is bypassed by using the costs as policy 
variables. Different combinations of costs determine a tradeoff curve (see Figure 1 ) show- 
ing how customer service varies as a function of total inventory investment. 

For a variety of reasons, forecasting performance should be an important determinant 
of the effectiveness of these inventory rules. In equation (3) the probability of being out 
of stock depends directly on forecast accuracy. For a given reorder point quantity, as 
forecast accuracy improves, the probability of being out of stock declines and thus delay 
time improves. Another way to view the effects of forecast accuracy is to consider that 
the reorder point R is composed of leadtime demand and safety stock. As forecast accuracy 
improves, management has the option of reducing investment because less safety stock 
is needed to support any given customer service target. In equation (2), it is also important 
to understand that the validity of the order quantity Q depends on the quarterly demand 
forecast D. Normal procurement leadtime (not considering expedited procurements) 
ranges from four to eight quarters. However, the current forecasting model in this system 
assumes that mean demand will be constant for every quarter in the future. Thus annual 
demand is taken to be 4D and leadtime demand is taken to be LD. If trends or shifts in 
level of the time series occur, the forecasts will be biased, which will in turn distort order 
quantities and reorder points. A positive trend in demand will cause shortages of stock 
while a negative trend will cause excess stocks to accumulate. 

4. Time-Series Data Analysis 

A data base was made available for this research including a complete daily history of 
receipt and issue transactions for the previous nine years for all 50,000 items stocked. 
Fortunately, it was not necessary to analyze all of this data. Management concentrates 
attention on a sample of 5,661 "Class A" items that account for more than 80% of 
customer requisitions. This sample was used for data analysis and the forecasting tests 
discussed below. Data for the Class A items were aggregated into quarterly time series to 
correspond to established time frames for updating forecasts and inventory decision rules. 
These series contained an average of 24 observations. About half of the series contained 
a full nine years (36 quarters) of demand information. The other series were shorter 
because they represented items that had been added to or deleted from the inventory 
during the nine-year period. 
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To gain an understanding of the structure of the series, autocorrelation-coefficients 
were computed. Only 12% of the series had a significant autocorrelation coefficient at 
lag 1. The percentage of significant coefficients declined steadily to about 3% at lag 5. 
Thus ARIMA modeling was ruled out. Since the autocorrelations were so small at seasonal 
lags, there was no need to bother with seasonality in forecasting. 

Complex modeling efforts seem even more unlikely when the coefficients of variation 
of the series are considered. The mean coefficient of variation is about 1.5 with the 
distribution skewed left. Extreme variability is not unusual in inventory time series (Brown 
1982 and Dancer and Gray 1977). In these series, variability is due to at least three 
factors. First, demand is lumpy because the series contain many zero observations. About 
78% of the series have at least one quarter with a zero observation and about half have 
at least four consecutive quarters with zero demand. Second, graphical analysis revealed 
that many series contain sudden jump shifts in the level of demand. Third, the series are 
contaminated by outliers. A random sample of 100 series was examined for outliers by 
constructing 95% confidence limits around the ex post forecast errors (one-step-ahead) 
from simple exponential smoothing. In 92 series, at least one outlier was found. Similar 
results were obtained by constructing confidence limits around the errors from a variety 
of other smoothing methods. Many of the outliers are huge, on the order of five to six 
times the level of the time series before the outlier occurred. 

Graphical analysis also revealed numerous trends in these series. The trends are erratic 
so it was not obvious that trend-adjusted forecasting models should be used. Trends may 
appear to be unlikely from the autocorrelations, but the coefficients are distorted by the 
zero observations. 

To sum up data analysis, the time series are nonseasonal and contain zero observations, 
jump shifts in level, and outliers. The series are also very short so any conclusions from 
data analysis are likely to be subject to large sampling error. Under these conditions, 
some form of exponential smoothing is the only reasonable forecasting method if indeed 
forecasting should be attempted at all. Prudence suggests the use of a naive (random 
walk) model as a benchmark for any other forecasting model applied to this data. 

It is impractical to make all of these time series available to other researchers. The 
series are imbedded in a large, complex data base system maintained in a proprietary 
format on a mainframe computer. However, a random sample of 100 time series was 
extracted from the data base and placed on a diskette. Any researcher interested in ob- 
taining a copy of the diskette should write to the author. 

5. Forecasting Alternatives 

The standard fixed-parameter exponential smoothing models, simple smoothing and 
a linear trend, were selected for testing. The adaptive smoothing approach of Trigg and 
Leach ( 1967) was tested since it was designed to deal with jump shifts in the level of 
demand. In brief, the Trigg and Leach scheme sets the smoothing parameter in the simple 
model equal to the absolute value of the ratio of smoothed error to smoothed mean 
absolute deviation. When the time series is well-behaved, the ratio is near zero; when a 
sudden change occurs, the ratio moves toward one to eliminate bias in the forecasts. 

The damped-trend model by Gardner and McKenzie (1985) was also tested since it 
performed well in the noisy data used in the M-competition (Makridakis et al. 1982). 
Linear-trend smoothing models tend to overshoot the data at long forecast horizons. The 
damped trend is more conservative and operates by damping the trend according to the 
level of noise in the time series. The greater the noise, the greater the rate of damping 
applied. 

The models were programmed using the following formulation: 
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St = St-l + Tt- I + hiet, (4) 

Tt= Tt-l + h2et, (5) 

m 
Xt(m)=SSt +JqiTt (6) 

i=1 

The one-step-ahead forecast error is et. St and Tt are the level and trend components of 
the series, with h, and h2 as the smoothing parameters. The type of model is controlled 
by the damping parameter X. If X is zero, the model is simple smoothing. If 0 is 1.0, the 
trend is linear and the model is usually known as Holt's linear-trend model. Finally, 
when 0 < 4 < 1, the trend is damped. 

To minimize computational problems, parameters in the linear and damped trend 
models were constrained using discounted-least-squares (DLS). With d as the discount 
factor, the smoothing parameters become: 

h= 1 (01/q)2; h2 = (1 - f/j)( 1 - ,3/q2) (7) 

DLS simplifies matters considerably since the linear-trend model effectively has only one 
parameter, ,B, and the damped trend has two parameters, /3 and X. The linear-trend model 
constrained by DLS is also known as double exponential smoothing (Brown 1963). 

These models are by no means the only possibilities for the time series. For example, 
many other adaptive smoothing systems have been proposed in the literature. However, 
it was necessary to restrict the number of models tested due to the computational problems 
discussed in the next section. 

6. Experimental Design 

The traditional research design for testing a forecasting model on a collection of time 
series is as follows (Makridakis et al. 1982). Each series is divided into two samples. The 
first sample is used to fit the model and a set of forecasts is made covering all observations 
in the second or holdout sample. Forecast errors in the holdout sample are averaged 
across all series. The mean absolute percentage error (MAPE) by forecast horizon in the 
holdout sample is often used to evaluate competing models. 

In this inventory system, it is unlikely that such a research design would yield infor- 
mation convincing management to implement a new forecasting model. Because of the 
zero observations, the MAPE is undefined for many time series. There is also no way to 
use the MAPE averaged across all time series to estimate the impact on management's 
primary concerns, inventory investment and customer service. The mean-squared-error 
(MSE) is an alternative, but the time series vary significantly in magnitude, making it 
misleading to average squared errors across the series. The geometric MSE is another 
alternative but this measure is difficult to interpret and again there is no way to estimate 
the effects on investment and customer service. 

Because of these concerns a large-scale simulation model of the inventory system was 
developed. The aim of the simulation was to develop tradeoff curves between investment 
and customer service for each forecasting model. The hypothesis was that the set of 
models would produce substantially different tradeoff curves. Nine years of daily oper- 
ations were simulated. On the first day of the simulation, actual values from the past 
were used to initialize stock on hand, backorders, and outstanding purchase orders. During 
the simulation, actual demands from customers were processed on the same days that 
they occurred in the past. As each demand was processed, stock on hand was reduced 
and backorders were recorded as necessary. The decision rules in equations (2) and (3) 
were used to determine whether to reorder after each demand transaction. When reorders 
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were placed, leadtimes were assigned using an empirical distribution of actual leadtimes 
experienced. New items were brought into stock and obsolete items were deleted on the 
same days that the actions occurred in the past. At the end of each quarter, forecasts and 
decision rules were updated. Aggregate inventory investment and customer service were 
also recorded on a quarterly basis. To determine the variance of the forecast errors needed 
to solve equation (3) for the probability of shortage, the smoothed MSE was used and 
forecast errors were assumed to be normal as in the current forecasting system. 

The forecasting models were initialized as follows. The level in simple smoothing and 
adaptive smoothing was set equal to the nean of the first four quarters of demand. For 
the linear and damped trends, the initial level and trend were computed by regression 
on the first four quarters. 

To deal with outliers and jump shifts in the time series, the current forecasting system 
uses demand filters (control limits) set at plus and minus three standard deviations of 
demand. If a new observation falls outside the filters, the forecast is not updated. A check 
is then made in the subsequent quarter. If two successive observations are both higher 
or both lower than the filters, a new forecast is made by re-initializing the model using 
the last four quarters of demand. Tests showed that this procedure made marginal im- 
provements in performance so it was retained in the simulations. The procedure is similar 
to Whybark's (1973) adaptive smoothing system except that Whybark changes the 
smoothing parameter when control limits are broken. In this application, parameters are 
retained and the model is simply restarted to catch up with the data. 

The fundamental problem in research design was in choosing smoothing parameters 
for the forecasting models. The series are too short to rely on fitted error measures as a 
means of choosing parameters. Even if the series were longer, the forecasting system is 
so large that it is infeasible to tailor parameters for individual series. Computation times 
dictate that the same model with the same parameters be used for all series. 

These considerations led to the development of a cross-sectional model-fitting pro- 
cedure, using a sample of 1,000 times series: For each forecasting model, multiple sim- 
ulation runs for the nine-year period were made using trial parameters in the range 0.0 
to 1.0. For each parameter, the three costs in the decision rules for order quantities and 
safety stocks were varied to produce aggregate investment values over a target range of 
$375-$425 million (the typical operating range for the inventory). Parameters were 
chosen to yield minimum delay time for values of investment in the target range. The 
resulting parameters were: 

Simple smoothing h1 = 0.2 
Adaptive smoothing h1 = 0.2 
Linear trend = 0.7 
Damped trend = 0.7, 4 = 0.6 

The h1 value for adaptive smoothing refers to the parameter used to smooth the forecast 
errors in the Trigg and Leach scheme. 

This model-fitting procedure was tedious, requiring thousands of simulation runs, so 
no attempt was made to refine the parameters in increments smaller than 0.1. The search 
for investment values in the target range was also constrained. Experimentation with 
costs was halted when six investment values within the target range were obtained. It is 
certainly possible that better parameters could be found in an unconstrained search. 

The sample parameters were used to estimate investment/ service tradeoffs for the 
remaining 4,661 series. Finally, before presenting the results to management, a search 
was made for parameters using the entire set of 5,661 series. The reason is that parameters 
based on all series were needed to implement the results of the study. Optimal parameters 



INVENTORY CONTROL SYSTEM FORECASTING 497 

using all series were the same as sample parameters so the results in the next section are 
based on all series. 

The simulation was validated by comparing simulated investment and service to actual 
values in the past, using simple exponential smoothing as the forecasting model. The 
correlation between simulated and actual values was statistically significant. The simu- 
lation reached steady-state after four years of operations for the new forecasting models. 
The results in the next section are based on average investment and service for the last 
five years of the simulation. The results were stable during this period and it makes little 
difference how the results are presented. 

7. Investment /Service Tradeoffs 

Figure 1 summarizes the final results of the study. The damped trend proved superior 
to the other models at all investment levels. For example, a typical operating value for 
investment in the Class A items is $420 million. At this investment, simple smoothing, 
the current forecasting model, produces delay time of 32 days. The damped trend produces 
delay time of 26 days, a reduction of 19%. Rather than reduce delay time, management 
also has the option of using the damped-trend model to reduce investment. For example, 
if target delay time is set at 32 days, this can be achieved with the damped trend for an 
investment of about $390 million compared to $420 million for simple smoothing. This 
is a modest percentage reduction (7%) but still worthwhile in absolute terms. 

One reason for the improvement of the damped trend over simple smoothing is 
straightforward. Detailed examination of the results showed that trending series were 
common for high-value items having a significant impact on inventory investment. Simple 
smoothing produces a constant forecast for all periods in the procurement leadtime. Thus 
simple smoothing forecasts are biased in the face of trends whereas damped-trend forecasts 
are not. Another reason for the better performance of the damped trend is more subtle 
and also more important. Simple smoothing lags behind jump shifts in the level of demand 
while the trend component in the damped-trend model structure makes the forecasts 
more responsive to jump shifts in level. A response lag still exists but it is not as serious. 

A separate curve for adaptive smoothing is not shown in Figure 1 since the results 
were very close to simple smoothing with a fixed parameter. This is not surprising because 
the same result has occurred in numerous prior studies (for a review see Gardner 1985). 

The linear-trend model performed worse than simple smoothing because it consistently 
overestimated demand. One reason for this performance is that the version of the linear- 
trend model tested had only one parameter, the discount factor. When a jump shift in 
demand was encountered, this parameter increased the slope as well as the estimated 
level of demand. Subsequently the increased trend caused the forecasts to overshoot 
demand. A two-parameter model such as the Holt linear-trend model would likely perform 
much better in this data, at least for the time series with jump shifts. 

Finally, the naive model produced very poor forecasts. At $420 million in investment, 
the naive model's delay time is 41 days, about 58% greater than the delay time for the 
damped trend. This is reassuring since it indicates there is much to be gained through 
better forecasting. 

The graph in Figure 1 covers a relatively narrow range of values for both delay time 
and investment. What about values near the origin of the graph? The answer to this 
question is that there are mathematical limits on both investment and customer service 
in any inventory. Smaller investment and delay time values than those displayed are 
infeasible in this inventory. Investment values less than about $375 million are infeasible 
because at that level almost all investment is taken up by order quantity stocks. Smaller 
investment values will not support routine customer demands and will cause infinite 



498 EVERETTE S. GARDNER, JR. 

delay times. There also appears to be no way to obtain delay time values less than 26 
days. This is the minimum point on the best tradeoff curve, for the damped trend model. 

8. Conclusions 

Management accepted the results of this study and established plans to implement the 
damped-trend model during the next few years as part of a general modernization program 
for computer systems. Gaining management acceptance was not difficult since the fore- 
casting results were presented in terms of management's primary concerns, inventory 
investment and customer service. 

Prior to this research, it was not apparent that the choice of forecasting technique 
would make any important difference in determining inventory investment and customer 
service. For example, Armstrong ( 1986) argues that there are few differences in accuracy 
among time series models and that there is little to be gained by further research in time 
series forecasting. Armstrong may be correct when forecast accuracy is judged only by 
measures such as the MAPE. However, such measures are of little interest to managers, 
who are concerned instead with whether forecasting will improve decision-making. The 
major conclusion of this research is that differences in forecast accuracy can be substantial 
when measured in terms meaningful to managers. 

There is no guarantee that the forecasting models tested here will give similar results 
in other inventory systems. However, the general methodology in this research should 
be useful in analyzing other systems. The impact of forecasting should be presented to 
management in the form of a tradeoff curve between inventory investment and customer 
service. Alternative forecasting models should be evaluated by comparing the position 
of their tradeoff curves. The aim in improving forecast accuracy should be to shift the 
optimal tradeoff curve down and to the left, that is to improve customer service and 
reduce inventory investment. 

Tradeoff curves based on alternative forecasting models should have applications in 
other operational decision problems. In staffing problems, tradeoff curves could be de- 
veloped to show managers how forecasting affects measures such as the number of per- 
sonnel required, overtime/ undertime, and customer waiting time. In production sched- 
uling, tradeoff curves should be helpful in finding a good balance between production 
setups and the number of late jobs. Such tradeoff information should be more useful to 
managers than the mean accuracy measures typically found in the literature of forecasting. 

At present there seems to be no alternative to a complex simulation study as a means 
of developing tradeoff curves based on forecasting models. How can simulation work be 
justified? A common-sense approach is simply to compute the percentage reduction in 
inventory investment or operating costs that must be achieved to pay for the simulation 
study. Often this percentage is trivial. To illustrate, the simulation work reported here 
incurred costs of no more than $150,000, mostly in manpower. This figure is a worst- 
case estimate and includes some fixed costs that would have been incurred regardless of 
whether the study was conducted. These worst-case costs are less than 0.04% of the typical 
inventory investment of $420 million. The simulation study was approved because it 
was difficult to believe that percentage savings in investment could be less than 0.04%. 
Actual savings will depend on the tradeoff options selected by management. If target 
delay time is set at 32 days, investment savings will be about $30 million. Thus the cost 
of the study will be about 0.50% of savings. 

One important qualification to these comments is that the present value of the savings 
will be less than $30 million because it will take some time for inventory investment to 
be reduced. For most items in the inventory, better forecasting means that less safety 
stock investment is needed. Unfortunately, management will have to wait for routine 
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customer demand to reduce stock levels. Another complication is that, for some items 
with trending demand, stock levels may actually go up. Previous forecasts were biased 
low due to the use of simple exponential smoothing; in severe cases, more order-quantity 
stock will have to be ordered immediately to catch up with trends. That is, the additional 
order-quantity stock required by the revised forecasts will exceed any projected reduction 
in safety stock. Thus there may be a temporary increase in aggregate inventory investment 
before the system reaches a steady state at a reduced investment level. The transitional 
behavior of any inventory is very difficult to predict. However, it seems reasonable 
to conclude that the costs of this study will be recouped many times over on a present 
value basis. 
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