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Abstract

We give a comprehensive overview of volatility derivatives including
the history behind it, the applications as well as pricing procedures
in various models. Given these models we also apply market data
to approach some empirical evidence, estimating and evaluating the
performance of the models in the frame of variance and volatility swaps.
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1 Introduction

In terms of finance volatility has always been considered a key measure. The
development and growth of the financial market over the last centuries have
caused the role of volatility to change. Instead of being just a component in
pricing theory it has evolved into an asset class of its own. Volatility deriva-
tives in general is a specialized financial tool which gives the opportunity to
trade on the volatility of an underlying asset. Several derivatives have been
created which puts great emphasis on volatility, providing a direct exposure
to one of the most common measures of risk. Ever since the mid-1990s, se-
curities such as variance/volatility swaps as well as futures and options have
provided a good approach for investors to trade future realized variance or
volatility against the current implied counterpart.

Who trades in volatility? For the same reason as stock investors tries to
predict the movements of the stock market or bond investors think they can
foresee the direction of interest rates, one may think they know something
about the future volatility levels. If one thinks current volatility is high
there are several derivatives in which one can take a position which profits
if the volatility decreases.

1.1 Purpose and Goals

Our purpose for this thesis is to do an extensive study in the financial area
known as volatility derivatives, and apply some of the most popular models
to these derivatives. Mainly focused around the variance and volatility swap,
we include the standard Black-Scholes model, the Merton Jump Diffusion
model as well as Stochastic Volatility Models such as GARCH, Heston and
3/2 in order to give a comprehensive study on the evaluation and perfor-
mance of these swaps.

The goal is to analyze and compare the different models in a volatility based
setting. We will use empirical studies based on options as well as historical
data on the famous S&P500 index and translate the calibrations into our
models, where we can explicitly compare them against each other.

1.2 Structure of Thesis

In this paper we will present multiple trading tools which emphasises on
volatility. We start out in chapter 2 by going over the history of volatility
derivatives, giving a brief overview of the growth and development. Moving
on we will in chapter 3 derive and present some of the easier contracts used
when trading volatility, namely the variance and volatility swaps. We will
also price and evaluate a variance swap in a semi model-independent setting.



Options play a significant role in finance, and will naturally have many
useful purposes even in volatility trading. The famous model for option
pricing which can generate closed-form formulas for options, The Black-
Scholes model, have been shown to have certain drawbacks in the way they
simplify the reality. One way to find better empirical support have been to
allow jumps in the model, and we will in chapter 4 look into these effects
and variants. To relax the assumption about constant volatility the usual
answer is applying a stochastic volatility model. This popular area has a
lot of different models which can be applied, and we will derive a couple of
them. Thus we will in chapter 5 explore the realm of stochastic volatility
models.

Looking at several models throughout the paper we will towards the end
at chapter 6 and 7 present some empirical evidence in order to fully com-
pare and evaluate the differences between the models alongside some relevant
analysis. Finally we conclude in chapter 8 and 9 with our findings and reflect
on some possible future research and extensions.



2 History

2.1 Option Pricing and Modelling

One of the main reasons that financial mathematics have become an inter-
esting subject in the world today can be explained by two words, option
pricing. The concept of buying or selling various commodities in order to
make money off of it has always been a compelling aspect to humans. In our
contrast the important question is whether or not the market can determine
a unique price for every given option, and is this price explicitly computed?
The ones to come up with a valid answer to this question was Nobel prize
winners Robert Merton and Myron Scholes in the 1970s (together with Fis-
cher Black, who unfortunately had passed away when Merton and Scholes
were awarded the Nobel prize). Their model, the famous Black-Scholes
model, is the market convention when referring to standard option valua-
tions. This model can be put into an explicit formula to determine the price
of European options.

Although innovative and very elegant at the time, the Black-Scholes-Merton
model has been criticized because of its limitations and possible defects. The
model in itself is made fairly simple, and only provides a fair approximation
to the real world. But with simplicity comes not only easy implementations,
but also certain drawbacks. Some of the assumptions made, the simplifica-
tions of reality, might not be fully accurate and the model does not always
empirically support the market. Assumptions made such as efficient mar-
kets, liquidity or no transaction costs are hard to relax, but some of the
assumptions made in the B-S model could be taken off by doing some ex-
tensions.

The continuity of the stock returns are aimed to behave in a nice continuous
way dictated by the geometric Brownian motion, something that has been
questionable. Empirically the stock returns have exhibited jumps, meaning
that they over a small time period can experience drastic changes. To deal
with this phenomenon the solution have been to introduce a jump process
into the original model, where the most famous extension being the Merton
Jump Diffusion model.

One assumption that have been questioned and criticized include that we
have a constant volatility (c). To be able to relax this assumption one often
moves over to stochastic volatility models. The difference being that we
no longer assumes constant volatility, but that it follows a random process
given by some dynamics. Examples of such models that have been seen
to give better empirical support include the Heston model or the GARCH
(Generalized Autoregressive Conditional Heteroskedasticity) model.



Another important assumption of the B-S model is that we have Gaus-
sian log-increments of the stock price. Studies over the years of stock prices
have shown that the usage of the Gaussian model is incompatible due to
evidence of heavy tails empirically, which suggests that it might be more
reasonable to replace the Brownian motion with a more general family that
removes the faulty assumptions, for example a Lévy process. [1]

2.2 Volatility Trading

Volatility derivatives started to appear in the late 20th century. At this time
the contract that first saw its light was a variance swap, and were dealt at the
UBS investment bank in Switzerland in 1993 by Michael Weber. The vari-
ance swaps were rather illiquid during the first years, but increased heavily
after 1998 and has ever since the millennia become a credible trading tool.
Thanks to the development of the replicating argument which involves us-
ing a portfolio of vanilla options to properly replicate a variance swap, the
market for volatility grew even larger. [8]

Although the popularity of these volatility derivatives have evolved since
its introduction and is nowadays seen as an asset class in it owns right and
a tradable market instrument, there has been downfalls. The Wall Street
Journal reported during the financial crisis in 2008 that the extreme volatil-
ity levels almost killed the market for volatility swaps. [37] The unforeseen
extremes made traders unable to hedge volatility reliably. In this period of
time the liquidity became very scarce and trading in this niched area dimin-
ished significantly and was reduced to "trade by appointment”.

A famous volatility symbol is the Volatility Index (denoted VIX), a volatil-
ity index operated by the Chicago Board Options Exchange (CBOE). In-
troduced in 1993, this volatility index have been a popular measure of the
implied volatility, and measures expectations of volatility over 30 day pe-
riods. It started off by replicating the one-month implied volatility on the
S&P100 index, and expanded in 2003 to measure market expectations of
volatility conveyed by the S&P500 stock index. The VIX index has since
its introduction been considered the world’s benchmark for stock market
volatility. The introduction of this index has laid a good foundation for the
development and interest in volatility products and speculating in volatil-
ity derivatives. Over the years the CBOE has launched a futures exchange
(CFE) as well as allowing trades on VIX options to enlarge the family of
volatility derivatives. The figure below maps the evolution of the VIX index,
an index also known as the ”fear index” or "risk index”.
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Figure 1: Historical evolution of the VIX index [10]

As time have passed and volatility have returned to normal levels, the
developments to this niched area of finance has continued to grow. Over
the past years even more types of volatility derivatives have emerged, and
comparing to the standard swaps we can today observe several other tools
such as gamma swaps, corridor variance swaps and conditional variance
swaps etc.



3 Volatility Derivatives

Volatility derivatives are a special type of financial derivative where the pay-
off will depend on the volatility of an underlying asset. Some of the most
common examples in this area are variance and volatility swaps or options
written on the volatility index, VIX.

Trading in volatility derivatives have become popular in risk management
due to its direct exposure to the volatility. Thus with these types of finan-
cial derivatives volatility is now a tradable market instrument. In the past
traders would normally use a delta-hedged position to trade with volatility.
This however does not perfectly trade with volatilities alone, since the re-
turn also is dependent of the underlying stock price. The introduction to
variance and volatility swaps have provided a pure exposure to volatility,
making it popular when interested in these circumstances. [26]

Why trade in volatility over regular financial derivatives? Volatility as a
trading tool have several characteristics which makes trading it attractive.
Although there is technically possible to achieve a variance swap payoff with
vanilla options, a natural question becomes why should one be encouraged
to trade in volatility compared to other financial tools. The easiest answer
is that a these tools offers direct exposure to volatility, removing the path
dependency issues that comes when delta-hedging an option. Trading in
regular options the investor has to both be aware of the underlying price as
well as how the volatility changes, something that a pure volatility trader
doesn’t. Some of the most common reasons are listed below:

e Speculative position: Here the investor takes a directional position
in the volatility of an underlying. If one believes that current volatil-
ity levels are incorrect or that the expectation of future volatility is
high /low one can utilize volatility derivatives to make a profit. Ex-
amples of such situations include political or financial turmoil due to
current debt issues or belief in changes due to a forthcoming election.

e Hedging position: Looking at a hedging perspective there is a va-
riety of industries that trades in volatility as part of their portfolio.
Volatility is often found to be negatively correlated with a stock or
index level, making hedging in volatility a good diversification strat-
egy. During market crashes volatility is generally known to increase, an
phenomenon knows as Black’s leverage effect [4], which makes hedging
in volatility during those times a means to reduce losses.



3.1 Swaps

Introduced in the 1980s, a swap is an agreement between two counterparts
to exchange cash flows in the future. The agreement will define which dates
the cash flows will be paid as well as how they will be calculated. One party
agrees to pay a fixed amount to the other counterpart which in return accepts
the agreement by paying a floating amount, an amount which depends on the
underlying. A swap is an OTC product (Over-The-Counter), and the most
common types of swaps are for example interest rate swaps and currency
swaps. The focus of this thesis will be on the swaps written on variance and
volatility. These swaps allows the investor a direct position in volatility or
variance of a stock index or a specific stock. These type of swaps generally
only have a single payment at expiration, which is not always the case when
dealing in other swaps.

3.2 Variance Swaps

A forward contract where one counterparty agrees to pay a notional amount,
call it N, times the difference between a fixed level of variance and a realized
amount. For variance swaps the fixed level is usually called variance strike
price. The realized variance is determined by calculating the variance of the
assets return over the lifespan of the swap.

To calculate the realized variance we need a couple of variables, which in-
cludes the observation frequency of the price of the underlying, the annual-
ization factor and the method of calculating the variance. It is important
that the procedure of calculating these variables are clearly specified before
entering a swap. For example whether the standard deviation of returns
is calculated by assuming a zero mean or not. When dealing with discrete
sampling we create a partition 0 = tg < t; < ... < t, = T of the time
interval [0, T, thus creating n equal segments with lengths At (¢; = iT/n).
Given all this information we define the realized variance in these types of
contracts by the formula

n—1

Va0,n,7) = 253 (1o (F21) 1)
- ;

7=

Here n is the number of return observations, S; is the price of the asset at
time ¢; and AF stands for the annualization factor. AF', defined by n/T,
would be 252 if the maturity of the swap were 1 year with daily sampling
(T = 1,n = 252). Thus the variance swap payoff is defined as

(Va(0,n,T) — Kyar) X N (2)

where V;(0,n,T) is defined as above, N is the notional amount and K, is
the variance strike.

10



3.2.1 Example of a Variance Swap

To get a better grasp of how the variance swap works, we proceed with a
simple made up example. Worth mentioning before we start is that the vari-
ance strike price is usually quoted in units of volatility squared, e.g. (15%)2.

Suppose that we (the trader) takes a long position in a variance swap where
the strike price K4, is calculated to have a volatility of 15%, or in terms of
variance (15%)? = 0.0225. We say that the notional amount N is 1,000,000
dollars. Over the life of the contract we can then use the formula above
(1) and calculate the realized variance V, which given the parameters in
our imaginary contract then turned out to be (20%)? = 0.04. The various
actions are illustrated in a picture below:

Fixed [15%)

Trader Floating (205) Counterpart

Trader 5% Counterpart

Figure 2: Example of a variance swap

As we can see we payed a fixed variance of 15%? at the start of the contract,
and received at the end of the time period a realized variance of 20%2. Thus
using the payoff function (2) we see that the long position yielded a profit
of (0.04 — 0.0225) x 1,000,000 = $17, 500.

3.2.2 Pricing and Valuation

Going back to our example we notice that the question that arises is how to
properly calculate the variance strike price. We already have a formula for
the realized variance, and are looking for a proper way to accurately calcu-
late K. In this section we present an approach to find a closed formula
for the variance strike price which does not rely on any complex models and
can be determined by pricing vanilla call and put options.

Considering a simple model similar to the classic Black-Scholes model, con-
sisting of the same assumptions with the difference being the characteristics
of the underlying. The only assumption made on the asset is that it is con-
tinuous and does not contain any jumps. Later on in this paper we will look
into the effects and changes when we allow for jumps in the stock prices.

11



For now the asset takes the following characteristics:
dS; = o (t, ) Sidt + o (t, ) SidW;. (3)

Here, we assume that the drift x4 and the volatility ¢ are arbitrary func-
tions of time and other parameters. These assumptions include, but are
not limited to, models in which the volatility is a function of stock price
and time only (o (¢,5;)). While we denoted the discrete realized variance as
Va(0,n,T) we will naturally let the continuous sampled realized variance be
denoted by V,(0,7T). This is a theoretical element representing the average
combined fluctuations of the volatility and is defined as

T
V.(0,T) = ;/0 o2 (s,...)ds. (4)

The discrete realized variance defined in the previous section, or the so called
floating leg of the swap, will in the limit approach the continuous realized
variance. This means that we have the relationship

Ve(0,T) = nh~>ngo Va(0,n,T). [26] (5)

To justify this relation we begin by looking at V; (0,n,T') (recall equation
(1)), and substituting the solution S; = Sy exp (fot (u - %2> ds + fg O‘dWS>

into the discrete realized variance. Recall that we also have that AF = n/T.
This yields that

lim V4(0,n,T) =

n—o0

n n—l tit1 o2 tit1 2 (6)
lim —— ——|d dWs | .
n1—>rroloT(n—1)i0</ti <“ 2> 8+/ti UW)

Here we consider ¢ and p to be simple processes, recall that if they are not
simple we can approximate them with simple processes. Calculating the
square above and evaluating we arrive at

n—1

lim ﬁ >0 Wiy, — Wi,)* + Ry = Ve(0, 7). (7)
=0

n—oo I’

Here we see that under the limit the first sum converges to our definition
of V. (0,T) and the rest term R; converges to zero since it consists of terms
with Z?;Ol a; (ti+1 - ti)2 and Z?;Ol bl (tl’+1 - ti) (Wti+1 — Wtz) where a; and
b; are some constants.

Having defined the necessary tools for this model we start by looking at the
corresponding price process of a variance swap II (¢, N (V. — Kyqr)). This

12



process are solved using the Feynman-Kac formula, which gives a solution
of the form

I (t,N (Ve — Kyar)) = E® [e—r<T—t>N (Vo (,T) — Koar)| - (8)

As we assume a lack of arbitrage in the market we can conclude that at the
time of signing the net worth of the contract has to be zero. This assump-
tion thus implies that the continuous variance strike price must satisfy the
equation

Ko = E§ 101 = B9 [ [ o%at]. o)

Thus we have found a valid approach of what the variance strike should
be. This approach is a good idea for valuating the contract but does not
however give a good interpretation in how to properly calculate it. In order
to replicate the contract we then look into a method involving a rebalancing
strategy of a stock as well as a log contract, a method which caused a big
outburst in the area of volatility derivatives.

3.2.3 Replicating Approach: First Steps

To start off the replicating strategy we use It6’s lemma on a theoretical
log contract of the underlying asset which yields the stochastic differential

equation
2

d(log Sy) = (u - "2) dt + odW,. (10)

In order to achieve a plausible result we combine 1/.S; contracts of the asset
as well as being short in the aforementioned log contracts we arrive at the

very useful equation

dSt 02

With the use of this technique we can see that the drift u has been cancelled,
which is what we were trying to obtain. Writing this as an integral equation
from 0 to T multiplied with the constant 1/T" and rearranging we get a new
formula for the theoretical realized variance

r = ()5 e (3) "

Recall here that the variance strike price K, was equal to the expected
value of the theoretical realized variance in equation (9). Thus to proceed
we have to calculate the expected values of these contracts in order to get
a solution formula for K. This means that our variance strike will have

the form:
e[S e
So

13



Thus to solve this we need to calculate the respective expected values. First
we note that as we are working with a risk neutral measure the asset will
take a slightly new form as

dS; = rSidt + o (t, ) SidW;. (14)

Here r stands as usual for the risk free interest rate, and will be assumed
constant. Given these characteristics we are now ready to calculate the
expected values. For the first set of contracts we can easily evaluate this
and through standard calculations we have

EY [/OT dsﬂ =rT. (15)

Next up we need to replicate the log contract, which is a bit harder and
can be done by statically using vanilla call and put options. We do this by
letting f be a twice differentiable function which will represent a payoff of
a European style path-independent derivative security. Such a function can
be expressed in accordance of Breeden and Litzenberger (1978, [5]) as:

f(S1) = f(z) + f'(2)(Sr — @)

+ /w f"(K)(K — Sp)TdK + /OO f"(K)(Sr — K)"dK. (16)
0 T

The formula above can be obtained by using integration by parts on

/f t)dt = (s —x) /f” : (17)

Rewriting the last integral with an indicator function and dividing it into
two different integrals makes us arrive at the required formula. Then the
payoff function f could be replicated by holding different positions on a zero
coupon bond (with face value f(z)), a forward contract with strike price x
as well as call and put options. As we are interested in the zero value of
the claim, we can express this in terms of standard European call and put
options denoted C(K') and P(K) respectively with maturities at time 7" and
strike price K. Calculating the expected values at time zero and discounting
for our function f(S7) we have

EQle T f(S7)] = e T f(a) + f(2)[C(z) — P(x)]

+/0x f"(K) dK+/ ["(K)C(K)dK 18)

With this equation we just need to transfer back the payoff function f
into our log contract in order to fully replicate the variance swap. Let-
ting f(St) = log(S7/S«) and = = S, where S, > 0 is some arbitrary cutoff

14



in order to separate the call and put options, as well as substituting this
into equation (16) we get:
Sr\ _ Sr—S. [% 1 % 1

1 — | =——- —(K—S87)TdK— —(S7—K)TdK. (19

o () =25 [ gatie-soytar— [T g(se-Kytax. (9
One important note here is that the log contract above is not the exact same
as the one we looked at in equation (12). It should be noted that we can
rewrite the log payoff as

St St S
log — = log — + log —. 20
g5, =logg +logo (20)
The first term in the equation above is the one we have replicated in (19),
and the second one is a constant term which is independent of the final stock
price S7. Given that we have replicated the first term and the second term
is constant we are now ready to move forward and put everything together.

3.2.4 Replicating Approach: Final Steps

Up to this point we have seen how to handle both the rebalanced hedge of
1/Sy and the log contract. To finish off the replicating strategy we need to
put together both those terms. What we have obtained without expectations
is

(0, T) = 2| [ 2T g (2
OD=71) 5 s Og<so)+ )
(21
Sk 1 © q
| P + | 5 CUK |,

Going back to equation (9) we need to calculate the expected values of the
above equation to obtain a solution formula for the variance strike price,
Kyqr. This yields that

Kpor==|rT— | =€ -1 -1 —
T r (S*e > og <So> +
(22)
rT 5 1 rT > 1
we | PUOK + e * 73 C(K)dK

where Sy is the initial price of the underlying, S, is the positive arbitrary
cutoff and C'(K) as well as P(K) are vanilla European call and put options
with strike prices K. One interesting note is that if we were to choose the
cutoff as S, = Spe’T we could reduce the equation of the variance strike
above into a simpler form of

QerT
Kvar = T

Soger T 00 1
/0 g PUK)IE + /S . KQC(K)dK] L (23)
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3.2.5 Discrete Approximation

As we saw earlier we can replicate a variance swap by a portfolio of vanilla
options, and we didn’t require any particular model assumption to deter-
mine the variance strike price. For a discrete approximation of the repli-
cating scheme the only complicated task resides in how to compute the call
and put options, which means that we have to find a reasonable approach
to replicate the log contract. For this approximation we have chosen so that
the cutoff is equal to the initial stock price (Si = Sp).

Following the frameworks of Demeterfi et al. (1999, [13]), we will check
if our initial approach can match the reality which only requires the usage
of a discrete set of options. To properly replicate the aforementioned log
contract in terms of standard European options we remind ourselves with
the definition of the variance strike by equation (13), which can be rewritten

as
tdSy  Sr—=8. | (S Sr=S. | (S
0 S S, 515 S. &\s. |

Taking expectations of the equations above we will have a variance strike

price of
SO T S*
T—| e -1 -1 —

Here we then have a term which can be instantly calculated through the
choices in cutoff, time of maturity, rate etc. The function Ilop will denote
the present value of the portfolio with vanilla options, and has a payoff at
expiration given by

2
Kvar = TE

2
Kva'r =

7 + e Tlep (24)

2

f(ST):T

St — S, St

: 2
S S (25)

In practice we are only able to use a discrete set of option to replicate this,
and we need to determine how to appropriately set this up. Lets assume
that we are able to trade call options with strikes

Ky=658, < Ki. < Ko. < ... (26)
as well as put options with strikes
Ko =85, > Kip > Ko > ... (27)

By a piece-wise linear approximation we can determine how many options
of each particular strike we will put into the portfolio. As an example, for a
call option with strike price Ky we would have

f(Kic) — f(Ko)
ch - KO ’

wC(Ko) = (28)
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The following segment will then be a combination of strikes Ky and Ki.:

wiltr) = I I (1), 29

Continuing in a similar fashion one can build the entire payoff curve, one
step at a time. The general formula for the weights for call and put options
is thus

F(Kni1e) = f(Kne) Z

c Knc = c Kic
v ( 7 ) Kn+1,c - Kn,c i—0 v ( 7 ) (30)
n—1
f(Kn—H,p) - f(Kn,p)
wp(Knp) = Knp — Kniip - z;wp(Ki,p)' (31)

As seen above the principle for calculating put options is done in a similar
fashion as the call options. Once we have calculated the weights from the
framework above we can then obtain IIop from

lep = Y w(Ky)P(S, Kip) + Y w(Kic)C(S. K. (32)

)

Below we illustrate a numerical example where we approximate the price of
a variance swap using this approach.

Type of Option | Strike | Volatility | Weight | B-S Price | Contribution
Put 105 24 36 0.0272 0.9792
Put 110 23 33 0.0650 2.145
Put 115 22 30 0.1102 3.6366
Put 120 21 27 0.2476 6.6852
Put 125 20 26 0.6392 16.6192
Put 130 19 23 1.2324 28.3452
Put 135 18 22 2.2498 49.4956
Put 140 17 10 3.8766 38.766
Call 140 17 9 5.5921 50.3289
Call 145 16 19 3.0585 58.1115
Call 150 15 17 1.3806 23.4702
Call 155 14 17 0.4764 8.0988
Call 160 13 15 0.1125 1.6875
Call 165 12 15 0.0154 0.231
Call 170 11 13 0.0010 0.013

Total cost 288.6129

Table 1: Replication of a variance swap
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We assume that the initial stock price level Sy is 140, the riskless inter-
est rate r is 5%, the stock pays no dividends (dividend yield = 0), and the
maturity of the swap is 3 months (7" = 0.25). We suppose that we can buy
options with strikes ranging from 100 to 175, uniformly spaced apart by a
range of 5. The option prices are calculated using standard Black-Scholes
pricing methods. We also assume that the at-the-money implied volatility
is 17% and that it is increased by 1 point for every 5 points of decrease in
the strike price. The weights are calculated by the formulas (30) and (31),
where the contribution is given by the calculated weights for each level times
the individual options. The total sum of each option gives the total cost of
the portfolio.

The value of options and weights are given in Table 1, and the total cost
of replicating future variance yields that lIop = 288.6129, which then using
equation (24) gives us that K,q. = (17.095)2. Since the assumed implied
volatility was at 17% this gave us a fairly good approximation.

3.2.6 Limitations in Accuracy and Performance

Since this approximation does not fully capture the variance strike price, it
is a good question to ask about the accuracy and performance of doing this
in practice. How well will the replicating strategy work with limited data
and will there be any practical problems?

The first obvious imperfection with this strategy is that we can’t capture the
variance strike exactly because of the limitations of using all strike prices of
call and put options between 0 and infinity. As we are able to trade only
a very limited range of strikes, we might obtain deceiving result that inac-
curately replicates the log contract. Secondly the stock price may exhibit
jumps which makes the log contract insufficient and will thus not capture
the realized variance correctly.

In terms of accuracy the procedure of approximating a log contract will,
as pointed out by Demeterfi el al. (1999, [13]), always over-estimate its
value causing the value gained from this method to be higher than the true
theoretical value. The discrete usage of different strike prices of our call
and put options will over-estimate the variance strike, and including more
options in our portfolio will sink down the variance strike towards its the-
oretical value. This means that we will have a convergence as AK (the
spacing between strikes) goes to 0 towards the theoretical value, and so the
procedure will always exceed or match the theoretical value.
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3.3 Volatility Swaps

A volatility swap is a forward contract on future realized volatility. Al-
though seemingly very similar to the variance swap, the volatility swap is
more commonly traded in practice but also more theoretically complicated.
The Financial Times in 2006 posted an article quoting a derivatives trader
saying [20]:

”Variance is easier to hedge. Volatility can be a nightmare.”

An assets volatility is a good way in measuring riskiness and uncertainty,
and thus such a swap will provide a direct exposure to volatility making it
an attractive choice. The volatility swap payoff lies close to the variance
swap, and is defined as

( Va(0,n,T) — le) % N (33)

where 1/V;(0,n,T) is the square root of the realized variance, i.e. equation
(1). mis again the number of sampling dates and K, is the volatility strike.
N refers to the notional amount of the swap.

3.3.1 Example of a Volatility Swap

To get a better feeling of the volatility swap works in practice, we again take
a look at a very simple example. Going back with the same variables as in
the variance swap case, we put the notional amount as N = 1,000,000 and
we take a long position in this swap with a volatility strike K, of 15%. At
the end of the contract we find that the realized variance V is calculated to
be 20%. Using again our payoff function we can see that we end with a final
profit of (0.20 — 0.15) x 1,000,000 = $50, 000.

3.3.2 Pricing

As in the case of a variance swap, the pricing of a volatility swap starts out
quite similarly. We will again define the fair continuous volatility strike as
such as the present value of the contract at time zero is equal to zero. This
corresponds to solving the equation

EY {e*TT(\/VC(o,T) - le)} —0. (34)

Thus, as we recall from equation (9) with the variance strike we can express
the volatility strike price as

1 T
Koo = B¢ [VVe0.1)| = B§ |4/ = /0 o2t . (35)
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In order to get a solution formula we again need to solve the volatility strike
Ko Since we are dealing with the square root of the variance equation
we can’t use the same replicating strategy as we had in the variance swap
section. A naive approach to solving this problem would be to use the same
principle as in the variance swap and just use the square root right away,

i.e.
Kyo = V Kyar. (36)

However doing this directly will most likely result in an error since we don’t
consider the convexity notion (or sometimes also known as convexity error)
of the square root function. Thus because we are dealing with the square
root of the variance, we cannot use a model-independent replication ap-
proach and thus we have to look for something different. Without having
any specified model we will thus not get any proper formula for K., but
what we can do however is to create an upper bound with the help of the
results from earlier.

To deal with the convexity of the square root we apply Jensen’s inequality,
which says that for a concave square root function we have that E[\/x] <
V E|z]. Applying this to the strike prices for both variance and volatility
swaps, we obtain the following upper bound:

Koo = ES[V/Ve(0,T)] < \/EL[Vo(0,T)] = /Kyar- (37)

Hence we can say that the volatility strike is bounded upwards by the square
root of the variance strike price. This difference is usually called the convex-
ity correction. Thus the choice on which model to be used when calculating
the strike prices, the magnitude of the convexity will be highly dependent
upon this choice. One approximation to derive the convexity error is to use
a second order Taylor expansion made by Brockhaus and Long (2000, [6]).
The result of the calculations is shown below, where the proof is left for the
reader in Appendix B:

Var[V.(0,T)]
8v Kvar3

Worth noting is that the convexity correction term is based on the continu-
ous realized variance, rather than the discrete one. A discrete version, i.e. a
finite number of sampling dates n, will also perform a reasonable good ap-
proximation in a model-independent setup (using the replicating approach),
as long as n is big enough.

K’var - Kvol ~ . (38)

As pointed out by Broadie and Jain (2008, [27]) the convexity correction
formula will not work very well in a Heston stochastic volatility model or
Mertons jump-diffusion, due to the fact that the Taylor expansion will have
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higher order terms that are not negligible. Thus in those models this ap-
proximation does not provide a good estimate for the fair volatility strike
price. The error term is these cases will consist of 3rd and 4th order terms
as well, making it more complex and perhaps not very suitable for receiving
a proper approximation.

3.3.3 Laplace Transforms

An alternative approach in receiving the price of a volatility swap is to make
use of Laplace transforms. Evaluating a square root function as a Laplace
transformation and using the realized variance we can solve the volatility
strike price. Introduced by Broadie and Jain (2008, [27]), they proposed an
analytical exact solution using Laplace transforms. They noticed that the
square root function can be expressed (from the work of Schiirger in 2002,

[38]) as:

1 X1 —e 5%
T = ds. 39
v )

Taking expectations on both sides and using Fubini’s theorem we get

E[Va] = 2\1/7? /OOO - fée_w]ds. (40)

Changing the x above to the realized variance V.(0,7") we thus obtain a
solution formula for the volatility strike price. Thus we have that the strike
is given by

Ky = E9[\/V.(0,T)] = 2\1/7? /O Tl A

Thus we need to use numerical integration techniques in order to solve the
above integral which yields the volatility strike price.

e—ch(O,T)]

ds. (41)

3
S2
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4 Jump Diffusion Model

Up to this point we have considered an approach which only utilizes the
classic Black-Scholes framework, something that is known to have certain
unrealistic assumptions. In this section we will focus on the fact that stock
returns do not always behave in the nice continuous way dictated by the
GBM, which implicate that they may exhibit jumps. The extension from
the B-S model would be to implement a model with the presence of jumps.

To check if a jump diffusion model is even necessary we look at some histor-
ical data. Below we show daily closing prices of the S&P500 over the course
of 10 years.
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Figure 3: Historical development of the S&P500 from 31/12/2004 to
31/12/2014 [18]
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As we can see in the market drastic changes occurs from time to time,
something that would encourage a jump model. Most notable of this phe-
nomenon are in crisis periods, where we can see rapid changes in the price.
Although not fully convenient, based on this dataset we can say that the
prices in S&P500 tend to experience certain jumps. Whether stock prices
in general really follows a jump process has to be statistically tested and
evaluated, and will not be carried out in this thesis. For such a statistic test
we can recommend Stamp and Thorsen (2011, [40]).

Assuming a jump process, there exists a multitude of different models that
uses processes with sudden discrete shifts. It was first proposed that stock
prices follow a jump process by John Carrington Cox and Stephen Ross in
1976 [12]. They presented a model with a pure jump process such that it
works in discrete time. It was later expanded by Robert Merton to a com-
bination of jumps and small continuous movements, and this new process is
generally known as the Merton Jump Diffusion model (MJD model) [35].

4.1 Jump Dynamics

In a risk-neutral world the dynamics of a jump diffusion model will usually
be given by
dS; = (r — Am)S;-dt + 0S;-dWy + S;—dJ;. (42)

In a jump model we have a few new parameters in contrast to the original
setup. J is the added jump process, which will later be defined in equation
(43). We have that m is defined as the average jump size, and A is the
intensity of the Poisson process. The subtraction of Am in the risk neutral
drift is done to compensate for the drift related to the jump component. As
the amount of jumps will be random we need a stochastic counting process
and the most common one is a Poisson process, denoted N (t). If we only
used this process to model the jumps each jump would have unit length so
in order to compensate for that we scale it with a random variable. This
new process is called a compounded Poisson process and will be a sum of
the random variables defined as

N(t)
Ji=>_Ji (43)
i=1

Each term in the sum represents a jump at time 0 < ¢; < T, with —1 < J;
as independent identically distributed random variables. Worth noting is
that the jump direction and jump size will be based on J, which can be
either fixed or random. Although as pointed out in Gatheral (2006, [21]),
letting the jump sizes be at a constant value is quite unrealistic. Therefore
it is better in practice to assign a distribution to the jump sizes, and a
appropriate and popular fit have shown to be a log-normal distribution.
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For a more indepth reasoning behind the decision of the distribution we
recommend Matsuda (2004, [32]). Thus we will for convenience during this
section assume that J follows a lognormal distribution with mean-jump
parameter a and standard deviation b such that

J ~ LN(a,b?) < log(J) ~ N(a,b?). (44)

In a Merton jump-diffusion model the floating leg can be shown to be given

as follows
L N

VC(O,T):;/ o2t + = Zlog . (45)

Applying the same arguments as in earlier sections we can again take the
expected value of the continuous realized variance, and solve the variance
strike price. This yields that assuming a MJD model the continuous strike
price is given by

Kyar = E[V.(0,T)] = 0 + Xa® + b?). (46)

One of the great benefits for using the MJD model is that we allow for sudden
large movements in the spot price, something that has nice implications for
option pricing. The extension from B-S to MJD allows us to add features
which tries to capture negative skewness and excess kurtosis of the log stock
price, an area the standard B-S fails to account for.

4.2 The Effect of Jumps

We devote this section to compare the previous approach we had where we
priced a variance swap with as few assumptions as possible, and applying
a replication scheme. We saw that within the Black-Scholes framework we
were able to receive a closed solution formula for the variance strike price
using a replicating approach. Here we extend the Black-Scholes model, and
proceed to look into the same pricing scheme when the dynamics are allowed
to exhibit jumps. Thus we will derive the same types of contract as in the
previous chapter, with the added jump feature.

As we are using [t6’s lemma in our derivation without jumps, we will in or-
der to compare it effectively with our jump model naturally use It6’s lemma
again for a compounded Poisson process. The proof for the calculations is
left for the reader in Appendix A. It follows from the lemma that for any
sufficiently smooth function f we have

fOn=fU)= Y [f(de+as)-£ ()] @
i>1,t:<T

It is important to note that the Poisson jump part of a process and the
normal diffusion part under It6’s lemma are independent, such that Ito’s
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lemma for a process which is the sum of a drift-diffusion process and a jump
process is just the sum of the It6’s lemma for the individual parts.

Returning to our specific question we derive the strike price the same way
as we did earlier, with the added change that the stock now follows the

equation
N(t)

t t
S, = So + / 1Sqds + / oS dW + > JiS,-. (48)
0 0 =1
Our previous approach included both a evaluating a log contract and a stock
position. Thus our next step will be to examine the properties of these two
identities. Using [t0’s lemma on a log contract with the new stock dynamics
we arrive at

T o2 T pAy )
/0 <M _ 2> dt +/0 odW; + Z (10g(Sti— + Jisti—) - 10g(5ti—)) :
i=1

Similarly for the stock position we get

T 4s, T T N Si= + iS5 5;-
— = dt +/ odW; + _ ] 50
= [ [Coams 3T () 60

2 2

Combining these equations to arrive at the floating variance leg now adds a
sum as well as the original functions

T 2 T 48 g N(T)
/0 %dt: i ?:—logs—z—Z(Ji—log(l—kJi)). (51)
=1

This gives an idea about the error received when a non-jump model is falsely
assumed or vice versa. To get a better overview of the effect from each jump
we consider expanding a log contract as a Taylor expansion such that the
initial term cancel. This gives an error term for each jump with the following
characteristics

1
(J; —log (14 J;)) = Ji—Ji+§(Ji)2+... (52)
This leaves us with a dominating term for the error received from each jump

as the square of the jump. This shows that the error on the strike price if a
jump free model was assumed. The formula for the variance strike when a
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jump model is assumed is thus given by the equation

N(T)

: 2 T ds, St 2
Kivme —Z — —log (- )| = ZE | Y (Ji—log(1+J;
var T |: 0 St— Og <SO >:| T — (J Og( + J ))
2 T as, <ST>}
=ZF 2 _Jog (2L )| = 2XAE[J; — log (1 + J;)].
T |: 0 Stf S() [ ( )]

(53)

This formula is very similar to the formula for the strike price in the case
when no jumps were assumed although it is important to remember that
the characteristics of the underlying asset price is different. Although if
correctly priced European call and put options exist in the market then the
calculations for hedging the swap with an infinite number of calls and puts
are done as in the model without jumps.

Exploring the possibility with a market with infinitely many correctly priced
call and put options we can approximate the error received by comparing a
jump model towards its counterpart with no jumps. As the formula for the
strikes are only slightly different we notice that the extra term is

2NE [J; —log (1+ J;)] = AE [J2 + ...] . (54)

This shows that the approximated error is close to the jump intensity times
the expected square of the jump size, which gives a linear increase in error
if the intensity changes but a quadratic increase if the jump size increase.

Thus we can see that proceeding with the replication approach when falsely
assuming jumps or vice versa can cause quite ineffective results. Deme-
terfi et al. (1999, [13]) also points out that neglecting jumps in a synthetic
replication scheme can give substantial errors.
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5 Stochastic Volatility Models

To measure the dynamics of asset prices or other financial aspects one often
uses stochastic processes to properly explain the random movements. Using
stochastic processes is a big part of financial mathematics, and has been
known to play a crucial role in modelling option pricing.

When speaking about random processes and modelling of random move-
ments, one of the most famous processes used in the Black-Scholes model
is the geometric Brownian motion (GBM). Empirically it has been shown
however that the GBM has failed to suffice as a valuable model for pricing
and hedging different securities. Looking for better empirical motivation,
one idea has been to look towards Lévy processes (for an example see Carr,
Wu (2004, [9])).

We are however in this chapter going to focus on volatility, and attach-
ing a random process on this component. Remember that in the B-S model
we assume constant volatility, which is something that is generally not true
in the market. When it comes to volatility there are quite a few things that
empirically speaks against the Black-Scholes framework. An observation
by Mandelbrot (1963, [31]) said that ”large changes tend to be followed by
large changes, of either sign, and small changes tend to be followed by small
changes”. This effect is usually known as volatility clustering, and doesn’t
exist in the B-S model world. Another fallout is the ”leverage effect” , which
says that decreases in the underlying asset price often results in increases
in volatility. In practice it can also be shown that volatility takes different
values depending on moneyness (how much out-of-the-money or in-of-the-
money the option is at the current time) as well as term structure. This
phenomenon is usually called ”volatility smile”, and is a widely debated and
discussed area in option pricing. To relax the B-S assumption about con-
stant volatility in search for better empirical support, stochastic volatility
models becomes a natural choice.

After the remarkable introduction of the B-S model in the 70s, there have
been as pointed out above many debates and arguments about the accu-
racy and validity of the solution formulas and the assumptions made in the
model. In search for models to fit the market better, many researches have
turned to stochastic volatility models. These types of models, which now
allows variance to vary in time and be driven by its own process, has been
a ground-breaking result in the area of option pricing. Stochastic volatility
models can be seen as an extension of Black-Scholes, and tries to capture
some of the flaws in the original model. In this thesis we will focus on the

27



kind of SV models which takes the particular form:
dS, = rSidt + \/0;S; (de} /1o p2dWE) (55)
dvy = 1 (0 — vy) dt + v dW. (56)

The first equation (55) gives us the dynamics of the underlying asset: where
St denotes the asset price at time ¢, 7 is the riskless interest rate and ,/v; is
the volatility at time t. The two W’s, W}l and W2, are two standard Brow-
nian motions (under the risk neutral measure @) which allows the diffusion
processes to be dependent. The correlation between the two is characterized
by the factor p. The dynamics of the first equation above will be the same
for the different types of models we will be looking at in this chapter. Worth
mentioning is that for simplicity we assume that the asset pays no dividends
and that the interest rate is constant.

The second equation (56) specifies the behaviour of the variance v; as a
mean-reverting process. The structure for the variance dynamics can be
altered in several ways, for example different types of v (a free parameter
~ > 0) provides different models. The ones we will be looking at in this pa-
per will be 4 = 1 which corresponds to the GARCH model and v = 1/2 the
famous Heston model. A slight alteration in the dynamics of the variance
along with v = 3/2 gives the 3/2 model.

As for the other parameters in the second equation we define 6 as the long-
run mean variance, « as the rate of speed in which v; tends to 8, and o, as
the volatility of the volatility, a parameter which will determine the volatility
of the variance process. The type of equation that describes the dynamics
of the variance (56) is generally known as a time-dependent CIR-process
(Cox-Ingersroll-Ross process).

5.1 The Heston Model

As mentioned our previous approach in pricing volatility derivatives have
been to work in a semi model-independent world where no great emphasis
or assumptions have been put on the underlying model. In this section we
look at the Heston model, a stochastic volatility model which assumes that
the variance of the asset follows a random process. This model is one of
the most commonly used when assuming stochastic volatility and was intro-
duced by Steven Heston in 1993. [23]

Working with the equations we presented in the beginning of this chap-
ter, we now have that 7 = 1/2. The Heston model is thus under the risk
neutral measure determined by the stochastic process:

a8y = rSudt + /urSi (pdWl + /1= p2dW?) (57)
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dvy = k(0 — vy) dt + op /o dW}. (58)

The parameters are defined by equation (55) and (56), as well as v = 1/2.
To ensure that the variance process stays positive we restrict that the pa-
rameters obey the inequality that 2k > ¢, a condition known as the Feller
condition (1951, [19]). As usual we denote the index level by Sy as well
as the initial variance process by vg. To obtain the variance process v;, an
unobservable process, one has to estimate it from some sort of data (for
example a time series of S;).

To price volatility derivatives in this model we already have several pa-
rameters to our disposal, which makes us able to calculate the conditional
expectation of the variance process since it is an ordinary integral equation.
The calculations are shown below:

’U()]

00] (59)

Elvvg) = E

t t
vo + / k(0 — vs)ds + / o /VsdW}
0 0

t
=F v0+/ k(0 — vs)ds
0

=y + /0 k(0 — Elvs|vg])ds.

This integral equation is equivalent to the ordinary differential equation
given with corresponding initial condition

dE[v¢|vo]

dt
Elvo|vo] = vo.

= k(0 — Elve|vo]) (60)

Solving this ODE is a simple task and will, by standard calculations, yield
a solution given by

Elvivg] = 0 + (vo — 0)e™ " (61)
When we delve further into the stochastic volatility models this relation will
be of significant importance and have great implications in pricing volatility
derivatives and especially the variance swap.

5.2 The GARCH Model

In a GARCH (Generalized Autoregressive Conditional Heteroskedasticity)
model we assume that the stochastic part of the variance process varies
with the variance, compared to the square root of the variance above in
the Heston case. Thus for a standard GARCH(1,1) model we define the
following dynamics:

A8y = rSudt + /oSy (pdWE + /1= p2dW?) (62)
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dvy = k(0 — vy) dt + v dW,) (63)

The various parameters here are defined the same as above, where now v = 1.
Comparing the GARCH model to the Heston model we notice that the only
mathematical difference lies in the dynamics of the variance, but we also
have in this model that the variance and spot price are uncorrelated. This
means that for this model we have that p = 0. The GARCH(1,1) model,
formulated by Engle and Mezrich (1995, [16]), were given in a discrete setting
which had the form

Sn
lOg<S 1) =7Tp = W+ Up, Up = UpEn, 5nNN(071) (64)

Vg1 = (1 —a—ﬁ)V+au%—|—an (65)

Here V is the long-run variance, u,, is the drift-adjusted stock return at time
n, o the weight assigned to the squared drift-adjusted return (u2) and j3 the
weight assigned to the last period variance (v, ). This discrete model can be
transformed into the continuous time model, where we have the following
parameter relationships:

\%
l-a-p
oy = a %1 (68)

In the above equation ¢ stands for the Pearson kurtosis (fourth moment),
calculated from historical data on wu,. As we stated earlier the GARCH(1,1)
model implies an uncorrelation between the spot price and the volatility,
something that is certainly not always the case for all models. To approach
the matter one could adopt a Nonlinear GARCH model (NGARCH), which
introduces an extra term defined as

Vpi1 = (1 —a— BV + alu, — ¢)* + Bu,. (69)

Here we have added an extra parameter, ¢, which also needs to be estimated
and will facilitate the correlation with the underlying process. We will how-
ever not put our focus on this relation here, and the standard GARCH(1,1)
will accurately suffice for now. More about the NGARCH process can be
found in the original paper by Engle and Ng (1993, [17]).

A considerable difference between the Heston and the GARCH model is
that in this paper we will now utilize historical data in order to estimate fu-
ture levels of volatility. This can be seen in contrast to the Heston model in
which we use option data and market implied estimates of future volatility
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as calibration tools.

Solving the expected value of the variance we use the same approach as
we had in the Heston model, and after some quick calculations we see that
we achieve the same result as in the Heston case. With the parameters at
our disposal, and considering that the stochastic component vanishes as seen
in equation (59), all calculations have already been done. Thus the solution
of the conditional expected value in a GARCH(1,1) model is given by

Elvi|vg] = 0 + (vg — 0)e™ ", (70)

Thus we see that we achieve the same conditional expectation for both
those model, and the only difference lies in the estimation method of the
parameters.

5.3 The 3/2 Model

Working in the 3/2 model we can see close similarities with the Heston and
GARCH model, but the dynamics of the variance process alter slightly. One
of the major questions when working with a stochastic volatility model is
the choice of v, and which value of the parameter would fit reality the best.
Bakshi et al. (2006, [2]) estimated in their study a value of approximately
1.28 for v, which suggests that the 3/2 model would be better suited than
the Heston model which has v = 0.5.

Following the same setup as earlier, we define the model by the following
dynamics:

dSy = rSydt + /0,5, (de; 1o p2dw,?) (71)
3
dvy = kg (6 — vy) dt + o2 AW (72)

Again the parameters are defined the same as earlier together with v = 3/2.
The difference here can be seen as having the same dynamics as in the
Heston model multiplied by an extra factor of v, i.e.

dvy = vi[k (0 — v) dt + oy /v dW . [15] (73)

One thing to notice in this model is the interpretation and motivation of
some of the parameters. The speed of mean reversion (previously x) will
now be given by the product s x vy which is now a stochastic quantity. This
will imply that the variance will revert more quickly to the mean when it
is high. This product then makes the model more suitable to handle fast
volatility increases or decreases, a point at which Heston fails. o, is again
the volatility of volatility, and will for higher values result in heavier tails
on the sides. [29]

31



Since the dynamics of the 3/2 models alters in the dynamics of the vari-
ance compared to Heston and GARCH, the calculation of the conditional
expectation becomes slightly different and the quadratic term complicates
the process. We will however apply the relationship adopted by Drimus
(2009, [14]) which gives a link between the 3/2 model and the Heston model.
This approach says that the dynamics of 1/v; follows a Heston process with
some specific parameters. Applying It6’s lemma to 1/v; when v; follows the
dynamics of the 3/2 model as in (72) we get

1 2
d() :,.;9<”+”” )dt T aw,. (74)
vy K0 vy Vot
Thus we notice that the reciprocal of the 3/2 variance process is a Hes-

2
ton process of parameters (/{9, %, *%)- Having this relationship to our

disposal we can then calculate the conditional expected value for the 3/2
model. For simplicity lets denote

k= Kb (75)
= K402
0 = = 76
Y, (76)
o’:,v = _UU' (77)
Then our solution for equation (74) is calculated the same way as in (61)
]

with a slight change to the initial condition. Given this solution for £ [U%WO
we conclude by inverting back to achieve the final solution which ends up

being
1

0+ (& —0) et

E vy vo] = (78)
5.4 Variance Swaps

To derive the price for a variance swap across the different stochastic volatil-
ity models we will use the same initial thoughts as in the variance swap
section. In a stochastic volatility model (SV model), we start by defining
the continuous realized variance by

1 T
Ve (0,T) = T/o vsds. (79)

The fair variance strike price, again denoted by K., defines the value in
which the contract’s net present value is 0. In terms of equations we have,
under the risk neutral measure Q:

EQ [T (Vu(0,T) = Kuar)| = 0. (80)
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With this we are now able to calculate the continuous realized variance
given the dynamics we have set up, because we can explicitly calculate the
expected value for the different models. Thus given a SV model, we can
solve this above equation for the variance strike price. In the presence of a
GARCH or Heston model, we get the following price:

1 /7
T/o vedt|vg

1 [T 17
= T/o Elvi|vgldt = T/o [0+ (vo — B)e™""]dt

- %(9T+ ”0;9(1 — 7)),

Kyor = E[V.(0,T)|vo] = E

(81)

Here we notice that the fourth equality comes from the calculation of the
conditional expectation, which had been done in equation (59). Thus work-
ing within the stochastic volatility models we are able to find an explicit
formula for the continuous variance strike price.

In the frame of the 3/2 model, since the conditional expectation of the
variance looks a bit different, we get the following price:

1 T
Koar = E[Va(0,T)[vo] = B| = / vedt 1)0]
T Jo

1 T
_ T/o Elvr|voldt

1 (T 1

:T/O 0+ (L -0) e

dt

1
vo

1
70T

~ ~ . 1
= In (1109 + (1 — UOO) e_”T) + G
Thus given that we can estimate the parameters we are able to obtain the

price of a variance swap with a certain time to maturity 7. These calibra-
tions and pricing procedures will be done in chapter 6 and 7.

5.5 Volatility Swaps

For the volatility strike however there is no easy way to obtain the strike
price explicitly, and the only approximations given has been the upper bound
that we saw in the volatility swap section. As we noted earlier, we have to
our disposal the convexity correction formula in equation (38). However as
pointed out by Broadie and Jain (2008, [27]) the correction formula might
not be as accurate as one would like in the case of SV models, because
higher order terms in the Taylor expansion are not negligible. Thus we have
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fairly limited information of how to properly transition into the volatility
swaps. One thing to solve that would be to allow more terms in the Taylor
expansion for a SV model, but that is a fairly long stretch.

Thus in order to compute the fair volatility strike we will instead in this
section derive a partial differential equation which numerically can be solved
to approximate the volatility strike price. The approach is built on the fact
of a no-arbitrage relationship between volatility and variance swaps. We
will also derive a analytical solution for the volatility swap which includes
the use of Laplace transforms and numerical integration, an approach set
up by Broadie and Jain (2008, [27]).

5.5.1 PDE Approach

Variance swaps are in their own right very liquid instruments and can be
used as a valid trading tool. They can however also be regarded as under-
lying assets in order to price other types of volatility instruments including
volatility swaps and variance options. In this section we derive a PDE to
price volatility derivatives, and in particular give an approximated price of
the volatility strike price.

Initially we define the price process of the floating leg, denoted by

T Q|1 !
X, =E; T, vsds| . (83)

This process is sometimes used as an argument in other price processes that
have a close relation to the floating leg of a variance swap. Since the price
process of the floating leg is not completely stochastic because it has, at time
t, a deterministic part we will define a state variable I; = fg vsds to be able
to separate the stochastic and the deterministic part of the process. This
variable has a SDE representation of dI; = v:dt. Thus the price process of
the floating leg has the representation

r_ I Q|1 ’
X/ :T+E’t T/ vsds| . (84)

Then we have for any derivative depending on the floating leg, and in par-
ticular the variance swap, a price process G (t, X ) = F (t,v, I;). Applying
1t6’s lemma on F' we get the PDE

OF OF OF 10°F

Using the above equation (85) we can derive the various PDEs for our dif-
ferent SV models.
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Working with our price process F' we thus need to substitute the dynamics
of each model into equation (85). Starting out in the Heston model, the
result can be simplified by collecting terms, arriving at
OF OF OF L1 O*F OF
dF = 0 — — dt + —o\/vdW,. (86
a0 gt g | dt oo md (86)
Since F' is a forward price process, its drift under the risk neutral measure
must be zero. Hence solving the PDE for a derivative on the floating leg we
can get an approximation to the price of F:

OF OF OF 10°F
8t + v — K (9 ’Ut) + th + iwvm = 0. (87)

This above PDE is then solved to compute the fair volatility strike. The
boundary condition needed in order to solve this is

I
F(T, Ve, Ir) =\ (88)
Thus the framework in which we obtained the PDE in equation (87) can
also be implemented for the other SV models. The results for a GARCH

model yields the following PDE as well as boundary condition:

oF OF oF 10%F
E‘F%K/(e*vt)‘Fa ’Ut+*W?2—O. (89)
It
F(T,Vp,Ir) = T (90)

Substituting the variance dynamics of the 3/2 model into the price process
we get a slightly different PDE, but the mechanics will be done the same as
above. We again have that since F' is a price process, the drift under the
risk neutral measure has to be zero. Thus we arrive at the PDE

OF OF OF ~ 10°F 4
a5 + 50 — kv (0 — o) + alvt—i-iia vo© =0. (91)
I
F(T, VT,IT) = ra (92)

5.5.2 Laplace Transforms

Using the same argument as we did earlier in this, we can numerically solve
the volatility strike price with the use of Laplace Transforms. The continu-
ous volatility strike can again be evaluated by the formula defined as

[e=sVe(0.7)]

1 -
Kon = 3= / ds. (93)
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Thus in this setting we have to evaluate the expected value in the case of
a Stochastic Volatility model. As an example we look at the Heston model
which gives, from Lian (2010, [30]) the following formula:

EQ[e=sVe0T)] = exp[A(T, s) — B(T, s)vo) (94)
where ey
_ 2k0 2’)’(8)6%

A(T, S) = 712) log ((7(8) + H)(@V(S)T _ 1) + 2,}/(3)) (95)

B(T.s) = 25(e1T —1 (96)
T T (s) + )@@ = 1) + 29(5)]

Y(s) =1/ k> + 20%25. (97)

After estimating the parameters we again rely on numerical integration tech-
niques in order to solve the integration part in order to obtain the volatility
strike price.

5.6 Comparison of the Models

As we can see there are some small variations and differences between the
models. Starting off with the variance swap we see that the Heston and
GARCH model gives the same explicit formula, where as the 3/2 model be-
comes slightly different. For the volatility swaps we received three different
PDEs which can be solved in order to obtain a volatility strike price. Look-
ing more into the PDEs we can notice that the variance terms in the second
derivative of the variance alters. For this term we have v; in the Heston
model, v? in the GARCH model and v} for the 3/2 model. We can also see
that we get an extra vy term in the first derivative of the variance for the
3/2 model, due to its extra term in the variance dynamics.

So which model is the optimal one to use? Well we can’t say that yet,
and need to estimate the parameters in the models in order to evaluate our
results. This question also depends on what we are looking for particularly,
whether it is accuracy or computational speed, or how the model calculates
data. All these attributes are all valuable when looking over large datasets
as too complex models may induce heavy computational power.

The most popular out of the three models that we have presented in this
section is undoubtedly the Heston model. It is usually the first model that
comes to mind when speaking about stochastic volatility models. After sev-
eral attempts in extending the Black-Scholes framework, Heston was one of
the first in creating a model which had the analytical tractability to give
semi-closed form expressions. While GARCH mainly have had its success
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in econometrics it has over the years found its way into the area of volatility
derivatives, being in close relation to the famous Heston model. It is also
often estimated using a price-based approach, compared to the others which
are option-based, which will yield different set of parameters when doing the
estimations. By Drimus (2009, [14]) the 3/2 model have been shown to give
a better empirical support in certain areas, for example supporting upward
sloping implied volatility of variance smiles.

We will later on investigate how well these models perform empirically with
estimated parameters. This will be done in chapter 7.

5.7 Stochastic Volatility Models with Jumps

The developments for stochastic volatility models have been revolutionary
in the area of finance in the sense that it gives a more realistic view of how
stock prices behave, thus giving a more comprehensive option valuation. As
it stands with most models, there is almost always room for improvements.
Generally SV models are good at capturing the volatility smile on longer
maturities, but fail to fully support the skew at short maturities as pointed
out by Gatheral (2006, [21]). Thus we extend to allow for jumps in the
stochastic volatility model, which basically means adding a jump compo-
nent to our already existing model.

A model which allows jumps can be divided into two sections, the simplest
case being the Stochastic Volatility with spot Jump model (SVJ model)
with jumps in the price process. An extension to the SVJ model is also
considering jumps in the variance process, which we denote as a Stochastic
Volatility with spot Jump and volatility Jump model (SVJJ). We will thus
in this section be looking at both the SVJ and SVJJ model, and give an
introduction into both of these extensions.

5.7.1 Stochastic Volatility with Jumps in the Underlying (SVJ)

The implications for introducing jumps to a SV model will basically look the
same, and we will thus in this section focus our attention on the most famous
model, the Heston model. If we first allow for jumps in the underlying stock
process (a so called SVJ model) the risk neutral dynamics then becomes:

dSy = (r — Am)S,—dt + /vy S, (detl + /1 - p2dW3) + S-dJy  (98)

dvy = K (0 — vp) dt + o/ dW} (99)

The parameters given above are the same as in the Heston model specified in
(57) and (58), as well as the applied Merton Jump-Diffusion (MJD) model
which is defined in (42). We assume here that the jump process V; and the
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Brownian motion are independent.

Calculating the variance strike price in this jump model we apply the same
procedure as in the regular Heston model, where now we have to into consid-
eration the added jump process. Using these results we can then calculate
the price of a variance swap in a SVJ model as

2)0—9

Kopar = %(HT n (1- e_”T)) F A+ 27, (100)

K
As we can see the result is fairly straight forward compared to earlier, and
does not add much complexity. The extra jump process is as we can see
only added on top of what we already calculated in a Heston model with-
out jumps. Thus as long as we know the dynamics for the jumps and the
parameters, i.e. \,a and b, we can receive the price for a variance swap
without much trouble the same way we did in the original Heston model.
The downside to this model is that the jump process is uncorrelated with
the variance process, implicating that that volatility stays the same after a
jump occurs in the underlying.

5.7.2 Stochastic Volatility with Jumps in Stock Price and Volatil-
ity (SVJJ)

Although adding a jump process to the stochastic volatility models was
considered a major improvement, there will always be the quest to finding
the perfect model. Up to this point we have considered a model which
only contains jumps in the price process, but not allowing for jumps in the
variance process. If we think about this assumption it is quite unrealistic
that the instantaneous volatility would not jump if the stock price jumps.
Thus it would be appropriate to apply a SVJJ model, such that we have
jumps in both processes. This goes in line with the quote we had earlier
about volatility clustering, that ”large changes tend to be followed by large
changes, of either sign, and small changes tend to be followed by small
changes”. This model, defined in 1999 by Andrew Matytsin [33], will have
the dynamics given by:

dSy = (r — Am)S,—dt + /1S, (detl 1o p2th2) S, dJs (101)

dvy = k(0 — vg) dt + op\ /o dW} + dJ}. (102)

Added here is a jump process in the dynamics of the variance, namely J/.
We assume that the jump size in this process are exponential with mean 7;
and the correlation between the two jump processes are defined as follows:

1
J ~ exp <n> J5|JY ~ LN(a+ psJ°,b%). (103)
J
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Concluding this section the question to ask now becomes which model is
preferable, the original Heston, the single jump model (SVJ) or the double
jump model (SVJJ). One might assume that including more things and mak-
ing a more complex model would fit better, but that is arguably not always
the case. A comparison as a whole for the benefits of adding jumps into the
model is a trade off. Even though we might mitigate some problems that the
original model cannot account for (such as short maturity skews), we have
on the other hand increased complexity and in some cases loss of tractability.

Mathematically it becomes more complex when adding jumps, which of
course affects the computational speed. As pointed out in Gatheral (2006,
[21]), the SVJJ model has more parameters but were also harder to fit
observed option prices. Working with more parameters might be good in
some cases, but the main issue with SVJJ is that the added performance
is overmatched by the computational technicality and power needed. The
SVJ model has more parameters than the original Heston model, but as we
pointed out the added parameters are technically not that difficult to im-
plement, thus giving a better fit to observed data compared to the original
model.

5.8 Variance Options

Another interesting derivative in this area is options which are not based on
an underlying asset, but instead written on variance or volatility. We will
in section derive an approach which introduces variance options. In order
to price variance options, we use a no-arbitrage argument which is similar
to the PDE approach we saw in the case of volatility swaps.

Using this strategy we create a specific portfolio which lets us find a partial
differential equation which will be similar to the ones we saw for the volatil-
ity swap. As usual we denote the price of a standard European call option
as:

Cy = E¢[e " T Ymax(V,(0,T) — K,0)] x N. (104)

We will derive a partial differential equation to price a variance call option,
and the payoff of the call can be replicated by continuous trading of a vari-
ance swap. This replicating approach will yield the price of the variance call
option. Thus we need to form a portfolio including both a call option and «
units of variance swaps. The created portfolio will at time 0 have a value of

My = a(Xe — Kyar) + Co. (105)

Worth noting is that the portfolio value will be the same as the variance call
option value because there is no cost to a unit of variance swap at the start
of the contract. The price process for the variance call, denoted C}', can be
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expressed as
Cf = G(t,v, 1) (106)

Applying [t6’s lemma to our price process we get

oG 0G oG 10°G | ,

dG = (%dt—i-a dv +8Idl+28 dv”. (107)
This equation can be simplified using the parameters from our SV models,
and we will perform the calculations in the case of a Heston model. The
procedures for creating the PDE for variance options are technically done
the same for our different models, and will thus only be carried out in the
Heston case. We will only apply this approach in terms of either a GARCH,
Heston or 3/2 model, and will in this paper not consider the extensions into
the jump frameworks (SVJ and SVJJ). Putting the variance dynamics from

the Heston model into G we obtain
oG 0G oG 10%G

dG = |+ k(0 — Ut)+6lvt+282

oG )
ot o ’UtU dt+%U\/’Uitth . (108)

From equation (105) the change in portfolio value for a small time step dt is
dll; = adF + dG. (109)

Now we notice that we have done both dF' (in the volatility swap section)
and dG (in this section), which we can use in order to simplify. Thus we
substitute dF from equation (86) and dG from equation (108) into equation
(109) which yields:

dIl, = a@f%\/@dwtl)

[66’ oG oG 160%°G 2] gt (110)

+ | = + 75(0 Ut) + W”t + QW%U”

(9t ov
+ %Uv\/Ftthl.

We can now recognize that a suitable choice of o can remove the stochastic
component. Thus the random segment vanishes if we choose

_0G JOF
T/ (111)
We can then simplify (110) to
0G 0G 0G 10°G
AT, = [at + SR8 =) + o+ 5 S ]dt (112)

Noting that the portfolio Il; is riskless, we want it to equal the risk free rate
of return (to avoid arbitrage opportunities), which yields
[BG oG oG 10%G

% 9y KO —v) + v+ =

31 5 5p2 Ut }dt = rGdt. (113)
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This can thus be rewritten as

oG 0G oG 10°G

E + %H(g — Ut) + th + iw?}tUU —rG =0. (114)
For the cases of a GARCH or 3/2 model we get slightly different PDEs, which
will look similarly as in the section of volatility swaps. The corresponding
PDEs will be

oG 0G OG 0*°G

1
at -+ a 1{(0 Ut)Jr 8 +§87 *T‘G_O (115)
oG  0G oG 102 G
8t + 0 :‘ﬂ)t(e Ut) + ol =70+ 5‘8 —rG=0. (116)

Solving the partial differential equation (114) in a specific region with proper
boundary conditions gives the price of a variance call option. These details
will not be explored in this paper, and more information are given by Broadie
and Jain (2008, [26]).
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6 Parameter Calibrations

Given the different pricing methods and strategies we have introduced so far,
we need to estimate the various parameters in order to use them. Thus this
chapter will be devoted on calibrating and thereby estimating the parameters
from our different models. These estimations are based on two different
calibration techniques, which is either option-based or price-based. Most of
the models we are looking at will be option-based (which will be the B-S,
MJD, Heston and the 3/2 model), and they will be estimated from option
data from S&P500. The GARCH model is the only model which is price-
based, and will be estimated from historical data. For this we will be looking
at the S&P500 index over a historical time period.

6.1 European Options

In order to estimate the parameters from B-S, MJD, Heston or the 3/2
model we have gathered European style vanilla options from the S&P500.
All options have been collected from the Historical Option Data database,
obtained via www.historicaloptiondata.com. The raw dataset consists of 1
273 460 European options (both put and calls) on the S&P500. The range
of the data collected is between 2014-01-01 and 2014-12-31, i.e. one year of
daily data, which corresponds to 252 trading days of data.

6.1.1 Filtering Process

As we have quite a large dataset it is a good idea before calibration to
perform a filtration to eliminate outliers and thus stabilize parameter esti-
mation. This will be done to ensure that the estimations are valuable and to
obtain efficient and reliable calibrations. There exists a variety of different
filtration techniques, but we will in this paper apply the filtering scheme
done by Bakshi et al. (1997, [3]). Both put and call options can be used
but it suffices to only concentrate on call options. Thus we start off by
eliminating all put options from our dataset. We then proceed to remove
all non-traded options, which is done due to illiquidity. We will also remove
the options with a time to maturity less than 7 days or greater than 182 days.

Thus in this study we start off with 1 273 460 European S&P500 options.
We begin with removing all put options, which consists of 636 730 options.
Next we remove the non-traded options due to illiquidity, removing a total
of 524 069 options. In accordance with Bakshi et al. (1997, [3]) we also re-
move options that have a time to maturity which is less than 7 days. This is
because these options are considered illiquid, even though it is worth noting
that these types of options have increased since 1997. Since we are focus-
ing on swaps in this thesis, which are usually traded in short maturities,
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we will also remove any options which has a higher maturity than 7" > 0.5
(182 calendar days). These options eliminated from our dataset are also in
accordance with Sepp (2011, [39]).

There should be noted that it is possible to remove even more options,
which would induce even better estimations. These conditions are however
quite rare and will not remove a large portion of options, and the final es-
timations would therefore not drastically change. This includes removing
options with negative bid-ask spread (or zero bid-ask spread), or that vi-
olates a specific no-arbitrage condition. We will in this paper not impose
on all possible filtering schemes, as this is not a main concern of the thesis.
More about the different removal techniques and implications are done by
Bakshi et al. (1997, [3]). The filtration process is summarized in the table
below:

Filter description Removed options
Removal of European put options 636 730
Removal of non-traded options 524 069
Removal of options with maturity < 7 or > 182 days 24 147
Total removal 1 184 946

Table 2: Filtering Process

After the filtrations we are left with 88 514 European call options for the
time period of 2014 (2014-01-01 to 2014-12-31). Given these options we
are now able to properly estimate our parameters for our different models.
Therefore we have about 351 call options available on average per day, at a
total of 252 trading days. For the last day of our time period 2014-12-31,
which is a selected day we will use to estimate our models, we have 396 call
options available.

6.2 Option-Based Calibration

As it is in most calibration schemes, there will be several different ways to
estimate a option-based diffusion model. Some of the examples in this area
include a Nonlinear GLS, Nonlinear OLS, Simulated Method of Moments
(SMM), Efficient Method of Moments (EMM) etc. An overview of the dif-
ferent available models are provided by Chernov and Ghysels (2000, [11]).
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Alternatively there has been empirical evidence showing that an approach
based on minimization of a nonlinear loss function using either deterministic
or stochastic algorithms provide accurate results. We will thus in this thesis
adopt the calibration techniques proposed by Mikhailov and Nogel (2003,
[34]) based on this scheme.

This method is based on minimization of squared errors, and will be de-
fined as the difference between the model imposed and the market observed
prices. We will in thesis use an algorithm which falls within the class of
deterministic algorithms, and in MATLAB goes by the name ”Isqnonlin”.
For more information about the properties and the various structure of this
minimization method we recommend Stamp and Thorsen (2011, [40]).

6.3 B-S Estimation

Being in a B-S world we are only concerned about 1 parameter, namely
the diffusion term o. The minimization procedure is thus quite simple and
converges fast (about 5-10 iterations) towards its global minimum. The cal-
ibration results for the last day of our time period as well as the average are
presented in the table below:

g

Average  0.1035

2014-12-31 0.1325

Table 3: Black-Scholes calibration results

As we can see the implied volatility parameter averages over the year of
about 10%. During the last day the parameter is at 13.25%), indicating that
the year may displayed some fluctuations. We can see that the volatility
was quite a lot higher (about 3%) at the end of the year compared to the
average value.

6.4 MJD Estimation

Working in a Merton Jump Diffusion model we now include the added jump
process, which adds 3 extra parameters to fit. Thus we have to estimate o,
A, a and b. Naturally this calculation requires more iterations compared to
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the above Black-Scholes in order to find a suitable fit, considering we have
more parameters to estimate. The calculations in this case are quite de-
pendent on starting values, and upper and lower bounds for the parameter
are implemented to ensure proper values of our different parameters. The
results of the calibration are shown below:

A a b o

Average  2.4075 -0.0479 0.0474 0.0682

2014-12-31 2.5825 -0.0727 0.0418 0.0779

Table 4: Merton Jump Diffusion calibration results

Here we see that the parameters for the last day is basically the same as
the average over the whole year, with a slightly higher A. We can also note
that the jump intensity A is quite high, if we compare it to studies by Stamp
and Thorsen (2011, [40]) or Tankov and Voltchkova (2009, [41]). Since all
these papers are looking at different time periods and are using different
estimation methods, the various change in values are thus exclusive to each
study and our parameters appear plausible.

6.5 Heston Estimation

For the calibrations in a Heston SV model, we need to fit 5 parameters. For
this model we need to estimate x, 6, vg, o and p. As we gain more param-
eters than before we naturally require more computational time compared
to the earlier models. In order to receive reasonable parameters we add the
following constraints to the minimization problem.

vo, K,0,0 >0 (117)
-1<p<1 (118)
2k6 > o (119)

These constraints are all in logic with what one would expect. The first con-
straint indicates that the parameters all are positive, which is very natural.
The correlation term p can either yield a positive or negative correlation, and
this restriction ensures that. The third constraint, which is known as the
Feller condition, will ensure that the variance process is positive. Another
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important aspect of calibrating the model is the choice of pricing formula
for European call options, as different approaches might yield different re-
sults. In this paper we implement the approach of Moodley (2005, [36]),
which calculates the European call options using Fast Fourier Transforms
(FFT). With more parameters to estimate as well as the pricing procedure
the computational increases quite significantly in comparison to the earlier
models. The table below presents the calibration results:

K 0 oy ) i)

Average 9.4673 0.0181 0.5859 -0.6596 0.0096

2014-12-31 16.9965 0.0236 0.8956 -0.8995 0.0237

Table 5: Heston calibration results

Comparing the parameters to other studies we notice that the obtained
results vary quite widely depending on the chosen time period, calculation
method and the option data. From our estimations we have a fairly high
speed of mean reversion, x, and we can also see that we can assume negative
correlation between the variance process and the underlying, as p estimates
a negative value. In general our results appear plausible and give somewhat
similar values compared to previous studies such as Bakshi et al. (1997, [3])
or Stamp and Thorsen (2011, [40]).

6.6 The 3/2 Estimation

As the 3/2 model lies in close relation to the Heston model, we again have
to estimate 5 parameters. This method also requires quite a lot of compu-
tational power, as both the amount of parameters have increased and the
complexity of the pricing schemes are heavier compared to the non stochas-
tic volatility models of B-S and MJD. As we have stated earlier in chapter
5 we can rework the 3/2 model into a Heston model, where in this case the
dynamics of 1/v; follows a Heston process.

Thus we apply the same procedure as the Heston calibrations, and we only

need to change the so called Feller condition. As pointed out by Drimus
(2009, [14]), the transformations performed sets up a new condition which
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is defined as

K+ o2 9
246 > 120
" k0 =9 (120)
or 9
KZZ-—%;. (121)

Thus we apply this new non-explosion condition along with the original
Heston conditions
vg,K,0,0 >0 (122)

—1<p<1. (123)

Given these conditions we are now able to estimate a Heston process which
after that can be transformed into the 3/2 model. The results of the cali-
brations are shown below:

i 0 Gy p Vo

Average  0.1121 46.0703 -0.5768 -0.6237 0.0101

2014-12-31 0.1715 32.3396 -1.0452 -0.7365 0.0233

Table 6: 3/2 model calibration results

Looking at the parameters in comparison to the Heston model, we see that
the comparable differences lies in the 3 first parameters as expected. Trans-
formations for these 3 have been done accordingly to (75), (76) and (77),
yielding suitable parameters for the pricing in the 3/2 model.

6.7 Price-Based Calibration

As we mentioned earlier the price-based estimation scheme will only be ap-
plied to the GARCH model. It is possible to use option-based methods like
the ones we proposed earlier, but it might not be as effective. These esti-
mations will be based on historical data, and we will look at the evolution
of the spot price on the S&P500 index. This particular method is discussed
by Heston and Nandi (2000, [24]), where they noticed that a discretized
GARCH(1,1) outperforms different versions of the B-S model.

The calculations done will be performed using standard econometric meth-
ods. There are several methods in this area which are applicable to use,
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and no special emphasis has been put on the performance of the different
available choices. Some of the possible approaches include Feasible Gener-
alized Least Squared (FGLS), Generalized Method of Moments (GMM) or
Maximum Likelihood (ML). In this thesis we will proceed to estimate the
parameters in a discrete GARCH setting by the means of ML (Maximum
Likelihood).

6.8 GARCH Estimation

In this section we present the estimation results for our GARCH(1,1) model.
We will estimate 3 parameters (w, § and «) in a discrete setting, which we
will use in order to obtain the continuous estimations. To estimate the
model we have used daily log-return observations on the S&P500 index over
the course of 4 years (2010-2013). The amount of years are chosen to ensure
asymptotic properties of the estimator.

The gathered data has been implemented into MATLAB, where we have
fitted a GARCH(1,1) model to obtain the parameters. After the estimation
we shift the sample window by 1 observation, creating a forecast over 2014.
This yields 252 datapoints, and the average estimated parameters over the
year as well as the last set estimated on 2014-12-31 are shown below:

w 153 «

Average 4.1206e-06  0.8356 0.1239

2014-12-31 2.39023e-06 0.8291 0.1458

Table 7: Discrete GARCH(1,1) calibration results

As we can see the model is stationary, as a + 8 < 1 and all parameters
are strictly positive. Comparing the results to other academic GARCH es-
timation papers such as Haug et al. (2002, [22]) or Stamp and Thorsen
(2011, [40]), we can see that our parameters are within reasonable limits.
The difference to those papers are of course expected since we are looking
at different year intervals, Haug et al. are looking at the years between 1996
and 2001 while Stamp and Thorsen have gathered data between 2006 and
2010.
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For now we have estimated the parameters in a discrete GARCH(1,1) set-
ting, and what leaves us is converting it into the continuous case. Converting
into the diffusion model we use the relationships presented in equations (66),
(67) and (68). Along with those we have that dt = 1/252 to reflect daily
observations. The results of this transformation yields:

Vv £ K 0 Oy Vo

Average  1.0173e-04 9.4240 10.206 0.0256 5.7086  0.01

2014-12-31 9.5228e-05 11.4186 6.3252 0.0239 7.4707 0.0092

Table 8: Continuous GARCH(1,1) calibration results

Comparing those results to other studies by Stamp and Thorsen (2011, [40])
and Haug et al. (2002, [22]) we receive fairly similar estimations. Some pa-
rameters such as k varies quite a bit along these studies, but are within
suitable ranges because of the different time periods used.

Thus having estimated the parameters we are now ready to price volatil-

ity derivatives in the framework of a GARCH model, and compare it to the
option-based estimations of the other models.
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7 Empirical Evidence

As for all models, it would be difficult to talk about their performance if we
don’t have any valid parameters and were able to properly implement them.
Thus we will for this chapter apply our estimated parameters and use them
along with our specific formulas from our different models we have arrived
at so far, and see how they perform in the case of volatility derivatives. The
models that we will be looking at are the ones that we have estimated param-
eters for, namely the Black-Scholes (B-S), Merton Jump Diffusion (MJD),
Heston, GARCH as well as the 3/2 model. We will mainly be focused on
evaluating the performance of variance and volatility swaps with maturity
lengths of 1, 3 and 6 months. The choice of maturity dates T are done based
on that these contracts are some of the most commonly traded in the market.

When looking for empirical evidence, one normally evaluates model per-
formance against the ability to fit or replicate observed market prices. Sec-
ondly in order to consider a model attractive one concerns the ability to fit
model features onto other products, which in our case are swaps written on
variance or volatility. We will thus devote this section to use our estimated
parameters in the previous chapter to price swaps, and evaluate their per-
formance against each other. We will for the variance swap use our closed
form solutions which we have derived in this paper. As there exist no such
formulas in the case of volatility swaps, we will instead rely on Monte-Carlo
simulations as well as numerical integration techniques to obtain the strike
price for the volatility swap.

7.1 Variance Swaps

Most variance swaps in the market are written on realized variance and cal-
culated from log-returns and a daily discrete sampling process (AF = 252).
As we have derived several formulas for the continuous strike price of a vari-
ance swap across different models, we will in this section use our calibrated
results gathered from the previous chapter and implement this into our so-
lution formulas for the variance strike price.

Worth reminding is that the variance strike is often quoted in units of volatil-
ity squared, i.e. 20%2 = 4% or sometimes also denoted as 20%2 = 400
variance points. We will start by looking at a specific day, which in our case
will be the last day of our time period 2014-12-31, to give the reader a taste
for the range of swap rates. After this we also present the whole sample
period (the year of 2014) along with some analysis and conclusions. The
continuous swap rates on 2014-12-31 are given in the table below:
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Maturity B-S MJD Heston GARCH 3/2

T=1/12 13.25 15.56 15.38 12.28 15.27
T=3/12 1325 1556 15.37 14.13 15.30

T=6/12 13.25 15.56 15.36 15.02 15.34

Table 9: Variance swap prices on 2014-12-31

As we can see from the table above the only model to induce some vari-
ety depending on maturity is the GARCH model. As we are only looking
at 1 day, the estimations for the Heston or 3/2 model becomes almost the
same, and the Heston model are even going down as the maturity time in-
creases. These prices are of course a bit skewed since we are only looking at
one day, and some estimations may give a false image of the certain trends
for the different models. Although we can give some general remarks that
the prices are higher in MJD, Heston and 3/2 at smaller maturities. The
GARCH models catches up when increasing the maturity, and all prices for
T = 6/12 are all around 15% volatility across all models except for the B-S.

Next up we look over the whole sample period (2014-01-01 to 2014-12-31),
to get a better grasp of the swap prices. Looking over just one day might
give a false indication as how these models perform, as we are looking over
one day which is only about 400 options (this day in particular could have
been an extreme). Therefore we will proceed to look at the variance swap
prices using the average estimated parameters over the year 2014, which is
presented in the table below:
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Maturity B-S MJD Heston GARCH 3/2

T=1/12 10.35 14.62 11.05 11.16 10.06
T=3/12 10.35 14.62 12.18 12.85 10.08

T=6/12 10.35 14.62 12.77 13.94 10.12

Table 10: Variance swap prices over the whole sample period

Here we see that for a 1 month swap the volatility levels are all almost
the same except in the MJD case. In the 3/2 model we have very small
changes over the different maturities, compared to the Heston and GARCH
model. Again we see the largest fluctuations are in the GARCH model,
where we go from around 11% up to 14% depending on the length of the
swap. We can also see that the swap rates are quite high in the MJD model
compared to the other models.

Comparing the average prices over the year 2014 against the last sample
day 2014-12-31, we can see some general trends. Overall the volatility is a
few percentage points lower in the average prices compared to the last day,
as indicated by most models. If we start by looking at 7' = 1/12, the last
day indicates a price around 15% for most models (MJD, Heston and 3/2)
while looking at the average prices the volatility level is ranging between
10% — 11%. The same can in general be said for the other maturities as
well, although the swap prices in the average time period does seem to raise
as the maturity increases, and the Heston and GARCH model moves a bit
closer to the MJD model.

7.2 Volatility Swaps

Although the volatility swaps are easier to understand in practice and more
intuitive, the pricing framework are not as straightforward as the variance
swap. The square root function of the volatility swap adds an element which
mathematically becomes a lot more complex. Since there are no pricing for-
mulas for the volatility swap, we rely on numerical methods in order to price
this swap.

We will calculate the pricing process in the Black-Scholes model as well
as the Merton Jump Diffusion model based on the analytical formula we
presented earlier, which relies on Laplace transformations and numerical
integration. For the stochastic volatility models we use Monte-Carlo simu-
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lations in order to approximate the volatility strike price. The Monte-Carlo
simulations used will be based on 100 000 simulations with 20 steps per day.
The volatility swap prices for the last day of our time period are given in
the table below:

Maturity B-S MJD Heston GARCH 3/2

T=1/12 1324 11.83 10.4452 7.1593  10.0368
T=3/12 1324 1336 10.5386 7.7858  10.0605

T=6/12 1324 14.20 10.6668 8.2674  10.0875

Table 11: Volatility swap prices on 2014-12-31

Comparing the variance swap findings to the table above we now have gener-
ally lower strikes for most models over different maturities. Not surprisingly
the Black-Scholes prices have not changed much, and stays around 13% for
both the variance and volatility swap. The MJD model however increases
quite heavily depending on the maturity, and contracts over 1 month for the
MJD are fairly close to the SV models. We also see that for this day the
volatility level of the GARCH model are lower than the other models, which
is in line with the results of Stamp and Thorsen (2011, [40]). In general all
models produce a lower strike price compared to their variance counterpart
which is suspected due to the convexity adjustment discussed earlier.

Again we also look at the average behaviour over the time period to get

a better overview. The average swap prices for a volatility swap across our
different models are given in the table below:
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Maturity B-S MJD Heston GARCH  3/2

T=1/12 10.34 9.60 7.47 8.3060  7.0978
T=3/12 10.34 10.68 8.26 9.3832  T7.1174

T=6/12 10.34 11.30 8.76 9.9857  7.1402

Table 12: Volatility swap prices over the whole sample period

In this content we see that the GARCH model performs higher than the
last day, something that is not occurring in the other models. In the other
4 models we have a slight decrease in volatility levels for the average time
period, which indicates that the volatility is on average lower than the last
day. This is also reminiscent in the variance swap, where the average prices
were at a 2-4% lower level.

Looking at the values of the volatility swap, we can see that all models
imply the same patterns, except the Heston model. As the B-S and 3/2
model are quite stable through different maturities and the GARCH and
MJD are steadily increasing for higher maturities, this is not the case in the
Heston model. For the last day, the Heston swap prices are almost locked
around 10.5%, compared to a slight increase for the average prices.

Overall we see that the stochastic volatility models offers slightly differ-
ent swap prices compared to the B-S and MJD models. The GARCH model
with its price-based approach fluctuates a lot over both swaps and does not
generally price within the same range as the option-based counterparts.
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8 Concluding Remarks

In this thesis we have investigated the field of volatility derivatives, a fi-
nancial area that has become quite popular in the recent years. Mainly
focused on the variance and volatility swap, we have introduced the pricing
strategies for some of the most popular models available as well as given a
”model-independent” replicating scheme to price variance swaps which we
saw only requires the use of European call and put options.

To properly evaluate those models we have estimated the various param-
eters across our models using either a option-based or price-based approach.
For the B-S, MJD, Heston and 3/2 model we gathered European call and
put options from the S&P500 during 2014 and applied a squared error min-
imization technique to estimate the various parameters. For the price-based
approach in which the GARCH model was calibrated we used log-returns
on the S&P500 index over the course of 4 years (2010-2013), together with
the maximum likelihood calibration technique for the estimations.

Looking over the literature we found that the variance swap was well covered
in terms of analytical formulas and we were able to find closed form solu-
tions for our models. As goes for the volatility swap there were limitations
due to the complexity that the square root function opposes, and no general
solution formulas could be obtained. Thus we had to rely on numerical in-
tegration techniques as well as Monte-Carlo simulations in order to evaluate
the pricing scheme for a volatility swap across all models.

Performance wise we could note that the GARCH model stood out and
did in general not perform exceptionally well. The Heston and 3/2 model
produced mostly the same patterns depending on the time stamp, and gave
a decent performance. The B-S model was typically outside of the range of
the other models, and was not entirely unexpected fairly underwhelming.
The added extension with jumps for the MJD model performed a bit better
compared to the original Black-Scholes model.

In conclusion it appears that the option-based calibration techniques has a
superior performance. The price-based method which we used for GARCH
showed some flaws in the pricing of swaps, and in general the option-based
counterpart that has a forward-looking ability in the options seem to prevail
over relying on historical data.
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9 Extensions and Further Research

Our approach in this thesis have been to apply some of the most popular
models available in the area, as well as putting the ”standard” yet fairly
simple assumptions on the asset. We assumed for instance that the stock
pays no dividends, which is in the market usually not the case. Thus ex-
tending to allow for cash dividends in the pricing scheme would be a natural
progress. A study by Klassen (2009, [28]) derives the price for a variance
swap in case of cash dividends, and are using the replication scheme to find
the variance strike price using this extension.

Most of our formulas presented in this thesis are done in a continuous mat-
ter, something that is typically not applicable when looking at market data.
Although the error between a discrete setting compared to its continuous
counterpart might be low, one should remember that even a 1% error could
implicate major losses when entering contracts of higher values. Thus a nat-
ural extension would be to analyze the different settings against each other
in the framework of volatility derivatives. Both Lian (2010, [30]) as well as
Broadie and Jain (2008, [27]) describes the effect of this phenomenon and
applies it to variance and volatility swaps.

Another improvement would be to use stochastic interest rates, since in the
market those rates usually fluctuates over time. Instead of having a regular
constant rate, Horfelt and Torné (2010, [25]) removes the typical constant
assumption and presents the value of variance swap in case of stochastic in-
terest rates. They look into the case where the interest is driven by its own
1t6 process, which obviously makes for a more advanced pricing structure
which may result in reflecting the market better.

Other aspects would be to improve the assumptions about the models, or
the components in them. As we have mentioned earlier, one could exchange
the geometric Brownian motion for a more general Lévy process. Carr and
Lee (2009, [7]) expands the framework and applies a time-changed Lévy
process in order to price variance swaps.

One extension that we touched upon in this thesis was combining the MJD
model and the stochastic volatility models. Using these two together are
quite natural since both the jump aspect and the stochastic volatility imple-
mentation are both very reasonable assumptions and have been seen to be
empirically viable. Evaluating the SVJ and SVJJ model would make pricing
more realistic and possible better. Stamp and Thorsen (2011, [40]) applies
pricing tools for both the variance and volatility swap in the case of the SVJ
and SVJJ as well as some of the common stochastic volatility models.
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There are of course even more extensions that can be done to further en-
hance the pricing process, as well as other relevant aspects. One of those
areas include looking at different parameter calibration methods, because
even with more advanced models the necessity for reasonable estimation-
techniques are equally relevant in the pricing of volatility derivatives.
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10 Appendix

10.1 A - Compound Poisson Process

We use in the paper [t6’s lemma for a compounded Poisson process and the
proof is rather simple. Assumptions include that the process

N()
Se=> X, (124)
=1

is adapted and that the function f is continuous. To illustrate this fact
assume that there is only one jump at time ¢; then

f(Se) = f(S0) =
(f(St) - f(Stj+6)) + (f(Sthre) - f(Stj*G)) + (f(Stj+6) - f(SU)) .

The assumed continuity causes most of the terms to vanish, so that we end
up with

(125)

f(St) = f(So) = f(Stj+e) = f(St;—e)- (126)
Letting € go towards zero give us [t6’s lemma for one jump, which can then
be extended to more jumps by induction with all the paths between the
jump vanishing due to continuity.

10.2 B - Brockhaus-Long Convexity Approximation

A proof concerning the convexity error regarding the error between variance
and volatility swaps. We start out by defining a square root function F' as:

F(z) = va. (127)

Calculating the derivatives we know that

Fl'(z) = NG (128)
B 1
4z

Using a Taylor expansion for F' around xg we get

F'(z) = (129)

F(x) ~ F(xg) + F'(x0)(x — x0) + %F”(x)(x — 20)*

N$1/2 l‘—xo_l(%—xo)Q
_Tt+x (x — )2

2\/ Zo 81/1'03
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Choosing x =V and xg = E[V] we get

_V+EV] (V- E[V])?

v 2/EV]  8JE[V] (131)
Finally we take expectations on both sides which yields
_ 2
e1v7i~ LBV AW B -
or simplified
VE[V] - ENV] ~ VL(V)?) (133)
8/ E|[V]

Transforming back to our notations in the text we immediately get that
E[VV] = K,y as well as \/E[V] = v/Kyar, which is their respective defini-

tions.
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