Deep

Matthew
UK

LTVING PLANE

LITHOSPHERE .



Acknowledgements

* I've previously worked on similar problems as a PhD student funded by the “Looking Inside the Continents from
Space” (LICS) grant, and as a COMET postdoc:

LOOKIMNG INSIDE THE CONTIMNENTS FROM SPACE

Following

Andy Hooper

@GeoAndyHooper Follows you

Fabien Albino

Geodesy & Geophysics Prof (@SEELeeds, looking into volcanoes, earthquakes,
shrinking ice caps and other processes that deform the Earth PDRA

@ Leeds [ Joined May 2008 ® University of Brist

LIVING PLANET FELLOWSHIP  LITOSPHERE



Project rationale g

* Interferograms contain information about ground deformation, and this has strong evidential worth
for assessing eruption potential (Biggs et al., 2014).

Routine acquisition over subaerial volcanoes by the Sentinel-1 satellltes could faC|I|tate monltorlng
of many new volcanoes. — .

An example of a deformation
signal captured by the
Sentinel-1 satellites: uplift of the

caldera floor of Sierra Negra
(Galapagos Archipelago,
Ecuador), prior to the 2018
eruption.
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Project rationale

* Howevever, with ~1500 active subaerial volcanoes and new interferograms being created every 6 or
12 days, searching for these signals manually is an onerous task.

* E.g. Consider Isabella Island in the Galapagos Archipleago:
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Project rationale

* Howevever, with ~1500 active subaerial volcanoes and new interferograms being created every 6 or
12 days, searching for these signals manually is an onerous task.

* E.g. Consider Isabella Island in the Galapagos, within the Eastern Pacific:
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Project rationale

* Howevever, with ~1500 active subaerial volcanoes and new interferograms being created every 6 or
12 days, searching for these signals manually is an onerous task.

* E.g. Consider Isabella Island in the Galapagos, within the Eastern Pacific, and within the globe:
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* Deformation / no deformation flag on wrapped interferograms (localisation is just nested

classification + Gaussian smoothing).
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Figure: Anantrasirichai et. al., 2018

* Considering pixels in time series with atmospheric corrections applied:
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*  “Monitoring Unrest from Space” (MOUNTS),
Sentinel-1 (INSAR), Sentinel-2 (InfaRed), Sentinel-5 (SO,), and seismic data.

I
(b) phase gradient detection ¥
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Time series method that detects deviations from baseline behaviour.
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Objective 1: deep learning with single injs _-_g‘grgg_ams @esa

.'n: -.‘4
{

* Advancing the state of the art up the hierarchy of computer vision:

e Convolutional neural networks (CNNs) have revolutionised the field and are ideal for this task.

E.g. Anantrasirichai et. al., 2018, 2019 This work
>
B Classification . . Instance
Classification N Object Detection

+ Localization Segmentation

Figure: Stanford CS231 notes
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Convolutional neural networks (very brigflya

over an image.

tensor (below):

JE2

Working with images so can slide (convolve) filters

We don’t design the filters, the network learns them.

An example of two filters (right):

And how to record their output as layers of a

Lo

V

-

Animation: Deep learning methods for vision, CVPR 2012 Tutorial. Diagram: towardsdatascience.com
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Convolutional neural networks (very biigfiyis .

We can then apply filters to the results of the previous filters (and spatially downsample to allow our
representations to get deeper without becoming too large):

The first filters are usually edge detectors. /

* The second filters only see edges, and perhaps
detect shapes. @
* The third filters only see shapes, and perhaps
detect objects.
* Some randomly chosen filter results from a trained Conve Comv s Com s come s

model (below):

block1_conv block2 convi block3_convi blockd _conv blocka_convi

Diagrams: towardsdatascience.com
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Convolutional neural networks (very brieflya

=,
« What to do with the spatially downsampled (but deep) representations?

* Pixels probably represent things like “has a nose”, “has whiskers” etc. *
Visualising one of these layers in our model’s deep representation (right): .

blocka_conv1

(one slice of the 3D representation)

e How to use this?

A common approach is to just connect a simple neural network to each pixel of the final deep
representation: o )

3D - 1D \
=T -{-o
' / = /
Conv + RC  FC* Gumput FC = fully connected
Maxpool

Diagrams: towardsdatascience.com

LIVING PLANET FELLOWSHIP  LITOSPHERE




Using CNNs with interferograms

* Design a new model? Dataset
. . Size
* Train an existing one?
4
Train the entire Train some layers and
model leave others frozen

convolving filters to

make a deep representation M D

deep representation used
by fully connected part

Dataset
Similarity

Freeze the
convolutional base

 “Lots of data” = 10°— 108, in
deep learning, so INSAR is
low in that dimension.

« Similarity is harder to gauge.
It could be worse!
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VGG16 for classification and localisation

* VGG16 was a state of the art model several years ago and weights (filters) are freely available.

* We modify it to have two fully connected heads:

- Classification, to determine the type/class of deformation (e.g. sill, dyke).
- Localisation, to determine the position of size of the deformation signal.

(224, 224, 3) (224, 224, 64) ")(0\ CONON
\C

Classification
(112, 112, 128)

, 112, " output
(56, 56, 256)
(28, 28, 512)
(14, 14, 512) (7. 7.512)
Block 4 BBk S (1,25088)
Block 3
Localisation
Block 2 output

Figure: Gaddes et al., (in prep.)

Block 1
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» 102 real data is challenging, so we try to use
synthetic data to train the new fully connected
classification and localisation heads.

* Deformation from dykes, sills, and point
(Mogi) sources.

* Topographically correlated APS
(atmospheric phase screen) for all subaerial
volcanoes.

* Turbulent APS.
(spatially correlated noise).

Coherence Turbulent  Topograhic

Synthetic
interferogram

APS APS Deformation

mask

Ifg. 1 Ifg. 2 Ifg. 3 Ifg. 4 Ifg. 5 Ifg. 6

E— C—am [— [ — | —= C—mm
] 20 4] 15 0] 6 =15 0 15 0 4 4] 20

(Equivalent) Displacement (cm)
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Results
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Gaddes et al., (in prep.)
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Results

 Results with real data:

performance.

(Campi Flegrei)
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localisation).
dyke: 0.0
« Red = model predictions. i
Classification has a
probabilistic output, and is
expressed as a decimal.
L. . no def.. 0.94
* Training with a small amount e 449
of real data improves no def

0.0 89

Ifg. 3

. Ifg. 6

0.0 28

=
|t
oh Lo

no def.

no def.. 0.95
dyke: 0.03

sill- 0.02

sill

no def.. 0.48
dyke: 0.3
sill: 022

dyke

Ifg. 1

0.0 2.8

Ifg. 7

g

0.0 14.7
lﬁ

dyke: 0.95
no def.: 0.04
sill: 001

dyke

no def.. 0.96
sill: 0.02

dyke: 0.01
no def.

no def.: 1.0
sill: 0.0

dyke: 0.0
rno def.

fg. 2

0.0 97

Ifg. 8

0.0 2.9
i—l

(Sierra Negra)

(Wolf)

Gaddes et al., (in prep.)

LIVING PLANET FELLOWSHIP  LITOSPHERE



Conclusions

* The filters contained within convolutional neural
networks that were trained on natural images can be
used as starting points for models used with unwrapped interferograms.

* Our model can determine the location (and size) of
a deformation pattern, and classify it (within three classes).

* Want to try the code?

Synthetic interferograms:

https://github.com/matthew-gaddes/SylInterferoPy
Train CNNs:

https://github.com/matthew-gaddes/Detect-Locate-CNN

PG Tl CnTIRENT Fase St
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