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ABSTRACT  

Frequency control of plasmon resonances is important for optical sensing applications such as Surface Enhanced Raman 
Spectroscopy. Prior studies that investigated substrate-based control of noble metal nanoparticle plasmon resonances 
mostly relied on metal substrates with organic or oxide spacer layers that provided a fixed resonance frequency after 
particle deposition. Here we present a new approach enabling continuous resonance tuning through controlled substrate 
anodization. Localized Surface Plasmon tuning of single gold nanoparticles on an Al film is observed in single-particle 
microscopy and spectroscopy experiments.  Au nanoparticles (diameter 60 nm) are deposited on 100 nm thick Al films 
on silicon. Dark field microscopy reveals Au nanoparticles with a dipole moment perpendicular to the aluminum surface. 
Subsequently an Al2O3 film is formed with voltage controlled thickness through anodization of the particle coated 
sample. Spectroscopy on the same particles before and after various anodization steps reveal a consistent blue shift as the 
oxide thickness is increased. The observed trends in the scattering peak position are explained as a voltage controlled 
interaction between the nanoparticles and the substrate. The experimental findings are found to closely match numerical 
simulations. The effects of particle size variation and spacer layer dielectric functions are investigated numerically. The 
presented approach could provide a post-fabrication frequency tuning step in a wide range of plasmonic devices, could 
enable the investigation of the optical response of metal nanostructures in a precisely controlled local environment, and 
could form the basis of chemically stable frequency optimized sensors. 

  

Keywords: plasmon resonance tuning, gold nanoparticle tuning, voltage controlled tuning, anodization, single particle 
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1. INTRODUCTION  
Surface plasmon resonances in metallic nanoparticles, also referred to as Localized Surface Plasmon Resonance (LSPR) 
has gained a lot of interest due to its ability in provide a high electric field enhancement, the strong field localization that 
it can provide, and its high sensitivity to the local dielectric environment. The LSPR shows promise in a variety of 
applications: Surface Enhanced Raman Spectroscopy (SERS),1-3 Surface Enhanced Fluorescence,4-6 Surface Enhanced 
second harmonic generation,7,8 plasmon enhanced nonlinear refraction and absorption,9,10 sensors,11,12 photovoltaics,13-15 
and metamaterials.16,17 

The surface plasmon resonance frequency of metal nanostructures is sensitive to various parameters, e.g. shape, size, 
material, and local dielectric environment.18 Precise control of the LSPR frequency is important to effectively harness 
and utilize the structure, for example to match an available laser wavelength, or to enable Surface Enhanced Resonance 
Raman at the desired wavelength matching the molecular resonance.19,20 LSPR wavelength control has been achieved 
through several different methods, including shape control,21-23 particle-particle interactions in few-particle clusters,24,25 
and substrate control.26,27 Despite this broad range of tuning methods, deviations from the intended resonance 
wavelength do occur which cannot be easily corrected after sample preparation. To resolve this issue, our work 
investigates a method for continuous resonance tuning on the same nanostructure based on controlled substrate 
modification. Gold nanoparticles on an aluminum film were used in the experiment. Anodization of the aluminum film 
leads to the formation of an aluminum oxide (Al2O3) layer with a thickness that can be precisely controlled by choosing 
the anodization voltage.28 Since gold is chemically stable, anodization is not expected to significantly change the 
structure of the Au particle, suggesting that any observed optical changes will be due to the generated changes in the 
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local optical environment. Single particle scattering spectra on gold nanoparticles were probed after several steps of 
anodization showing a high precision chemically controlled plasmon resonance tuning. Numerical simulations were 
performed to interpret the experimental results, and simulations estimating the effect of particle size variation and the 
effect of spacer layer are presented. The presented method could be used for resonance optimization of a wide variety of 
metallic nanostructures, and enables detailed studies of plasmonic interactions with few-nm wavelength control.  

 

2. EXPERIMENTS 
2.1 Experimental method  

A 100 nm thick aluminum film was deposited on a 3-inch [100] silicon wafer (resistivity > 1 Ω-cm) by thermal 
evaporation using an Edwards FL 400 Thermal Evaporator at 12 Å/s deposition rate. The sample was cleaved into 
~1 cm2 pieces before gold nanoparticle deposition. A monodispersed colloidal gold nanoparticle solution with a mean 
particle diameter of 60 nm was used (BB International, United Kingdom). The size variation of the gold nanoparticles in 
these colloidal solutions is typically provided in terms of a synthesis tolerance, which is different from the actual particle 
size variation within a given colloidal solution. The batch-specific size dispersion of the colloid used in these studies was 
± 2.6 nm based on the vendor specified size histogram, below the listed tolerance of ± 4.8 nm. This difference is 
important in judging any observed resonance wavelength and scattering intensity variations, as discussed in more detail 
below. The aqueous colloid was diluted with ethanol at a ratio 1:125 to a concentration of ~2×108 particles/mL. 
Approximately 4 μL of the diluted colloid was dropped on the cleaved aluminum-coated sample using a high precision 
pipette. The as-prepared samples and the anodized samples were found to lead to excellent surface wetting with the 
diluted solution, suggesting that the Au nanoparticles spread out across a large fraction of the sample surface. The drop-
coated sample was dried using air flow. The samples were inspected using an Olympus BX-51 reflected light optical 
microscope equipped with standard dark-field optics. Dark-field microscopy images showed well dispersed individual 
scatterers with similar brightness, attributed to single Au nanoparticles deposited from the solution.  

Scattering spectra of single nanoparticles were obtained using a 50× dark-field objective (Olympus MPlanFl 50× BD, 
N.A.=0.80). The collected signal was sent through a multimode fiber to a spectrometer (Horiba Jobin-Yvon iHR320 
monochromator with Synapse CCD array). The collection area on the sample was ~20 µm2. For each particle a scattering 
spectrum Isc(λ) was obtained from three measured spectra I(λ), namely INP(λ), the signal obtained from a region 
containing a single nanoparticle, IREF(λ),, the signal collected from a nearby region without a nanoparticle, and IIN(λ), the 
lamp spectrum. The scattering spectrum was obtained using the relation Isc=(INP – IREF)/IIN. Note that this method 
assumes that the substrate is an approximately frequency independent scatterer, and consequently any significant 
variations of the scattering response of the substrate itself could affect the obtained scattering spectra. In the 
measurements presented here, the collected lamp spectra varied by less than 8% across the wavelength range of interest. 
The detector dark current was recorded and subtracted from all spectra. 

After single particle spectroscopy measurements, the sample was anodized at room temperature in a 3 wt.% ammonium 
tartrate solution in deionized water (>10 MΩ-cm) with a stainless steel counter electrode. This process is known to 
produce a dense and smooth amorphous barrier-type Al2O3 layer with a thickness controlled by the anodization 
voltage.28,29 The process was repeated for 7 anodization voltages between 1.5 V and 12 V, on the same sample, followed 
by spectroscopic measurements as described above. Dark-field microscopy images revealed that most of the particles 
stay in the same position after anodization, allowing investigation of gold nanoparticle spectra of the same particle before 
and after various anodization steps. Reference samples were made that underwent exactly the same anodization steps as 
the nanoparticle-coated sample. The oxide thickness of the reference samples was measured using a J.A. Woollam 
variable angle spectroscopic ellipsometer and fitting based on literature values for the Al30 and Al2O3

31 dielectric 
functions. 

 

2.2 Experimental Observation  

Figure 1(a) presents the measured aluminum oxide thickness as a function of an anodization voltage. Note that the lowest 
measured thickness of 3.6 nm corresponds to the well-known self-limited growth of a native oxide on the Al films. Dark-
field microscopy images of gold nanoparticles on the anodized aluminum substrate on thin (3.6 nm) and thick (13 nm) 
Al2O3 layers are shown as insets, revealing ring-shaped scattering patterns. This feature indicates a dipole moment of the 
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5. CONCLUSION 
The optical response of Au nanoparticles near an Al film was investigated. Dark-field microscopy images of single Au 
nanoparticles on Al2O3 coated Al films show ring-shaped scattering patterns, indicating z-polarized dipole oscillation. 
The thickness of the Al2O3 layer was varied through anodization. The color of the scattered light was seen to change 
gradually from orange to green as the thickness of the aluminum oxide layer was increased. Single particle spectroscopy 
on the same set of gold nanoparticles showed a gradual shift of the peak scattering wavelength, as well as some particle-
to-particle variations. The observed trends in peak scattering wavelength of the single Au particles were reproduced in 
numerical calculations.  The observed blue-shift of the peak wavelengths is attributed to a reduced coupling between the 
gold nanoparticle dipole moment and the dynamic image dipole formed by the nearby aluminum film. The effect of 
particle size variation was examined numerically at 4 nm oxide thickness, showing a red-shift as the particle diameter 
increases. The study demonstrates a way to tune the plasmon resonance wavelength of metal nanoparticles through a 
controlled chemical process, providing post-fabrication modification of the optical response of metal nanoantennas. This 
process could be useful as a resonance optimization technique for plasmon based optical sensing. 
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