1. Plan

Objectives

1 To find the volume of a pyramid
2 To find the volume of a cone

Examples

1 Real-World Connection
2 Finding Volume of a Pyramid
3 Finding Volume of an Oblique Cone
4 Real-World Connection

Math Background

A hands-on activity will relate the volume of a prism to the volume of three pyramids with the same bases and heights. Students will generalize this relationship and relate the volume of a cylinder to the volume of three cones with the same bases and heights.
Euclid included the proof of the latter relationship in Book XII of The Elements. Later, Archimedes attributed the proof to Eudoxus and his "method of exhaustion." This method is the forerunner of the modern method of limits.

More Math Background: p. 596D

Lesson Planning and Resources

See p. 596E for a list of the resources that support this lesson.
4. The volume of the pyramid is what fractional part of the volume of the cube? $\frac{1}{3}$

The volume of a pyramid is a particular fraction of the volume of a prism that has the same base and height as the pyramid. The fraction is shown and this fact is stated as Theorem 11-8 at the top of the next page.

Lesson 11-5 Volumes of Pyramids and Cones

Differentiated Instruction solutions for All Learners

| Special Needs L1 |
| :--- | :--- |
| Have students repeat "the area of a triangle is $\frac{1}{2}$ the |
| area of a rectangle in two-dimensions, and the |
| volume of a pyramid is $\frac{1}{2}$ the volume of a prism in |
| three-dimensions." L2 |\quad| Below Level |
| :--- |
| Wave Theorems $11-8$ and 11-9 on the board. |
| Hey are different. |

2. Teach

Guided Instruction

Hands-on Activity

After students tape their nets, have them estimate the ratio of the pyramid's volume to the cube's volume. They may be surprised to find the ratio is $\frac{1}{3}$.

EXANDPLE Teaching Tip

Have students explain why one leg of the right triangle is 20 ft .
(1) Find the volume of a square pyramid with base edges 15 cm and height $22 \mathrm{~cm} .1650 \mathrm{~cm}^{3}$Find the volume of the square pyramid with base edges 16 m and slant height 17 m .

$1280 \mathrm{~m}^{3}$

G0 for Help

You can find Cavalieri's Principle on page 625.

Theorem 11-8 Volume of a Pyramid

The volume of a pyramid is one third the product of the area of the base and the height of the pyramid.

$$
V=\frac{1}{3} B h
$$

Because of Cavalieri's Principle, the volume formula is true for all pyramids, including oblique pyramids. The height h of an oblique pyramid is the length of the perpendicular segment from the vertex to the plane of the base.

1) ExADIPLE Real-World 3 Connection

Architecture The Pyramid is an arena in Memphis, Tennessee. The area of the base of The Pyramid is about $300,000 \mathrm{ft}^{2}$. Its height is 321 ft . What is the volume of The Pyramid?

$$
\begin{aligned}
V & =\frac{1}{3} B h & & \begin{array}{l}
\text { Use the formula for } \\
\text { volume of a pyramid }
\end{array} \\
& =\frac{1}{3}(300,000)(321) & & \text { Substitute. } \\
& =32,100,000 & & \text { Simplify. }
\end{aligned}
$$

The volume is about $32,100,000 \mathrm{ft}^{3}$.

Find the volume of a square pyramid with base edges 12 in . and height 8 in . 384 in. ${ }^{3}$

To find the volume of a pyramid you may first need to find its height.

(2) EXANPLE Finding Volume of a Pyramid

Gridded Response Find the volume in cubic feet of a square pyramid with base edges 40 ft and slant height 25 ft .

Step 1: Find the height of the pyramid.
$25^{2}=h^{2}+20^{2} \quad$ Use the Pythagorean Theorem.
$625=h^{2}+400 \quad$ Simplify.
$h^{2}=225 \quad$ Solve for h^{2}.
$h=15 \quad$ Take square roots.
Step 2: Find the volume of the pyramid.

$$
\begin{aligned}
V & =\frac{1}{3} B h & & \text { Use the formula for volume of a pyramid. } \\
& =\frac{1}{3}(40 \cdot 40) 15 & & \text { Substitute. } \\
& =8000 & & \text { Simplify. }
\end{aligned}
$$

The volume of the pyramid is $8000 \mathrm{ft}^{3}$.
Find the volume of a square pyramid with base edges 24 m and slant height 13 m . $960 \mathrm{~m}^{3}$
632 Chapter 11 Surface Area and Volume

Dlifierentiated Instruction Solutions for All Learners

Advanced Learners [44

Ask students to write a formula for the volume of a square pyramid whose base edge measures s and slant height measures $h . V=\frac{s^{2}}{6} \sqrt{4 h^{2}-s^{2}}$

English Language Learners ELL

Watch for students who confuse slant height with height in the formula for the volume of a pyramid. Reinforce the relationship between the volume of a pyramid and the volume of a prism, which also uses height.

For: Pyramid, Cone Activity Use: Interactive Textbook, 11-5

You have seen that the volume of a pyramid is one third the volume of a prism with the same base and height. Similarly, the volume of a cone is one third the volume of a cylinder with the same base and height.

The cones and the cylinder have the same base and height. It takes three cones full of rice to fill the cylinder.

Theorem 11-9 Volume of a Cone

The volume of a cone is one third the product of the area of the base and the height of the cone.

$$
V=\frac{1}{3} B h, \text { or } V=\frac{1}{3} \pi r^{2} h
$$

This volume formula applies to all cones, including oblique cones.

3 ExADPLE Finding Volume of an Oblique Cone

Find the volume of an oblique cone with diameter 30 ft and height 25 ft . Give your answer in terms of π and also rounded to the nearest cubic foot.

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h & & \text { Use the formula for volume of a cone. } \\
& =\frac{1}{3} \pi(15)^{2} 25 & & \text { Substitute } 15 \text { for } r \text { and } 25 \text { for } h . \\
& =1875 \pi & & \text { Simplify. } \\
& \approx 5890.486 \Omega & & \text { Use a calculator. }
\end{aligned}
$$

- The volume of the cone is $1875 \pi \mathrm{ft}^{3}$, or about $5890 \mathrm{ft}^{3}$.

Quick Check
(3) Find the volume of each cone in terms of π and also rounded as indicated. a. to the nearest cubic meter
b. to the nearest cubic millimeter

A cone-shaped structure can be particularly strong, as downward forces at the vertex are distributed to all points in its circular base.

Guided Instruction

Exanple

The altitude of a right cone intersects the center of the base. Remind students that although the base of an oblique cone is still circular, the altitude of an oblique cone does not intersect the center of the base, and may not even intersect the base.

4 ExAMPLE
 Diversity

Point out that not all Native Americans lived in teepees. Encourage students to investigate other dwellings used by different tribes.

Additional Examples

Find the volume of the cone in terms of π.

$$
33 \pi \text { in. }^{3}
$$

4) An ice cream cone is 7 cm tall and 4 cm in diameter. About how much ice cream can fit entirely inside the cone? Find the volume to the nearest whole number. $29 \mathrm{~cm}^{3}$

Resources

- Daily Notetaking Guide 11-5
- Daily Notetaking Guide 11-5Adapted Instruction

Closure

Explain how to find the volume of a cone if you know its height and the circumference of its base.
Use $C=2 \pi r$ to find $r, B=\pi r^{2}$ to find B, and $V=\frac{1}{3} B h$ to find V, or use $C=2 \pi r$ to find r and then $V=\frac{1}{3} \pi r^{2} h$ to find V.

3. Practice

Assignment Guide

1 A B $1-10,16-18,20,21,24$

2 A B | $11-15,19,22,23$, |
| :--- |
| $25-30$ |

C Challenge

C Challenge	$31-36$
Test Prep	$37-42$
Mixed Review	$43-48$

Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 6, 14, 19, 20, 24

Exercise 1 Point out that it is unnecessary to know the shape of the pyramid's base because the area of the base is given.

Error Prevention!

Exercises 8-10 Students may substitute the slant height for h in the volume formula. Remind them to use the Pythagorean Theorem to find h.

GPS Guided Problem Solving	L3
Enrichment	L4
Reteaching	L2
Adapted Practice	L1

Example 2
(page 632) volumes are $\frac{1}{3} \pi r^{2} h$.
26. cube: 8 units 3, cone: $\frac{2}{3} \pi$ units 3,
pyramid: $\frac{8}{3}$ units 3
nline Homework Help
Visit: PHSchool.com Web Code: aue-1105
14. Chemistry In a chemistry lab you use a filter paper cone to filter a liquid. The diameter of the cone is 6.5 cm and its height is 6 cm . How much liquid will the cone hold when it is full? about $66.4 \mathrm{~cm}^{3}$
15. Chemistry This funnel has a filter that was being used to remove impurities from a solution but became clogged and stopped draining. The remaining solution is represented by the shaded region. How many cubic centimeters of the solution remain in the funnel? about $4.7 \mathrm{~cm}^{3}$

Find the volume to the nearest whole number.
16.

Square base
17.

Equilateral base

Square base
Square base
19. Writing The two cylinders pictured at the right are congruent. How does the volume of the larger cone compare to the total volume of the two smaller cones? Explain. See left.

Exercise 20
24. Hardware Builders use a plumb bob to find a vertical line.
(GPS The plumb bob shown combines a regular hexagonal prism with a pyramid. Find its volume to the nearest cubic centimeter. $73 \mathrm{~cm}^{3}$
Algebra Find the value of the variable in each figure. Leave answers in simplest radical form. The diagrams are not to scale.
21. 6

Volume $=18 \sqrt{3}$
22. ${ }^{3}$

Volume $=21 \pi$
20. Architecture The Transamerica Pyramid in San Francisco (see photo at left) is 853 ft tall with a square base that is 149 ft on each side.
a. What is its volume to the nearest thousand cubic feet? $6,312,000 \mathrm{ft}^{3}$
b. How tall would a prism-shaped building with the same square base as the Pyramid have to be to have the same volume as the Pyramid?
about 284 ft
Exercise 18 Students must find the volumes of two space figures. Ask: What figure is on the bottom? rectangular prism What figure is on the top? pyramid

Connection to Mental Math

Exercise 20 Do part b as a class exercise. Write the formulas for the volume of a prism and the volume of a pyramid side by side. Then challenge students to solve the problem using mental math and explain their methods.

Careers

Exercise 24 Builders must know how to construct level floors and vertical walls. Have students investigate how carpentry tools such as plumb bobs and levels use principles of geometry to do this.

Exercise 27 The answer to part c will be generalized to all similar cones in Lesson 11-7.

Visual Learners

Exercise 33 Have students with strong visual skills explain to the rest of the class what the solid looks like, then cut off the tip of a conical ice cream cone to illustrate it.
25. Multiple Choice ${ }^{73} \mathrm{~cm}^{3}$ cone has a volume of 600π in. ${ }^{3}$ and a height of 50 in . What is the radius of the cone? B
(A) 3.5 in .
(B) 6.0 in .
(C) 10.6 in .
(D) 36.0 in .

26. A cone with radius 1 fits snugly inside a square pyramid which fits snugly inside a cube. What are the volumes of the three figures? See left.
27. A cone with radius 3 ft and height 10 ft has a volume of $30 \pi \mathrm{ft}^{3}$. What is the volume of the cone formed when the following happens to the original cone? a. The radius is doubled. $120 \pi \mathrm{ft}^{3} \mathrm{~b}$. The height is doubled. $60 \pi \mathrm{ft}^{3}$ c. The radius and the height are both doubled. $240 \pi \mathrm{ft}^{3}$

4. Assess \& Reteach

Lesson Quiz

Find the volume of each figure. When appropriate, leave your answer in terms of π.
1.

$60 \mathrm{ft}^{3}$
2.

$1470 \pi \mathrm{~mm}^{3}$
3. square pyramid with base edges 24 in . long and slant height $15 \mathrm{in} .1728 \mathrm{in.}^{3}$
4. cone with diameter 3 m and height $4 \mathrm{~m} 3 \pi \mathrm{~m}^{3}$
5.

$150 \mathrm{ft}^{3}$

Alternative Assessment

Have partners solve the following exercise and show their work in detail: A cone and a square pyramid each have height 12 cm . The perimeter of the base of the pyramid and the circumference of the base of the cone are each 24 cm . Which has the greater volume?
29. cone with $r=4$ and $h=3 ; 16 \pi$
30. cone with $r=3$ and $h=4 ; 12 \pi$
31. cylinder with $r=4$, $h=3$, with a cone of $r=4, h=3$ removed from it; 32π
32. cone with $r=4, h=$ $5 \frac{1}{3}$, with a cone of $r=1, h=1 \frac{1}{3}$ cut off the top, and a cylinder of $r=1$ cut out of its center; 24π
(C) Challenge
28. List the volumes of the cone, prism, and pyramid in order from least to greatest. cone: 234.6 in. ${ }^{3}$; prism: 240 in. 3; pyramid: 256 in. ${ }^{3}$

Visualization The plane region is revolved completely about the given line to sweep out a solid of revolution. Describe the solid. Then find its volume in terms of π.
29-32. See left.
29. the y-axis
30. the x-axis
31. the line $x=4$
32. the line $y=-1$

33. A frustum of a cone is the part that remains when 33a. See the vertex is cut off by a plane parallel to the base. margin. a. Explain how to use the formula for the volume of a cone to find the volume of a frustum of a cone.
b. Containers A 9-in. tall popcorn container is the frustum of a cone. Its small radius is 4.5 in . and its large radius is 6 in . What is its volume?

Frustum of cone
34. A disk has radius 10 m . A 90° sector is cut away, and a cone is formed. 47.1 m
a. What is the circumference of the base of the cone?
b. What is the area of the base of the cone? $176.7 \mathrm{~m}^{2}$
c. What is the volume of the cone? (Hint: Use the slant
 height and the radius of the base to find the height.) $389.6 \mathrm{~m}^{3}$

Graphing Calculator In Exercises 35 and 36, the volume of the solid is $1000 \mathbf{c m}^{\mathbf{3}}$. Use the Activity Lab on page 616 to help you complete each exercise.
35. For a square pyramid, find the length of a side of the base for which the lateral area is as small as possible. about $16.2 \mathbf{~ c m}$
36. For a cone, find the radius for which the lateral area is as small as possible. about 8.8 cm

Test Prep

Multiple Choice

37. What is the volume of a 6 - ft high square pyramid with base edges 8 ft ? A
A. $128 \mathrm{ft}^{3}$
B. $192 \mathrm{ft}^{3}$
C. $256 \mathrm{ft}^{3}$
D. $384 \mathrm{ft}^{3}$
38. What is the volume of a cone with diameter 21 m and height 4 m ? F
F. $147 \pi \mathrm{~m}^{3}$
G. $220.5 \pi \mathrm{~m}^{3}$
H. $294 \pi \mathrm{~m}^{3}$
J. $441 \pi \mathrm{~m}^{3}$
39. What is the volume of an oblique cone with radius 9 cm and height 12 cm ?
A. $324 \pi \mathrm{~cm}^{3}$
B. $486 \pi \mathrm{~cm}^{3}$
C. $648 \pi \mathrm{~cm}^{3}$
D. $972 \pi \mathrm{~cm}^{3} \mathrm{~A}$

Chapter 11 Surface Area and Volume
33. a. The frustum has vol.
$V=\frac{1}{3} \pi R^{2} H-\frac{1}{3} \pi r^{2} h=$
$\frac{1}{3} \pi\left(R^{2} H-r^{2} h\right)$. Now if
$h_{1}=H-h$ is the
frustum's height,
$V=\frac{1}{3} \pi\left(R^{2}\left(h_{1}+h\right)-r^{2} h\right)=$

$$
\begin{array}{ll}
\frac{1}{3} \pi\left(R^{2} h_{1}+h\left(R^{2}-r^{2}\right)\right) . & \text { Simplifying, } V= \\
\text { By similar ©, } \frac{h}{r}=\frac{h_{1}+h}{R}, & \frac{1}{3} \pi h_{1}\left(r^{2}+r R+R^{2}\right) . \\
\text { or } h=\frac{r h_{1}}{R-r .} &
\end{array}
$$

40. What is the volume of the square pyramid at the right? F
F. $1568 \mathrm{~m}^{3}$
G. $1633 \mathrm{~m}^{3}$
H. $2352 \mathrm{~m}^{3}$
J. $2450 \mathrm{~m}^{3}$
41. What is the volume of an oblique square pyramid with base edges 25 in . and height 24 in .? A
A. 5000 in. ${ }^{3}$
B. 7500 in. ${ }^{3}$
C. 10,000 in. 3
D. $15,000 \mathrm{in}^{3}$

Short Response
42. The volume of a cone is $82,418 \pi \mathrm{~cm}^{3}$. Its diameter is 203 cm . What is its height? Show all your work, including any formulas that you use. See margin.

Test Prep

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 657
- Test-Taking Strategies, p. 652
- Test-Taking Strategies with Transparencies

Mixed Review

Lesson 10-5

Lesson 8-2
43. Sports A cylindrical hockey puck is 1 in . high and 3 in . in diameter. What is its volume in cubic inches? Round your answer to the nearest tenth. 7.1 in. ${ }^{3}$
44. A triangular prism has height 30 cm . Its base is a right triangle with legs 10 cm and 24 cm . Find the volume of the prism. $3600 \mathrm{~cm}^{3}$
45. Find the area of a regular pentagon with a radius 5 in . Give your answer to the nearest tenth of a square inch. 59.4 in. ${ }^{2}$

Find the area of each equilateral triangle to the nearest tenth of a square unit.
46. The triangle has 12 cm sides. $62.4 \mathrm{~cm}^{2}$ 47. The triangle has 10 -in. altitudes. ${ }^{57.7} \mathrm{in}^{2}$
48. Find the area of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with shorter leg of length $4 \mathrm{~cm} .13 .9 \mathrm{~cm}^{2}$

Geometry at Work

Each year, more than one trillion dollars in manufactured goods are packaged in containers. To create each new box, bag, or carton, package designers must balance such factors as safety, environmental impact, and attractiveness against cost of production.

Consider the three boxes of dishwasher detergent. All three boxes have standard volumes of $108 \mathrm{in}^{3}$. The boxes have different shapes, however, and different surface areas. The box on the left has

6 in.
in.
$4 \frac{1}{2}$ in.
the greatest surface area and therefore costs the most to produce. Despite the higher cost, the box on the left has become standard. In this case, the least expensive package on the right is too difficult for a consumer to pick up and pour.

GO $\begin{array}{cl}\text { nhline } & \text { For: Information about package design } \\ \text { Web Code: aub-2031 }\end{array}$

Lesson 11-5 Volumes of Pyramids and Cones
42. $[2] \frac{1}{2} d=r ;$
$\quad r=\frac{1}{2}(203)=101.5 ;$
$V=\frac{1}{3} \pi r^{2} h$, so
$82,418 \pi=$
$\frac{1}{3} \pi(101.5)^{2} h$, and
$h=24 \mathrm{~cm}$.
[1] one computational error

