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Abstract. We present a method for finding the boundaries between adjacent re-
gions in an image, where “seed” areas have already been identified in the indi-
vidual regions to be segmented. This method was motivated by the problem of
finding the borders of cells in microscopy images, given a labelling of the nuclei
in the images. The method finds the Voronoi region of each seed on a manifold
with a metric controlled by local image properties. We discuss similarities to
other methods based on image-controlled metrics, such as Geodesic Active Con-
tours, and give a fast algorithm for computing the Voronoi regions. We validate
our method against hand-traced boundaries for cell images.

1 Introduction

Image cytometry, the measurement of cell properties from microscopy images, has be-
come an important tool for biological research. In particular, high-throughput experi-
ments rely on automatic processing of images to deal with the large amount of data
they produce [3]. A fundamental operation in cell-image analysis is identifying indi-
vidual cell boundaries. This is often difficult because there are many different staining
protocols, leading to dramatically different appearances for cells. Moreover, the differ-
ence between cell interior and cell border may not be very pronounced (see Figures
1 and 2). Identification of individual cells allows much more powerful analysis of the
resulting data than methods that provide only mean measurements for cell populations.
For example, expression data from a protein interaction chip cannot differentiate a bi-
modal population and a unimodal population if they have the same mean expression
levels. Measurements of individual cells prevents conflation of subpopulations.

It is almost always the case that the nuclei of cells are more easily identifiable,
because they have a more uniform appearance and shape, are brighter relative to the
background when stained, and do not abut one another, as cells do. They are also usu-
ally interior to the cells. This leads us to phrase the problem of segmenting cells as
one of identifying boundaries between regions given “seeds” in individual regions from
which to start the segmentation. Current methods for identifying cells for image cytom-
etry sometimes use a fixed offset around the nuclei. However, this fixed offset requires
tuning to different cell types, and does not provide information about phenotypes that
cause changes in cell size or shape [2].

Another common approach is to use watershed segmentation to identify cell bound-
aries [1, 8], however, this is often fragile. Watershed segmentation treats the image as a



height field, and segments pixels according to which minimum a drop of water would
flow to if placed on that pixel in the height field. Morphological operations are used
to impose a limited set of minima, equivalent to our seed regions. Watershed is quite
unstable, because a single noisy pixel can allow large groups of pixels to change seg-
mentation, by creating a gap leading to a different minimum. We avoid this fragility
in two ways: first, by comparing neighborhoods of pixels rather than individual pixels,
and second, by including a regularization factor to provide reasonable behavior when
the image data does not contain a strong enough edge between two seed regions. In
the limit, our regularization approaches a 2D Voronoi segmentation, i.e., pixels are as-
signed to the nearest seed region measured in the image plane, without reference to
image features.

Our approach is to define a metric in the image plane and to calculate distances from
seed regions according to this metric. Pixels are then assigned to cells according to their
distance from the corresponding nucleus under that metric. The metric uses information
about image edges, both their strength and their orientation, as well as a regularization
term corresponding to inter-pixel distance within the image.

2 Method

Our method operates by computing a discretized approximation of the Voronoi regions
of each seed on a manifold with a metric controlled by local image features. The metric
defines the incremental distance in a particular direction in the image/manifold. Its be-
havior is such that adjacent pixels with similar surrounds are close to one another, while
pixels whose surrounds differ are treated as farther apart.

We introduce a Riemannian metric defined in terms of the imageI and a regular-
ization parameterλ, as

G =
∇g(I)∇gT (I) + λI

1 + λ
, (1)

whereI is the2 × 2 identity matrix. The functiong maps images to images, and in
our application is generally a small-radius blur. The effect of this blur is to combine
a weighted neighborhood in the gradient computation, to avoid relying too much on
single (noisy) pixel values. Infinitesimal distances underG are measured by

||dx||2G ≡ dxT Gdx =
(dxT∇g(I))2 + λ(dxT dx)2

λ + 1
. (2)

The first term in the numerator of (2),||dxT∇g(I)||2, increases distances measured
parallel to large gradients ing(I). The regularization effect ofλ can be seen by

lim
λ→∞

||dx||2G = dxT dx = ||dx||22, (3)

i.e.,G becomes more Euclidean asλ increases.
Given (2), we can compute the distance between any two points in an image as the

shortest path between those points. We use a discretized approximation, i.e., a chamfer
distance, applied to an 8-connected neighborhood. This approximation to the distance



is generally no worse than 10% of the correct value [7], which for our application is
generally not more than a single pixel.

Pixels overlapping seed regions are initialized to be distance 0 from their seed, and
the distances of the remaining pixels are computed by Dijkstra’s algorithm [6]. Each
pixel is labelled with the seed it is closest to, i.e., the Voronoi region of that seed in
the manifold defined by (2). Computing the seed-to-pixel distances in this manner also
makes it trivial to limit the segmentation to a predetermined foreground region (for
example, the result from a global thresholding step).

The computation of Voronoi regions places the boundary between two adjacent re-
gions at pixels that are equidistant from each seed, as measured on the manifold from
(2). The inter-pixel distance is larger where the image is changing more according to
∇g(I), so boundaries tend to align with image differences. The regularizing parameter
λ allows the user to make the manifold more “flat” according to prior knowledge about
region shapes, and the choice ofg (e.g., the radius of smoothing) controls how sensi-
tive distances are to small features. In this work, we use a narrow (3- or 5-pixel radius)
Gaussian blur forg.

2.1 Connection to Geodesic Active Contours

Our algorithm is related to Geodesic Active Contours [5]. The full details of that work
are not given here, but we discuss the connection briefly.

Active contours can be seen as finding a shortest path in a Riemannian space, where
distances between pixels are defined by an edge stopping functiong : R+ → R+.3

Examining equation (8) from Caselleset al. [5] helps establish the similarity:

Min
∫ 1

0

g(|∇I(C(q)|)|C′(q)|dq (4)

whereI is the image,C(q) is the curve on image that we are minimizing over, andq
is the parameter along the curve. The edge stopping functiong is strictly decreasing
and positive, withg(∞) = 0. The effect ofg’s interaction with∇I is such that the
minimum curve follows larger gradients in the image.

The minimization can also be written as (equation (12) of [5])

Min
∫ L(C)

0

g(|∇I(C(s)|)ds (5)

wheres is the arclength parameter forC, andL(C) is the length ofC. Therefore, active
contours can be seen as seeking a minimum length curve where the length depends on
image characteristics [5].

Our goal is different from active contours, since we hope to find boundaries between
regions corresponding to different seeds. However, we do seek shortest paths with a dis-
tance metric controlled by image characteristics. We do not wish to follow boundaries,
as in active contours, but rather to avoid them (equivalent to making boundaries “far”

3 In this subsection,g is an edge stopping function, not the same asg in the previous subsection.



from the seed regions in our formulation). However, just as Voronoi regions can be de-
fined in terms of shortest paths, our segmentation algorithm can be defined in terms
of shortest paths defined by equation (1) and image properties. The metrics in the two
approaches differ, specifically in their treatment of edges in the image: edges in the
active contour setting have a metric that makes points along the edge closer, while our
metric makes the points across the edge more separated. Moreover, active contours use
a directionally uniform metric, while ours is not, since it is larger across edges rather
than along them. However, the goal is the same: allow the computation of inter-pixel
distances that simplify the problem at hand and map it to a simpler framework. In both
cases, the problem reduces to that of finding shortest paths (though this is simply a
jumping-off point for active contours to more powerful and efficient methods such as
level-sets).

3 Experiments and Evaluation

In order to provide insight into the behavior of the metric defined in (1), we experiment
with synthetic data and adjustλ, trading off the effect of image features on the region
segmentation versus the Euclidean distance from the seed. As can be seen in Figures
3 and 4, the segmentation approaches the Voronoi diagram of the seed regions (i.e.,
ignoring image features) asλ increases. Also, note that in the noisy example less regu-
larization (i.e., a lower value forλ) is needed to achieve similar segmentations because
the noise makes the edges in the image less pronounced than in the noise-free example.
In effect, increasing noise provides a form of regularization.

Our algorithm is currently part of an automatic image cytometry program [4], and
has been used in a variety of experiments with several cell types of varying morpholo-
gies. To evaluate our algorithm on real world data, we compare it to the manual seg-
mentation of cell images. Sixteen images taken from Drosophila cells stained for DNA
(to label nuclei) and Actin (a cytoskeletal protein, to show the cell body) were out-
lined. First, nuclei were outlined by hand. The nuclear outlines were overlaid on the
cell images, and one cell per nucleus was outlined. Our algorithm was then applied to
the same cell images and nuclear-outlines data, and the results compared by comput-
ing the signed distance between boundary pixels. It effectively computes the distance
for each pixel in the automatic segmentation boundary to the corresponding manual
segmentation boundary. Hand-outlined nuclei were used, rather than automatically seg-
mented nuclei, since our algorithm does not address nuclei segmentation, and we want
the comparison to be as meaningful as possible. In general, automatic segmentation of
nuclei is fairly simple (See section 1.)

Our algorithm does not compute a foreground/background separation, but instead
relies on a such a label for each pixel to be given as input. For comparing our algo-
rithm to the manual segmentation, we compute the foreground pixels as the union of
cells identified in the manual segmentation. Methods exist for automatically choosing
a foreground/background labelling, but distinguishing foreground from background is
not part of our algorithm.

For the purposes of this comparison, we also use seed regions from hand-outlined
nuclei. In general, nuclei are more compact, separated, and brightly stained than cells,



Fig. 1. Typical results from our algorithm. Internal shapes are seed regions, taken from manual
segmentation of nuclei, and are the same in both rows. Bold lines show cell/cell boundaries that
are compared. Top row: Cell images, with nuclei outlined. Middle row: Automatic segmentation
with our method. Bottom row: Manual segmentation.

Fig. 2. Five worst outliers from evaluation set, as measured by distance between manual and
automatic segmentation boundaries. Internal shapes are seed regions, taken from manual seg-
mentation of nuclei, and are the same in both rows. Bold lines show cell/cell boundaries that are
compared. Top row: Cell images, with nuclei outlined. Middle row: Automatic segmentation with
our method. Bottom row: Manual segmentation.



Fig. 3. Synthetic example. The input image is in the upper left, with seed sites marked with dots.
From left to right across the two rows, the resulting distances calculated with our metric are
shown, with the resulting segmentation overlaid white lines, forλ equal to 0.2, 0.3, 0.4, 0.5, 0.6,
0.8, and 3.0. The segmentation lines follow the ridges in the distances function. As can be seen,
asλ increases, the segmentation approaches the Voronoi diagram of the seed regions.

Fig. 4. Synthetic example with noise. The same input as in Figure 3 is used, with zero-mean
Gaussian noise with standard deviation 0.5 added to each pixel. Edges were 1.0 and background
was 0.0 before noise was added. The layout is the same as in Figure 3, but withλ equal to 0.025,
0.05, 0.075, 0.1, 0.125, 0.2, and 0.75.



Fig. 5. Combined histogram for the signed distances and cumulative distribution of absolute dis-
tances from automatic segmentation to manual segmentation for the sixteen images in our test
set.

and so are usually easily segmented by simple thresholding. We chose to use the nuclei
from manual segmentation in order to keep the conditions for manual segmentation and
our algorithm as similar as possible.

Under these conditions, our algorithm is only responsible for computing cell-cell
boundaries, rather than cell-background boundaries, which are fixed. We therefore only
consider the distance between boundary pixels in the two images that have a common
cell-label on either border. When evaluating the algorithm, we use the one-sided signed
distance (negative inside cells) from the automatic segmentation to the manual segmen-
tation. We setλ in (1) to 0.05 times the distance between the average foreground and
background pixel intensities on a per-image basis. This value forλ was found to be close
to optimal in our experiments, with fairly stable behavior for a reasonably large range
(within a factor of two). Our test set includes a wide variety of cell types, with different
sizes and morphologies. In general, most applications would have more homogeneous
data, to whichλ should be tuned.

Sixteen images made up the test set. Each image was roughly 512x512 pixels on
a side, with cells roughly 25 pixels in diameter, and 80 cells per image on average.
Across the entire set, there were 21.6k pixels on a cell-cell boundary in the automatic
segmentation. A histogram of their signed distances with respect to the manual seg-
mentation is shown in Figure 5. Sixty-four percent (14.0k) of the boundary pixels in the
automatic segmentation are within 2 pixels in distance from the corresponding manual
boundary. Ninety-two percent (19.8k) of the pixels are within 5 pixels. The accuracy of
the hand-labelling is around 3 pixels, based on the width of the marker used to outline
the cells.

Typical results on the test set are shown in Figure 1. We show the top 5 worst outliers
from the data set, based on maximum boundary distance, in Figure 2. In some cases,
the automatic method has “chosen” a different edge in the image to use as the cell-cell
boundary. In others, the close proximity of the nucleus to a cell boundary has caused the



automatic segmentation to move past the boundary chosen in the manual segmentation,
causing large deviations between the two.

4 Discussion

In some segmentation tasks seed regions for segmentation are easily identified. Nuclei
act as such seed regions in our application, the segmentation of cells in microscopy
images. The more difficult task is finding the boundaries between cells that share a
common border. Cell appearance in the images is not uniform, varying depending on
the type of cells and the protocol used to stain them, and simplistic approaches are not
sufficiently accurate or robust.

We have demonstrated an algorithm for segmentation of image regions based on
seed areas that respects image boundaries as defined by a difference operator. The al-
gorithm computes an approximation of the Voronoi region of a seed on a manifold,
implicitly defined by a difference operator that operates on image neighborhoods. The
only assumption that the algorithm relies on is that images change more near the bor-
ders of regions. This is similar to the behavior of Geodesic Active Contours, with an
inversion in the behavior of the metrics near edges. We approximate distances using a
chamfer-like difference operator, and use Dijkstra’s algorithm for computing individual
regions quickly.

Our algorithm is currently implemented in an automatic image cytometry package
[4], and has been used successfully in several experiments with a variety of cell types
and morphologies. We have compared our algorithm to manual segmentation by an ex-
pert of microscopy cell images. Our algorithm performs well. There are a few failure
cases, perhaps due to the fairly simple prior on cell shape and size that our metric im-
plies. A more complex prior could incorporate measures of, e.g., cell roundness or cell
area. Although our method is more accurate for segmenting cells than others, such as
using fixed offsets from nuclei or the watershed transform, the true test of its useful-
ness is in whether it produces more accurate measurements of cellular phenotypes. In
order to understand how segmentation accuracy affects measurement accuracy, we plan
to validate against data from flow cytometry or another method not based on image
processing.

In the future, we would like to explore other choices forg in (1). It might also be
possible to use the distance defined by our metric to compute foreground/background
labellings and to detect poorly-segmented cells.
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