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Abstract

Most existing datasets for speaker identification contain sam-
ples obtained under quite constrained conditions, and are usu-
ally hand-annotated, hence limited in size. The goal of this pa-
per is to generate a large scale text-independent speaker identi-
fication dataset collected ‘in the wild’.

We make two contributions. First, we propose a fully au-
tomated pipeline based on computer vision techniques to create
the dataset from open-source media. Our pipeline involves ob-
taining videos from YouTube; performing active speaker verifi-
cation using a two-stream synchronization Convolutional Neu-
ral Network (CNN), and confirming the identity of the speaker
using CNN based facial recognition. We use this pipeline to cu-
rate VoxCeleb which contains hundreds of thousands of ‘real
world’ utterances for over 1,000 celebrities.

Our second contribution is to apply and compare various
state of the art speaker identification techniques on our dataset
to establish baseline performance. We show that a CNN based
architecture obtains the best performance for both identification
and verification.

Index Terms: speaker identification, speaker verification,
large-scale, dataset, convolutional neural network

1. Introduction

Speaker recognition under noisy and unconstrained conditions
is an extremely challenging topic. Applications of speaker
recognition are many and varied, ranging from authentication
in high-security systems and forensic tests, to searching for per-
sons in large corpora of speech data. All such tasks require
high speaker recognition performance under ‘real world’ con-
ditions. This is an extremely difficult task due to both extrinsic
and intrinsic variations; extrinsic variations include background
chatter and music, laughter, reverberation, channel and micro-
phone effects; while intrinsic variations are factors inherent to
the speaker themself such as age, accent, emotion, intonation
and manner of speaking, amongst others [1].

Deep Convolutional Neural Networks (CNNs) have given
rise to substantial improvements in speech recognition, com-
puter vision and related fields due to their ability to deal with
real world, noisy datasets without the need for handcrafted fea-
tures [2} 3l 14]. One of the most important ingredients for the
success of such methods, however, is the availability of large
training datasets.

Unfortunately, large-scale public datasets in the field of
speaker identification with unconstrained speech samples are
lacking. While large-scale evaluations are held regularly by
the National Institute of Standards in Technology (NIST), these
datasets are not freely available to the research community. The
only freely available dataset curated from multimedia is the
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Speakers in the Wild (SITW) dataset [5], which contains speech
samples of 299 speakers across unconstrained or ‘wild’ condi-
tions. This is a valuable dataset, but to create it the speech sam-
ples have been hand-annotated. Scaling it further, for example
to thousands of speakers across tens of thousands of utterances,
would require the use of a service such as Amazon Mechanical
Turk (AMT). In the computer vision community AMT like ser-
vices have been used to produce very large-scale datasets, such
as ImageNet [6].

This paper has two goals. The first is to propose a fully
automated and scalable pipeline for creating a large-scale ‘real
world’ speaker identification dataset. By using visual active
speaker identification and face verification, our method circum-
vents the need for human annotation completely. We use this
method to curate VoxCeleb, a large-scale dataset with hun-
dreds of utterances for over a thousand speakers. The second
goal is to investigate different architectures and techniques for
training deep CNN’s on spectrograms extracted directly from the
raw audio files with very little pre-processing, and compare our
results on this new dataset with more traditional state-of-the-art
methods.

VoxCeleb can be used for both speaker identification and
verification. Speaker identification involves determining which
speaker has produced a given utterance, if this is performed for
a closed set of speakers then the task is similar to that of multi-
class classification. Speaker verification on the other hand in-
volves determining whether there is a match between a given
utterance and a target model. We provide baselines for both
tasks.

The dataset can be downloaded from http://www.
robots.ox.ac.uk/~vgg/data/voxceleb,

2. Related Works

For a long time, speaker identification was the domain of Gaus-
sian Mixture Models (GMMs) trained on low dimensional fea-
ture vectors [7, 8]]. The state of the art in more recent times in-
volves both the use of joint factor analysis (JFA) based methods
which model speaker and channel subspaces separately [9], and
i-vectors which attempt to model both subspaces into a single
compact, low-dimensional space [10]. Although state of the art
in speaker recognition tasks, these methods all have one thing
in common — they rely on a low dimensional representation of
the audio input, such as Mel Frequency Cepstrum Coefficients
(MFCCs). However, not only does the performance of MFCCs
degrade rapidly in real world noise [[L1} [12], but by focusing
only on the overall spectral envelope of short frames, MFCCs
may be lacking in speaker-discriminating features (such as pitch
information). This has led to a very recent shift from hand-
crafted features to the domain of deep CNNs which can be ap-
plied to higher dimensional inputs [[13}|14] and for speaker iden-
tification [15]]. Essential to this task however, is a large dataset
obtained under real world conditions.
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Many existing datasets are obtained under controlled con-
ditions, for example: forensic data intercepted by police of-
ficials [[16], data from telephone calls [17], speech recorded
live in high quality environments such as acoustic laborato-
ries [[18}[19], or speech recorded from mobile devices [20} 21].
[22] consists of more natural speech but has been manually pro-
cessed to remove extraneous noises and crosstalk. All the above
datasets are also obtained from single-speaker environments,
and are free from audience noise and overlapping speech.

Datasets obtained from multi-speaker environments include
those from recorded meeting data [23}124]], or from audio broad-
casts [25]. These datasets usually contain audio samples un-
der less controlled conditions. Some datasets contain artificial
degradation in an attempt to mimic real world noise, such as
those developed using the TIMIT dataset [19]: NTIMIT, (trans-
mitting TIMIT recordings through a telephone handset) and
CTIMIT, (passing TIMIT files through cellular telephone cir-
cuits).

Table[I]summarises existing speaker identification datasets.
Besides lacking real world conditions, to the best of our knowl-
edge, most of these datasets have been collected with great man-
ual effort, other than [25] which was obtained by mapping sub-
titles and transcripts to broadcast data.

Name Cond. Free #POI | # Utter.
ELSDSR [26] Clean Speech v 22 198
MIT Mobile [21] Mobile Devices - 88 7,884
SWB [27] Telephony - 3,114 33,039
POLYCOST [17] Telephony - 133 1,285%
ICSI Meeting Corpus [23] Meetings - 53 922
Forensic Comparison [22] Telephony v 552 1,264
ANDOSL [18] Clean speech - 204 33,900
TIMIT [28]1 Clean speech - 630 6,300
SITW [5] Multi-media v 299 2,800
NIST SRE [29] Clean speech - 2,000+ *
VoxCeleb Multi-media v 1,251 | 153,516

Table 1: Comparison of existing speaker identification datasets.
Cond.: Acoustic conditions; POI: Person of Interest; Ut-
ter.: Approximate number of utterances. fAnd its derivatives.
FNumber of telephone calls. * varies by year.

3. Dataset Description

VoxCeleb contains over 100,000 utterances for 1,251 celebri-
ties, extracted from videos uploaded to YouTube. The dataset is
gender balanced, with 55% of the speakers male. The speakers
span a wide range of different ethnicities, accents, professions
and ages. The nationality and gender of each speaker (obtained
from Wikipedia) is also provided.

Videos included in the dataset are shot in a large num-
ber of challenging multi-speaker acoustic environments. These
include red carpet, outdoor stadium, quiet studio interviews,
speeches given to large audiences, excerpts from profession-
ally shot multimedia, and videos shot on hand-held devices.
Crucially, all are degraded with real world noise, consisting of
background chatter, laughter, overlapping speech, room acous-
tics, and there is a range in the quality of recording equipment
and channel noise. Unlike the SITW dataset, both audio and
video for each speaker is released. Table [2] gives the dataset
statistics.

4. Dataset Collection Pipeline

This section describes our multi-stage approach for collect-
ing a large speaker recognition dataset, starting from YouTube
videos. Using this fully automated pipeline, we have obtained
hundreds of utterances for over a thousand different Persons of

# of POIs 1,251

# of male POIs 690
# of videos per POI 36/18/8
# of utterances per POI 250/ 123745

Length of utterances (s) | 145.0/8.2/4.0

Table 2: VoxCeleb dataset statistics. Where there are three
entries in a field, numbers refer to the maximum / average /
minimum.

Interest (POIs). The pipeline is summarised in Figure[T]left, and
key stages are discussed in the following paragraphs:

Stage 1. Candidate list of POIs. The first stage is to obtain
a list of POIs. We start from the list of people that appear in
the VGG Face dataset [|30] , which is based on an intersection
of the most searched names in the Freebase knowledge graph,
and the Internet Movie Data Base (IMDB). This list contains
2,622 identities, ranging from actors and sportspeople to en-
trepreneurs, of which approximately half are male and the other
half female.

Stage 2. Downloading videos from YouTube. The top 50
videos for each of the 2,622 POIs are automatically downloaded
using YouTube search. The word ‘interview’ is appended to the
name of the POI in search queries to increase the likelihood that
the videos contain an instance of the POI speaking, and to filter
out sports or music videos. No other filtering is done at this
stage.

Stage 3. Face tracking. The HOG-based face detector [32]
is used to detect the faces in every frame of the video. Facial
landmark positions are detected for each face detection using
the regression tree based method of [33]]. The shot boundaries
are detected by comparing colour histograms across consecutive
frames. Within each detected shot, face detections are grouped
together into face tracks using a position-based tracker. This
stage is closely related to the tracking pipeline of [34} 35], but
optimised to reduce run-time given the very large number of
videos to process.

Stage 4. Active speaker verification. The goal of this stage
is to determine the audio-video synchronisation between mouth
motion and speech in a video in order to determine which (if
any) visible face is the speaker. This is done by using ‘Sync-
Net’, a two-stream CNN described in [[36] which estimates the
correlation between the audio track and the mouth motion of
the video. This method is able to reject the clips that contain
dubbing or voice-over.

Stage 5. Face verification. Active speaker face tracks are then
classified into whether they are of the POI or not using the VGG
Face CNN. This classification network is based on the VGG-16
CNN [3] trained on the VGG Face dataset (which is a filtered
collection of Google Image Search results for the POI name).
Verification is done by directly using this classification score
with a high threshold.

Discussion. In order to ensure that our system is extremely
confident that a person is speaking (Stage 4), and that they have
been correctly identified (Stage 5) without any manual interfer-
ence, we set very conservative thresholds in order to minimise
the number of false positives. Precision-recall curves for both
tasks on their respective benchmark datasets |30l [31]] are shown
in Figure[T|right, and the values at the operating point are given
in Table [3] Employing these thresholds ensures that although
we discard a lot of the downloaded videos, we can be reason-
ably certain that the dataset has few labelling errors.

This ensures a completely automatic pipeline that can be scaled
up to any number of speakers and utterances (if available) as
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Figure 1: Left: Data processing pipeline; Right: Precision-recall curves for the active speaker verification (using a 25-frame window)
and the face verification steps, tested on standard benchmark datasets |30, 31]]. Operating points are shown in circles.

required.
Task Dataset | Precision | Recall
Active speaker verification [31] 1.000 0.613
Face verification [30] 1.000 0.726

Table 3: Precision-recall values at the chosen operating points.

5. CNN Design and Architecture

Our aim is to move from techniques that require traditional
hand-crafted features, to a CNN architecture that can choose
the features required for the task of speaker recognition. This
allows us to minimise the pre-processing of the audio data and
hence avoid losing valuable information in the process.

Input features. All audio is first converted to single-channel,
16-bit streams at a 16kHz sampling rate for consistency. Spec-
trograms are then generated in a sliding window fashion using
a hamming window of width 25ms and step 10ms. This gives
spectrograms of size 512 x 300 for 3 seconds of speech. Mean
and variance normalisation is performed on every frequency bin
of the spectrum. This normalisation is crucial, leading to an al-
most 10% increase in classification accuracy, as shown in Ta-
ble[/} No other speech-specific preprocessing (e.g. silence re-
moval, voice activity detection, or removal of unvoiced speech)
is used. These short time magnitude spectrograms are then used
as input to the CNN.

Architecture. Since speaker identification under a closed set
can be treated as a multiple-class classification problem, we
base our architecture on the VGG-M [37] CNN, known for good
classification performance on image data, with modifications to
adapt to the spectrogram input. The fully connected fc6 layer
of dimension 9 x 8 (support in both dimensions) is replaced by
two layers — a fully connected layer of 9 x 1 (support in the fre-
quency domain) and an average pool layer with support 1 x n,
where n depends on the length of the input speech segment (for
example for a 3 second segment, n = 8). This makes the net-
work invariant to temporal position but not frequency, and at
the same time keeps the output dimensions the same as those of
the original fully connected layer. This also reduces the number
of parameters from 319M in VGG-M to 67M in our network,
which helps avoid overfitting. The complete CNN architecture
is specified in Table [d]

Identification. Since identification is treated as a simple classi-
fication task, the output of the last layer is fed into a 1,251-way

softmax in order to produce a distribution over the 1,251 differ-
ent speakers.

Verification. For verification, feature vectors can be obtained
from the classification network using the 1024 dimension fc7
vectors, and a cosine distance can be used to compare vec-
tors. However, it is better to learn an embedding by training
a Siamese network with a contrastive loss [38]]. This is better
suited to the verification task as the network learns to optimize
similarity directly, rather than indirectly via a classification loss.
For the embedding network, the last fully connected layer (fc8)
is modified so that the output size is 1024 instead of the number
of classes. We compare both methods in the experiments.
Testing. A traditional approach to handling variable length ut-
terances at test time is to break them up into fixed length seg-
ments (e.g. 3 seconds) and average the results on each segment
to give a final class prediction. Average pooling, however al-
lows the network to accommodate variable length inputs at test
time, as the entire test utterance can be evaluated at once by
changing the size of the apool6 layer. Not only is this more el-
egant, it also leads to an increase in classification accuracy, as
shown in Table[7]

Layer Support | Filtdim. | #filts. | Stride | Data size

convl Tx7 1 96 2x2 254 x 148
mpooll 3x3 - - 2X2 126 x73
conv2 5%x5 96 256 2x2 62 %36
mpool?2 3%3 - - 2X2 30x17
conv3 3x3 256 384 1x1 30x17
conv4 3x3 384 256 Ix1 30x17
convS 3x3 256 256 Ix1 30x17
mpoolS 5%3 - - 3%2 9% 8
fc6 9x1 256 4096 I1x1 1x8
apool6 1xn - - 1x1 Ix1
fc7 Ix1 4096 1024 Ix1 Ix1
fc8 Ix1 1024 1251 I1x1 Ix1

Table 4: CNN architecture. The data size up to fcb6 is for a 3-
second input, but the network is able to accept inputs of variable
lengths.

Implementation details and training. Our implementation
is based on the deep learning toolbox MatConvNet [39] and
trained on a NVIDIA TITAN X GPU. The network is trained
using batch normalisation [40] and all hyper-parameters (e.g.
weight decay, learning rates) use the default values provided
with the toolbox. To reduce overfitting, we augment the data by
taking random 3-second crops in the time domain during train-
ing. Using a fixed input length is also more efficient. For veri-
fication, the network is first trained for classification (excluding
the test POIs for the verification task, see Section @), and then



all filter weights are frozen except for the modified last layer
and the Siamese network trained with contrastive loss. Choos-
ing good pairs for training is very important in metric learning.
We randomly select half of the negative examples, and the other
half using Hard Negative Mining, where we only sample from
the hardest 10% of all negatives.

6. Experiments

This section describes the experimental setup for both speaker
identification and verification, and compares the performance
of our devised CNN baseline to a number of traditional state of
the art methods on VoxCeleb.

6.1. Experimental setup

Speaker identification. For identification, the training and the
testing are performed on the same POIs. From each POI, we
reserve the speech segments from one video for test. The test
video contains at least 5 non-overlapping segments of speech.
For identification, we report fop-1 and top-5 accuracies. The
statistics are given in Table[5]

Speaker verification. For verification, all POIs whose name
starts with an ‘E’ are reserved for testing, since this gives a good
balance of male and female speakers. These POIs are not used
for training the network, and are only used at test time. The
statistics are given in Table[§]

Two key performance metrics are used to evaluate system
performance for the verification task. The metrics are similar
to those used by existing datasets and challenges, such as NIST
SREI12 [29] and SITW [5]. The primary metric is based on the
cost function Clgey

Cdet = C’miss X Priss X PtaT+Cfa X Pfa X (1 _Ptar) (1)

where we assume a prior target probability P, of 0.01 and
equal weights of 1.0 between misses Ci,iss and false alarms
Cq. The primary metric, C’Zin, is the minimum value of Cye;
for the range of thresholds. The alternative performance mea-
sure used here is the Equal Error Rate (EER) which is the rate
at which both acceptance and rejection errors are equal. This

measure is commonly used for identity verification systems.

Set #POIs | # Vid./POI | # Utterances
Dev 1,251 17.0 145,265
Test 1,251 1.0 8,251

[ Total [ 1,251 [ 1.0 [ 153,516 ]

Table 5: Development and test set statistics for identification.

Set #POIs | #Vid./POI | # Utterances

Dev 1,211 18.0 148,642

Test 40 17.4 4,874
[ Total [ 1,251 [ 18.0 [ 153,516 ]

Table 6: Development and test set statistics for verification.

6.2. Baselines

GMM-UBM. The GMM-UBM system uses MFCCs of dimen-
sion 13 as input. Cepstral mean and variance normalisation
(CMVN) is applied on the features. Using the conventional
GMM-UBM framework, a single speaker-independent univer-
sal background model (UBM) of 1024 mixture components is
trained for 10 iterations from the training data.

I-vectors/PLDA. Gender independent i-vector extractors [[10]
are trained on the VoxCeleb dataset to produce 400-
dimensional i-vectors. Probabilistic LDA (PLDA) [41]] is then
used to reduce the dimension of the i-vectors to 200.
Inference. For identification, a one-vs-rest binary SVM clas-
sifier is trained for each speaker m (m € 1...K). All feature
inputs to the SVM are L2 normalised and a held out validation
set is used to determine the C parameter (determines trade off
between maximising the margin and penalising training errors).
Classification during test time is done by choosing the speaker
corresponding to the highest SVM score. The PLDA scoring
function [41] is used for verification.

6.3. Results

Results are given in Tables [7]and[8] For both speaker recogni-
tion tasks, the CNN provides superior performance to the tradi-
tional state-of-the-art baselines.

For identification we achieve an 80.5% top-1 classification
accuracy over 1,251 different classes, almost 20% higher than
traditional state of the art baselines. The CNN architecture uses
the average pooling layer for variable length test data. We also
compare to two variants: ‘CNN-fc-3s’, this architecture has a
fully connected fc6 layer, and divides the test data into 3s seg-
ments and averages the scores. As is evident there is a con-
siderable drop in performance compared to the average pooling
original — partly due to the increased number of parameters that
must be learnt; ‘CNN-fc-3s no var. norm.’, this is the CNN-fc-3s
architecture without the variance normalization pre-processing
of the input (the input is still mean normalized). The differ-
ence in performance between the two shows the importance of
variance normalization for this data.

For verification, the margin over the baselines is narrower,
but still a significant improvement, with the embedding being
the crucial step.

Accuracy Top-1 (%) | Top-5 (%)
I-vectors + SVM 49.0 56.6
I-vectors + PLDA + SVM 60.8 75.6
CNN-fc-3s no var. norm. 63.5 80.3
CNN-fc-3s 72.4 87.4
CNN 80.5 92.1

Table 7: Results for identification on VoxCeleb (higher is bet-
ter). The different CNN architectures are described in SectionE}

Metrics o™ | EER (%)
GMM-UBM 0.80 15.0
I-vectors + PLDA 0.73 8.8
CNN-1024D 0.75 10.2
CNN + Embedding 0.71 7.8

Table 8: Results for verification on VoxCeleb (lower is bet-
ter).

7. Conclusions

We provide a fully automated and scalable pipeline for audio
data collection and use it to create a large-scale speaker
identification dataset called VoxCeleb, with 1,251 speakers
and over 100,000 utterances. In order to establish benchmark
performance, we develop a novel CNN architecture with the
ability to deal with variable length audio inputs, which out-
performs traditional state-of-the-art methods for both speaker
identification and verification on this dataset.
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