
June 27, 2016

VUFORIA STUDIO ENTERPRISE –
ANGULAR JS EXAMPLES

2PTC Confidential and Proprietary
2

• The JS code can be added by selecting the Home.js menu under Home menu in the navigation pane.

• Resources:
– http://ionicframework.com/docs/api/
– http://jquery.com/
– https://angularjs.org/
– http://tutorials.jenkov.com/angularjs/index.html

ANGULAR JS

3PTC Confidential and Proprietary
3

• $scope is the application object (the owner of application variables and functions). The controller
creates two properties (variables) in the scope (firstName and lastName). The ng-model directives
bind the input fields to the controller properties (firstName and lastName).

– Example – activation by button from view:
Write code in Button edit and then call function in JS:
// Triggered on a button click, or some other target
$scope.showPopup = function() {
//Write your code
};

Example
//Assign value to Application parameter defined in DATA
$scope.app.params[‘counter'] = 0;

//Simple counter of the clicks on the button
$scope.showPopup = function() {

$scope.app.params['counter'] = $scope.app.params['counter'] + 1;
};

$SCOPE

4PTC Confidential and Proprietary
4

• $scope$watch – A watch means that AngularJS watches changes in the variable on the $scope object. The framework is
"watching" the variable. Watches are created using the $scope.$watch() function which I will cover later in this text.
When you register a watch you pass two functions as parameters to the $watch() function: 1)A value function 2)A listener
function

– Example:
$scope.$watch(function() {},

function() {}
);

The first function is the value function and the second function is the listener function.
The value function should return the value which is being watched. AngularJS can then check the value returned
against the value the watch function returned the last time. That way AngularJS can determine if the value has
changed. Here is an example:
$scope.$watch(function(scope) { return scope.data.myVar },

function() {}
);

Notice how the value function takes the scope as parameter (without the $ in the name). Via this parameter the value
function can access the $scope and its variables. The value function can also watch global variables instead if you need
that, but most often you will watch a $scope variable.

$SCOPE$WATCH

5PTC Confidential and Proprietary
5

• $scope$digest – This function iterates through all watches and checks if any of the watched variables have changed. If a
watched variable has changed, a corresponding listener function is called.

• $scope.$apply() function takes a function as parameter which is executed, and after that $scope.$digest() is called
internally. That makes it easier for you to make sure that all watches are checked, and thus all data bindings refreshed.
Here is an $apply() example:

$scope.$apply(function() {
$scope.data.myVar = "Another value";

});
The function passed to the $apply() function as parameter will change the value of $scope.data.myVar. When the
function exits AngularJS will call the $scope.$digest() function so all watches are checked for changes in the watched
values.

$SCOPE$DIGEST AND $SCOPE$APPLY

6PTC Confidential and Proprietary
6

• $timeout - service can be used to call another JavaScript function after a given time delay. The $timeout service only
schedules a single call to the function. For repeated calling of a function, see $interval later in this text. To use the
$timeout service you must first get it injected into a controller function. Here is an example that injects the $timeout
service into a controller function:

var myapp = angular.module("myapp", []);
myapp.controller("MyController", function($scope, $timeout){
});
Notice the $timeout parameter of the controller function. Into this parameter the $timeout service will be injected by
AngularJS, just like any other AngularJS service you would want to use in your controller function. Once the $timeout
service is injected into your controller function, you can use it to schedule function calls. Here is an example on the
$scope object that used the $timeout service to schedule a function call 3 seconds later:
var myapp = angular.module("myapp", []);
myapp.controller("DIController", function($scope, $timeout){

$scope.callAtTimeout = function() {
console.log("$scope.callAtTimeout - Timeout occurred");

}
$timeout(function(){ $scope.callAtTimeout(); }, 3000);

});
Notice the function passed to the $timeout service. This function calls the callAtTimeout() function on the $scope
object.

JS – USE TIMER SERVICES IN ANGULARJS

7PTC Confidential and Proprietary
7

• $interval - service is similar in function to the $timeout service, except it schedules a function for repeated execution with
a time interval in between. To use the service you must have it injected into a controller function. Here is an example that
injects the $interval service into a controller function:

var myapp = angular.module("myapp", []);
myapp.controller("MyController", function($scope, $interval){
});
Once the $interval service is injected into your controller function, you can use it to schedule repeated function calls.
Here is an example on the $scope object that used the $interval service to schedule a function call every 5 seconds:
var myapp = angular.module("myapp", []);
myapp.controller("DIController", function($scope, $interval){

$scope.callAtInterval = function() {
console.log("$scope.callAtInterval - Interval occurred");

}
$interval(function(){ $scope.callAtInterval(); }, 3000);

});
The function passed to the $interval service calls the callAtInterval() function on the $scope object.

JS – USE TIMER SERVICES IN ANGULARJS

8PTC Confidential and Proprietary
8

• If the function you schedule for execution makes changes to variables in the $scope object, or make changes to any other
variable which your application is watching, your application needs to execute $scope.$digest() after the scheduled
function call finishes. By default AngularJS already calls $digest() after the scheduled function call finishes, so you don't
have to do that explicitly. You can, however, specify if AngularJS should not call $digest() after the scheduled function call.
If, for instance, your scheduled function call only updates an animation but does not change any $scope variables, then it
is a waste of CPU time to call $digest() after the function finishes.

• Both $timeout and $interval have a third, optional parameter which can specify if the $digest() method is to be executed
after the scheduled function finishes. Actually, the third parameter specifies if the call to the scheduled function should
be done inside an $apply() call. Here is an example of how to use this third parameter:

$interval(function(){ $scope.callAtInterval(); }, 3000, true);
$interval(function(){ $scope.callAtInterval(); }, 3000, false);
These two $interval examples both have a third parameter passed to the $interval service. This parameter can be
either true or false. A value of true means that the scheduled function should be called inside an $apply() call. A value
of false means that it should not be called inside an $apply() call (meaning $digest() will not get called after the
scheduled function finishes).

EXECUTING $DIGEST() AFTER THE SCHEDULED FUNCTION CALL

9PTC Confidential and Proprietary
9

• angular.element is an alias for the jQuery function. If jQuery is not available, angular.element delegates to Angular's built-
in subset of jQuery, called "jQuery lite" or jqLite. It is a function in module ng which wraps a raw DOM element or HTML
string as a jQuery element.

– Keep in mind that this function will not find elements by tag name / CSS selector. For lookups by tag name, try
instead angular.element(document).find(...)

Examples:
angular.element(document.getElementById('3DModel-2')).scope().stop();
Or
angular.element(document.querySelector("[widget-id=button-6] button")).removeClass("play-
button").addClass("pause-button");

• Angular's jqLite provides only the following jQuery methods: (more info on http://api.jquery.com/)

ANGULAR.ELEMENT

• addClass()

• after()

• append()

• attr() - Does not support functions as parameters

• bind() - Does not support namespaces, selectors or eventData

• children() - Does not support selectors

• clone()

• contents()

• css() - Only retrieves inline-styles, does not call

getComputedStyle(). As a setter, does not convert numbers to

strings or append 'px', and also does not have automatic property

prefixing.

• data()

• detach()

• empty()

• eq()

• find() - Limited to lookups by tag name

• hasClass()

• html()

• next() - Does not support selectors

• on() - Does not support namespaces, selectors or eventData

• off() - Does not support namespaces, selectors or event object

as parameter

• one() - Does not support namespaces or selectors

• parent() - Does not support selectors

• prepend()

• prop()

• ready()

• remove()

• removeAttr()

• removeClass()

• removeData()

• replaceWith()

• text()

• toggleClass()

• triggerHandler() - Passes a dummy event object to handlers.

• unbind() - Does not support namespaces or event object as

parameter

• val()

• wrap()

10PTC Confidential and Proprietary
10

APPLICATION PARAMETERS

11PTC Confidential and Proprietary
11

• Create JavaScript Function and add call from Button Widget. Add and
configure 2D Button Widget. Click on the JavaScript (JS) button to expose
text entry box. Enter the JavaScript function name.

Example
//Function Called from button
$scope.OilPumpOnOff = function()
{
if (OILPUMPVISIBLE)
{
OILPUMPVISIBLE = false;
…

}
else
{
OILPUMPVISIBLE = true;
…

}

}

CALLING A FUNCTION FROM A BUTTON

12PTC Confidential and Proprietary
12

• //Navigate to a view
$scope.HomeNav = function() {

$scope.app.fn.navigate(‘Enter View Name Here');
}

NAVIGATING TO A VIEW

13PTC Confidential and Proprietary
13

POPUP WINDOW ACTIVATION - ALERT

• Popup service enables you to create
popup windows which needs some action
from user to continue. Basically there are
three main popups:

– alert box,
– confirm box
– prompt box.

• We can customize ionic alert popup to set
following options.

Activation on click – Alert box

{

title: '', // String. The title of the popup.

cssClass: '', // String, The custom CSS class name
subTitle: '', // String (optional). The sub-title of the popup.

template: '', // String (optional). The html template to place in the popup body.

templateUrl: '', // String (optional). The URL of an html template to place in the popup body.
okText: '', // String (default: 'OK'). The text of the OK button.

okType: '', // String (default: 'button-positive'). The type of the OK button.

}

14PTC Confidential and Proprietary
14

POPUP WINDOW ACTIVATION - CONFIRM

• Ionic confirm show a simple popup with
"Cancel" and "Ok" button. We can get
user selection on promise true if the user
presses the OK button, and false if the
user presses the Cancel button.

• We can customize ionic confirm popup to
set following options.

Activation on Start – Confirm box

{

title: '', // String. The title of the popup.

cssClass: '', // String, The custom CSS class name
subTitle: '', // String (optional). The sub-title of the popup.

template: '', // String (optional). The html template to place in the popup body.

templateUrl: '', // String (optional). The URL of an html template to place in the popup body.
cancelText: '', // String (default: 'Cancel'). The text of the Cancel button.

cancelType: '', // String (default: 'button-default'). The type of the Cancel button.

okText: '', // String (default: 'OK'). The text of the OK button.
okType: '', // String (default: 'button-positive'). The type of the OK button.

}

15PTC Confidential and Proprietary
15

POPUP WINDOW ACTIVATION - PROMT

• Prompt - Ionic prompt show a simple
prompt popup, with input, OK button,
and Cancel button. We can get user
action on promise when user insert any
value into text box and click OK button.
But if user presses Cancel button then
promise return undefined.

• We can customize ionic confirm popup to
set following options.

Prompt box

{
title: '', // String. The title of the popup.

cssClass: '', // String, The custom CSS class name

subTitle: '', // String (optional). The sub-title of the popup.
template: '', // String (optional). The html template to place in the popup body.

templateUrl: '', // String (optional). The URL of an html template to place in the popup body.

inputType: // String (default: 'text'). The type of input to use
defaultText: // String (default: ''). The initial value placed into the input.

maxLength: // Integer (default: null). Specify a maxlength attribute for the input.

inputPlaceholder: // String (default: ''). A placeholder to use for the input.
cancelText: // String (default: 'Cancel'. The text of the Cancel button.

cancelType: // String (default: 'button-default'). The type of the Cancel button.

okText: // String (default: 'OK'). The text of the OK button.
okType: // String (default: 'button-positive'). The type of the OK button.

}

$scope.show = function() {

$ionicPopup.prompt({

title: 'Password Check',

template: 'Enter your secret password',

inputType: 'password',

inputPlaceholder: 'Your password'

}).then(function(res) {

console.log('Your password is', res);

});

};

16PTC Confidential and Proprietary
16

POPUP WINDOW ACTIVATION - SHOW

• Show a complex popup. This is the master
show function for all popups.

• We can customize ionic show popup to
set following options.

{
title: '', // String. The title of the popup.

cssClass: '', // String, The custom CSS class name

subTitle: '', // String (optional). The sub-title of the popup.
template: '', // String (optional). The html template to place in the popup body.

templateUrl: '', // String (optional). The URL of an html template to place in the popup body.

scope: null, // Scope (optional). A scope to link to the popup content.
buttons: [{ // Array[Object] (optional). Buttons to place in the popup footer.

text: 'Cancel',

type: 'button-default',
onTap: function(e) {

// e.preventDefault() will stop the popup from closing when tapped.

e.preventDefault();
}

}, {

text: 'OK',
type: 'button-positive',

onTap: function(e) {

// Returning a value will cause the promise to resolve with the given value.
return scope.data.response;

}

}]
}

• A complex popup has a buttons array, with each button having a text and

type field, in addition to an onTap function. The onTap function, called

when the corresponding button on the popup is tapped, will by default

close the popup and resolve the popup promise with its return value. If you

wish to prevent the default and keep the popup open on button tap, call

event.preventDefault() on the passed in tap event.

• Returns: object A promise which is resolved when the popup is closed. Has

an additional close function, which can be used to programmatically close

the popup.

17PTC Confidential and Proprietary
17

POPOVER WINDOW ACTIVATION

• The Popover is a view that floats above an app’s content. Popovers provide an easy way to present or gather
information from the user and are commonly used in the following situations:

– Show more info about the current view
– Select a commonly used tool or configuration
– Present a list of actions to perform inside one of your views

// .fromTemplate() method

var template = '<ion-popover-view><ion-header-bar> <h1 class="title">My Popover

Title</h1> </ion-header-bar> <ion-content> Hello! </ion-content></ion-popover-

view>';

$scope.popover = $ionicPopover.fromTemplate(template, {

scope: $scope

});

// .fromTemplateUrl() method

$ionicPopover.fromTemplateUrl('my-popover.html', {

scope: $scope

}).then(function(popover) {

$scope.popover = popover;

});

$scope.openPopover = function($event) {

$scope.popover.show($event);

};

$scope.closePopover = function() {

$scope.popover.hide();

};

//Cleanup the popover when we're done with it!

$scope.$on('$destroy', function() {

$scope.popover.remove();

});

// Execute action on hide popover

$scope.$on('popover.hidden', function() {

// Execute action

});

// Execute action on remove popover

$scope.$on('popover.removed', function() {

// Execute action

});

});

18PTC Confidential and Proprietary
18

• The info is in the iot overflow site

NEED TO ADD HOW TO ASSIGN POPOVER TO SPECIFIC OBJECT

19PTC Confidential and Proprietary
19

• svc (ThingWorx service) can be added and referenced. Add and Select
ThingWorx Thing. Select Service to add. Configure or bind for execution.
Events of other Services can BIND for service execution.

A ThingWorx InfoTable result set can be loaded into a JSON structure for use in
Java script.

Example
//Load Service InfoTable into JSON

var tmptext = $scope.app.mdl[‘SensorData'].svc['GetAllSensorData'];

var mjson = angular.fromJson (tmptext);

Loop Through JSON

for (var i = 0; i < mjson.data.length; ++i) {

var detailrow = mjson.data[i];

…

…

…

}

ADD SERVICE INTEGRATION

20PTC Confidential and Proprietary
20

• svc (ThingWorx service) InfoTable result set can be Bound to a
Widget for quick loading. Load service and Bind “All Items” to
Widget.

• svc (ThingWorx service) InfoTable result set can be referenced in
Javascript. Data can be referenced with the “data” tag. Current
data elements are referenced with tag “current” followed by the
name of the InfoTable result set.

Example
//Get Result set attribute “Name” for currently selected data

$scope.app.mdl['MyOracleThing'].svc['GetSalesModel'].data.current['Name']

LOAD SERVICE RESULT INTO WIDGET & REFERENCE SERVICE VALUE

21

2D WIDGETS

22PTC Confidential and Proprietary
22

BAR CHART

23PTC Confidential and Proprietary
23

• Change the button text
//Change the text (replace ‘button-1’ with the ID of the button to be controlled)
$scope.view.wdg['button-1']['text'] = 'Enter text here';

• Show a button
//Show the button (replace ‘button-1’ with the ID of the button to be controlled)
$scope.view.wdg['button-1']['visible'] = true;

• Hide a button
//Hide the button (replace ‘button-1’ with the ID of the button to be controlled)
$scope.view.wdg['button-1']['visible'] = false;

• Disable a button
//Disable the button (replace ‘button-1’ with the ID of the button to be controlled)
$scope.view.wdg['button-1']['disabled'] = true;

• Enable a button
//Enable the button (replace ‘button-1’ with the ID of the button to be controlled)
$scope.view.wdg['button-1']['disabled'] = false;

BUTTONS – (TEXT, SHOW, HIDE, DISABLE, ENABLE) (ALL VERIFIED)

24PTC Confidential and Proprietary
24

• Change the margin
//Change the margin (replace ‘button-1’ with the ID of the button to be controlled)
$scope.view.wdg['button-1']['margin'] = '5px';

• Remove a css class
//Remove the class (replace ‘button-1’ with the ID of the button to be controlled)
angular.element(document.querySelector("[widget-id=button-1] button")).removeClass("ExpandButton");

• Add a css class
//Remove the class (replace ‘button-1’ with the ID of the button to be controlled)
angular.element(document.querySelector("[widget-id=button-1] button")).addClass("ExpandButtonSelected");

• Remove a css class and add a different class
//Remove the class (replace ‘button-1’ with the ID of the button to be controlled)
angular.element(document.querySelector("[widget-id=button-1] button")).removeClass("ExpandButton").addClass("ExpandButtonSelected");

Not Documented Here: Studio ID, Friendly Name, Click

BUTTONS – (MARGIN, ADD OR REMOVE CSS CLASS) (ALL VERIFIED)

25PTC Confidential and Proprietary
25

• Change header text
//Change the header text (replace ‘card-1’ with the ID of the card to be controlled)
$scope.view.wdg['card-1']['header'] = 'Enter text here';

• Change footer text
//Change the footer text (replace ‘card-1’ with the ID of the card to be controlled)
$scope.view.wdg['card-1']['footer'] = 'Enter text here';

• Show a card
//Show the card (replace ‘card-1’ with the ID of the card to be controlled)
$scope.view.wdg['card-1']['visible'] = true;

• Hide a card
//Hide the card (replace ‘card-1’ with the ID of the card to be controlled)
$scope.view.wdg['card-1']['visible'] = false;

• Change the margin
//Change the margin (replace ‘card-1’ with the ID of the card to be controlled)
$scope.view.wdg['card-1']['margin'] = '5';

• Change the padding
//Change the padding (replace ‘card-1’ with the ID of the card to be controlled)
$scope.view.wdg['card-1']['padding'] = '5';

CARD – (HEADER, FOOTER, SHOW, HIDE, MARGIN, PADDING) (ALL VERIFIED)

26PTC Confidential and Proprietary
26

• Remove a css class
//Remove the class (replace ‘card-1’ with the ID of the card to be controlled)
angular.element(document.querySelector("[widget-id=card-1] .card")).removeClass(“red");

• Add a css class
//Remove the class (replace ‘card-1’ with the ID of the card to be controlled)
angular.element(document.querySelector("[widget-id=card-1] .card")).addClass(“blue");

• Remove a css class and add a different class
//Remove the class (replace ‘button-1’ with the ID of the button to be controlled)
angular.element(document.querySelector("[widget-id=card-1] .card")).removeClass(“red").addClass(“blue");

Not Documented Here: Studio ID, Friendly Name

CARD – (ADD OR REMOVE CSS CLASS) (ALL VERIFIED)

27PTC Confidential and Proprietary
27

• Remove a css class
//Remove the class (replace ‘checkbox-1’ with the ID of the checkbox to be controlled)
angular.element(document.querySelector("[widget-id=checkbox-1] .checkbox")).removeClass(“red");

• Add a css class
//Remove the class (replace ‘checkbox-1’ with the ID of the checkbox to be controlled)
angular.element(document.querySelector("[widget-id=checkbox-1] .checkbox")).addClass(“blue");

• Remove a css class and add a different class
//Remove the class (replace ‘checkbox-1’ with the ID of the checkbox to be controlled)
angular.element(document.querySelector("[widget-id=checkbox-1] .checkbox")).removeClass(“red").addClass(“blue");

• Set the checkbox to be checked
//Set to be checked (replace ‘checkbox-1’ with the ID of the checkbox to be controlled)
$scope.view.wdg['checkbox-1']['value'] = true;

• Set the checkbox to not be checked
//Set to not be checked (replace ‘checkbox-1’ with the ID of the checkbox to be controlled)
$scope.view.wdg['checkbox-1']['value'] = false;

• Change the checkbox label
//Show the button (replace ‘checkbox-1’ with the ID of the checkbox to be controlled)
$scope.view.wdg['checkbox-1']['label'] = 'Enter text here';

CHECKBOX – (ADD OR REMOVE CSS CLASS, CHECKED, NOT CHECKED, LABEL)
(ALL VERIFIED)

28PTC Confidential and Proprietary
28

• Show a checkbox
//Show the checkbox (replace ‘checkbox-1’ with the ID of the checkbox to be controlled)
$scope.view.wdg['checkbox-1']['visible'] = true;

• Hide a checkbox
//Hide the checkbox (replace ‘checkbox-1’ with the ID of the checkbox to be controlled)
$scope.view.wdg['checkbox-1']['visible'] = false;

• Disable a checkbox
//Disable the checkbox (replace ‘checkbox-1’ with the ID of the checkbox to be controlled)
$scope.view.wdg['checkbox-1']['disabled'] = true;

• Enable a checkbox
//Enable the checkbox (replace ‘checkbox-1’ with the ID of the checkbox to be controlled)
$scope.view.wdg['checkbox-1']['disabled'] = false;

• Change the margin
//Change the margin (replace ‘checkbox-1’ with the ID of the checkbox to be controlled)
$scope.view.wdg['checkbox-1']['margin'] = '5';

• Change the padding
//Change the padding (replace ‘checkbox-1’ with the ID of the checkbox to be controlled)
$scope.view.wdg['checkbox-1']['padding'] = '5';

Not Documented Here: Studio ID, Friendly Name, Value Changed, Selected, Deselected

CHECKBOX – (SHOW, HIDE, DISABLE, ENABLE, MARGIN, PADDING) (ALL
VERIFIED)

29PTC Confidential and Proprietary
29

FOOTER

30PTC Confidential and Proprietary
30

• Show a gauge - verified
//Show the gauge (replace ‘gauge-1’ with the ID of the gauge to be controlled)
$scope.view.wdg['gauge-1']['visible'] = true;

• Hide a gauge - verified
//Hide the gauge (replace ‘gauge-1’ with the ID of the gauge to be controlled)
$scope.view.wdg['gauge-1']['visible'] = false;

• Set the minimum value – The label doesn’t update correctly
//Set the minimum value (replace ‘gauge-1’ with the ID of the gauge to be controlled)
$scope.view.wdg['gauge-1']['min'] = 25;

• Set the maximum value - verified
//Set the maximum value (replace ‘gauge-1’ with the ID of the gauge to be controlled)
$scope.view.wdg['gauge-1']['max'] = 125;

• Set the value - verified
//Set the value (replace ‘gauge-1’ with the ID of the gauge to be controlled)
$scope.view.wdg['gauge-1']['value'] = 85;

Not Documented Here: Class, Gauge Title, Width, Height, Studio Id, Friendly Name

GAUGE – (SHOW, HIDE, MIN, MAX, VALUE)

31PTC Confidential and Proprietary
31

• Show a grid
//Show the grid (replace ‘gridLayout-1’ with the ID of the grid to be controlled)
$scope.view.wdg['gridLayout-1']['visible'] = true;

• Hide a grid
//Hide the grid (replace ‘gridLayout-1’ with the ID of the label to be controlled)
$scope.view.wdg['gridLayout-1']['visible'] = false;

GRID LAYOUT - (SHOW, HIDE) (ALL VERIFIED)

32PTC Confidential and Proprietary
32

• Add a css class from column 1
//Add the class (replace ‘gridLayout-1’ with the ID of the grid to be controlled)
angular.element(document.querySelector('[widget-id="gridLayout-1"] .col:nth-child(1)')).addClass("ExpandButtonSelectedBackground");

• Add a css class from column 2
//Add the class (replace ‘gridLayout-1’ with the ID of the grid to be controlled)
angular.element(document.querySelector('[widget-id="gridLayout-1"] .col:nth-child(2)')).addClass("ExpandButtonSelectedBackground");

• Add a css class from column 3
//Add the class (replace ‘gridLayout-1’ with the ID of the grid to be controlled)
angular.element(document.querySelector('[widget-id="gridLayout-1"] .col:nth-child(3)')).addClass("ExpandButtonSelectedBackground");

• Add a css class from column 4
//Add the class (replace ‘gridLayout-1’ with the ID of the grid to be controlled)
angular.element(document.querySelector('[widget-id="gridLayout-1"] .col:nth-child(4)')).addClass("ExpandButtonSelectedBackground");

• Add a css class from column 5
//Add the class (replace ‘gridLayout-1’ with the ID of the grid to be controlled)
angular.element(document.querySelector('[widget-id="gridLayout-1"] .col:nth-child(5)')).addClass("ExpandButtonSelectedBackground");

GRID LAYOUT – (ADD CSS CLASS TO COLUMNS IN GRID) (ALL VERIFIED)

33PTC Confidential and Proprietary
33

• Remove a css class from column 1
//Remove the class (replace ‘gridLayout-1’ with the ID of the grid to be controlled)
angular.element(document.querySelector('[widget-id="gridLayout-1"] .col:nth-child(1)')).removeClass("ExpandButtonSelectedBackground");

• Remove a css class from column 2
//Remove the class (replace ‘gridLayout-1’ with the ID of the grid to be controlled)
angular.element(document.querySelector('[widget-id="gridLayout-1"] .col:nth-child(2)')).removeClass("ExpandButtonSelectedBackground");

• Remove a css class from column 3
//Remove the class (replace ‘gridLayout-1’ with the ID of the grid to be controlled)
angular.element(document.querySelector('[widget-id="gridLayout-1"] .col:nth-child(3)')).removeClass("ExpandButtonSelectedBackground");

• Remove a css class from column 4
//Remove the class (replace ‘gridLayout-1’ with the ID of the grid to be controlled)
angular.element(document.querySelector('[widget-id="gridLayout-1"] .col:nth-child(4)')).removeClass("ExpandButtonSelectedBackground");

• Remove a css class from column 5
//Remove the class (replace ‘gridLayout-1’ with the ID of the grid to be controlled)
angular.element(document.querySelector('[widget-id="gridLayout-1"] .col:nth-child(5)')).removeClass("ExpandButtonSelectedBackground");

Not Documented Here: Studio Id, Friendly Name

GRID LAYOUT – (REMOVE CSS CLASS FROM COLUMNS IN GRID) (ALL
VERIFIED)

34PTC Confidential and Proprietary
34

HEADER

35PTC Confidential and Proprietary
35

• Enter text in a label
//Enter a text string in a label (replace ‘label-1’ with the ID of the label to be controlled)
$scope.view.wdg['label-1']['text'] = 'Enter the text string';

• Show a label
//Show the label (replace ‘label-1’ with the ID of the label to be controlled)
$scope.view.wdg['label-1']['visible'] = true;

• Hide a label
//Hide the label (replace ‘label-1’ with the ID of the label to be controlled)
$scope.view.wdg['label-1']['visible'] = false;

• Set label text to wrap
//Wrap label text (replace ‘label-1’ with the ID of the label to be controlled)
$scope.view.wdg['label-1']['wrap'] = true;

• Set label text to not wrap
//Disable wrap text (replace ‘label-1’ with the ID of the label to be controlled)
$scope.view.wdg['label-1']['wrap'] = false;

Not Documented Here: Class, Padding, Margin, Studio Id, Friendly Name

LABEL – (TEXT, SHOW, HIDE, WRAP) (ALL VERIFIED)

36PTC Confidential and Proprietary
36

LIST

37PTC Confidential and Proprietary
37

REPEATER

38PTC Confidential and Proprietary
38

• Set the image location - verified
//Set the image location (replace ‘resourceImage-1’ with the ID of the image to be controlled)
$scope.view.wdg['resourceImage-1']['imgsrc'] = 'app/resources/Default/vu_alert1.svg';

• Set the background color- the color doesn’t update in the preview
//Set the background color(replace ‘resourceImage-1’ with the ID of the image to be controlled)
$scope.view.wdg['resourceImage-1']['backgroundcolor'] = 'red';

• Show the image - verified
//Show the image (replace ‘resourceImage-1’ with the ID of the image to be controlled)
$scope.view.wdg['resourceImage-1']['visible'] = true;

• Hide the image - verified
//Hide the image (replace ‘resourceImage-1’ with the ID of the image to be controlled)
$scope.view.wdg['resourceImage-1']['visible'] = false;

Not Documented Here: Class, Width, Height, Alignment, Padding, Studio ID, Friendly Name

RESOURCE IMAGE – (SOURCE, BACKGROUND COLOR, SHOW, HIDE)

39PTC Confidential and Proprietary
39

SELECT

40PTC Confidential and Proprietary
40

• Set the minimum value
//Set the slider minimum value (replace ‘slider-1’ with the ID of the slider to be controlled)
$scope.view.wdg['slider-1']['min'] = 40;

• Set the maximum value
//Set the slider maximum value (replace ‘slider-1’ with the ID of the slider to be controlled)
$scope.view.wdg['slider-1']['max'] = 90;

• Set the step value
//Set the slider step value (replace ‘slider-1’ with the ID of the slider to be controlled)
$scope.view.wdg['slider-1']['step'] = 5;

• Set the value
//Set the slider value (replace ‘slider-1’ with the ID of the slider to be controlled)
$scope.view.wdg['slider-1']['value'] = 88;

SLIDER – (MIN, MAX, STEP, VALUE) (ALL VERIFIED)

41PTC Confidential and Proprietary
41

• Show a slider
//Show the slider (replace ‘slider-1’ with the ID of the slider to be controlled)
$scope.view.wdg['slider-1']['visible'] = true;

• Hide a slider
//Hide the slider (replace ‘slider-1’ with the ID of the slider to be controlled)
$scope.view.wdg['slider-1']['visible'] = false;

• Disable a slider
//Disable the slider (replace ‘slider-1’ with the ID of the slider to be controlled)
$scope.view.wdg['slider-1']['disabled'] = true;

• Enable a slider
//Enable the slider (replace ‘slider-1’ with the ID of the slider to be controlled)
$scope.view.wdg['slider-1']['disabled'] = false;

Not Documented Here: Class, Icon Left of Slider, Icon Right of Slider, Margin, Padding, Studio ID, Friendly Name,
Value Changed

SLIDER – (SHOW, HIDE, DISABLE, ENABLE) (ALL VERIFIED)

42PTC Confidential and Proprietary
42

• Show a spinner
//Show the spinner (replace ‘spinner-1’ with the ID of the spinner to be controlled)
$scope.view.wdg['spinner-1']['visible'] = true;

• Hide a spinner
//Hide the spinner (replace ‘spinner-1’ with the ID of the spinner to be controlled)
$scope.view.wdg['spinner-1']['visible'] = false;

Not Documented Here: Spinner Type, Studio ID, Friendly Name

SPINNER – (SHOW, HIDE) (ALL VERIFIED)

43PTC Confidential and Proprietary
43

• Show the tab strip
//Show the tab strip (replace ‘tabs-1’ with the ID of the tab strip to be controlled)
$scope.view.wdg['tabs-1']['visible'] = true;

• Hide the tab strip
//Hide the tab strip (replace ‘tabs-1’ with the ID of the spinner to be controlled)
$scope.view.wdg['tabs-1']['visible'] = false;

Not Documented Here: Class, Tab Orientation, Tab Padding, Tab Strip Class, Margin, Studio ID,
Friendly Name, Tab Click

TAB STRIP – (SHOW, HIDE)

44PTC Confidential and Proprietary
44

• Set the text value
//Set the text (replace ‘textArea-1’ with the ID of the textArea to be controlled)
$scope.view.wdg['textArea-1']['text'] = 'Enter the text here';

• Set the placeholder text
//Set the placeholder (replace ‘textArea-1’ with the ID of the textArea to be controlled)
$scope.view.wdg['textArea-1']['placeholder'] = 'Enter the placeholder text here';

• Set the label text
//Set the label (replace ‘textArea-1’ with the ID of the textArea to be controlled)
$scope.view.wdg['textArea-1']['label'] = 'Enter the label text here';

• Set the number of rows
//Set the number of rows (replace ‘textArea-1’ with the ID of the textArea to be controlled)
$scope.view.wdg['textArea-1']['rows'] = 4;

• Set the maximum length
//Set the maximum number of characters that can be entered (replace ‘textArea-1’ with the ID of the
textArea to be controlled)
$scope.view.wdg['textArea-1']['maxlength'] = 15;

TEXT AREA – (TEXT, PLACEHOLDER, LABEL, # OF ROWS, MAX LENGTH) (ALL
VERIFIED)

45PTC Confidential and Proprietary
45

• Show the text area field
//Show the text area (replace ‘textArea-1’ with the ID of the textArea to be controlled)
$scope.view.wdg['textArea-1']['visible'] = true;

• Hide the text area field
//Hide the text area (replace ‘textArea-1’ with the ID of the textArea to be controlled)
$scope.view.wdg['textArea-1']['visible'] = false;

• Disable the text area field
//Disable the text area (replace ‘textArea-1’ with the ID of the textArea to be controlled)
$scope.view.wdg['textArea-1']['disabled'] = true;

• Enable the text area field
//Enable the text area (replace ‘textArea-1’ with the ID of the textArea to be controlled)
$scope.view.wdg['textArea-1']['disabled'] = false;

Not Documented Here: Class, Read Only, Padding, Margin, Studio ID, Friendly Name, Value Changed

TEXT AREA – (SHOW, HIDE, DISABLE, ENABLE) (ALL VERIFIED)

46PTC Confidential and Proprietary
46

• Set the text value
//Set the text (replace ‘textInput-1’ with the ID of the textInput to be controlled)
$scope.view.wdg['textInput-1']['text'] = 'Enter the text here';

• Set the placeholder text
//Set the placeholder (replace ‘textInput-1’ with the ID of the textInput to be controlled)
$scope.view.wdg['textInput-1']['placeholder'] = 'Enter the placeholder text here';

• Set the label text
//Set the label (replace ‘textInput-1’ with the ID of the textInput to be controlled)
$scope.view.wdg['textInput-1']['label'] = 'Enter the label text here';

TEXT INPUT – (TEXT, PLACEHOLDER, LABEL) (ALL VERIFIED)

47PTC Confidential and Proprietary
47

• Show the text input field
//Show the text input (replace ‘textInput-1’ with the ID of the textInput to be controlled)
$scope.view.wdg['textInput-1']['visible'] = true;

• Hide the text input field
//Hide the text input (replace ‘textInput-1’ with the ID of the textInput to be controlled)
$scope.view.wdg['textInput-1']['visible'] = false;

• Disable the text input field
//Disable the text input (replace ‘textInput-1’ with the ID of the textInput to be controlled)
$scope.view.wdg['textInput-1']['disabled'] = true;

• Enable the text input field
//Enable the text input (replace ‘textInput-1’ with the ID of the textInput to be controlled)
$scope.view.wdg['textInput-1']['disabled'] = false;

Not Documented Here: Class, Type, Align, Padding, Margin, Studio ID, Friendly Name, Value Changed

TEXT INPUT – (SHOW, HIDE, DISABLE, ENABLE) (ALL VERIFIED)

48PTC Confidential and Proprietary
48

TIME SERIES CHART

49PTC Confidential and Proprietary
49

• Set the value to true
//Set the value to true (replace ‘toggle-1’ with the ID of the toggle to be
controlled)
$scope.view.wdg['toggle-1']['value'] = true;

• Set the value to false
//Set the value to false(replace ‘toggle-1’ with the ID of the toggle to be
controlled)
$scope.view.wdg['toggle-1']['value'] = false;

• Enter text in the toggle label
//Enter a text string in the toggle label (replace ‘toggle-1’ with the ID of the toggle
to be controlled)
$scope.view.wdg['toggle-1']['label'] = 'Enter the text string';

TOGGLE – (VALUE, LABEL) (ALL VERIFIED)

50PTC Confidential and Proprietary
50

• Show a toggle
//Show the toggle (replace ‘toggle-1’ with the ID of the toggle to be controlled)
$scope.view.wdg['toggle-1']['visible'] = true;

• Hide a toggle
//Show the toggle (replace ‘toggle-1’ with the ID of the toggle to be controlled)
$scope.view.wdg['toggle-1']['visible'] = false;

• Disable a toggle
//Disable the toggle (replace ‘toggle-1’ with the ID of the toggle to be controlled)
$scope.view.wdg['toggle-1']['disabled'] = true;

• Enable a toggle
//Enable the toggle (replace ‘toggle-1’ with the ID of the toggle to be controlled)
$scope.view.wdg['toggle-1']['disabled'] = false;

Not Documented Here: Class, Margin, Studio ID, Click

TOGGLE – (SHOW, HIDE, DISABLE, ENABLE) (ALL VERIFIED)

51PTC Confidential and Proprietary
51

• Set the button to be pressed
//Set the button to be pressed (replace ‘toggleButton-1’ with the ID of the button to be controlled)
$scope.view.wdg['toggleButton-1']['pressed'] = true;

• Set the button to not be pressed
//Set the button to not be pressed (replace ‘toggleButton-1’ with the ID of the button to be controlled)
$scope.view.wdg['toggleButton-1']['pressed'] = false;

• Set the image for the button when pressed
//Set the image when pressed (replace ‘toggleButton-1’ with the ID of the button to be controlled)
$scope.view.wdg['toggleButton-1']['src'] = 'app/resources/Default/vu_alert1.svg';

• Set the image for the button when not pressed
//Set the image when not pressed (replace ‘toggleButton-1’ with the ID of the button to be controlled)
$scope.view.wdg['toggleButton-1']['srcnotpressed'] = 'app/resources/Default/vu_alert1.svg';

TOGGLE BUTTON - (PRESSED, IMAGE PRESSED, IMAGE NOT PRESSED) (ALL
VERIFIED)

52PTC Confidential and Proprietary
52

• Set the background color
//Set the background color; this field supports RGB color, hexadecimal colors, or color names. (replace
‘toggleButton-1’ with the ID of the button to be controlled)
$scope.view.wdg['toggleButton-1']['backgroundColor'] = 'red';

• Set the background color when pressed
//Set the background color when pressed; this field supports RGB color, hexadecimal colors, or color
names. (replace ‘toggleButton-1’ with the ID of the button to be controlled)
$scope.view.wdg['toggleButton-1']['backgroundColorPressed'] = 'blue';

• Set the width of the button
//Set the width (replace ‘toggleButton-1’ with the ID of the button to be controlled)
$scope.view.wdg['toggleButton-1']['width'] = '100px';

• Set the height of the button
//Set the height (replace ‘toggleButton-1’ with the ID of the button to be controlled)
$scope.view.wdg['toggleButton-1']['height'] = '100px';

TOGGLE BUTTON – (BACKGROUND COLOR, BACKGROUND COLOR PRESSED,
WIDTH, HEIGHT) (ALL VERIFIED)

53PTC Confidential and Proprietary
53

• Show a button
//Show the button (replace ‘toggleButton-1’ with the ID of the button to be controlled)
$scope.view.wdg['toggleButton-1']['visible'] = true;

• Hide a button
//Hide the button (replace ‘toggleButton-1’ with the ID of the button to be controlled)
$scope.view.wdg['toggleButton-1']['visible'] = false;

• Disable a button
//Disable the button (replace ‘toggleButton-1’ with the ID of the button to be controlled)
$scope.view.wdg['toggleButton-1']['disabled'] = true;

• Enable a button
//Enable the button (replace ‘toggleButton-1’ with the ID of the button to be controlled)
$scope.view.wdg['toggleButton-1']['disabled'] = false;

Not Documented Here: Class, Studio ID, Friendly Name, Click, Pressed, Unpressed

TOGGLE BUTTON – (SHOW, HIDE, DISABLE, ENABLE) (ALL VERIFIED)

54PTC Confidential and Proprietary
54

• Set the image url
//Set the image url(replace ‘urlImage-1’ with the ID of the image to be controlled)
$scope.view.wdg['urlImage-1']['src'] = 'Enter URL here';

• Set the background color
//Set the background color; this field supports RGB color, hexadecimal colors, or color names. (replace
‘urlImage-1’ with the ID of the image to be controlled)
$scope.view.wdg['urlImage-1']['backgroundColor'] = 'red';

• Show the image
//Show the image (replace ‘urlImage-1’ with the ID of the image to be controlled)
$scope.view.wdg['urlImage-1']['visible'] = true;

• Hide the image
//Hide the image (replace ‘urlImage-1’ with the ID of the image to be controlled)
$scope.view.wdg['urlImage-1']['visible'] = false;

Not Documented Here: Class, Width, Height, Alignment, Padding, Studio ID, Friendly Name

URL IMAGE – (URL, BACKGROUND COLOR, SHOW, HIDE) (ALL VERIFIED)

55PTC Confidential and Proprietary
55

• Set the value
//Set the value (replace ‘valueDisplay-1’ with the ID of the valueDisplay to be controlled)
$scope.view.wdg['valueDisplay-1']['value'] = 'Enter value';

• Set the label
//Set the label (replace ‘valueDisplay-1’ with the ID of the valueDisplay to be controlled)
$scope.view.wdg['valueDisplay-1']['label'] = 'Enter value';

• Show the display
//Show the value display (replace ‘valueDisplay-1’ with the ID of the valueDisplay to be controlled)
$scope.view.wdg['valueDisplay-1']['visible'] = true;

• Hide the display
//Hide the value display (replace ‘valueDisplay-1’ with the ID of the valueDisplay to be controlled)
$scope.view.wdg['valueDisplay-1']['visible'] = false;

• Not Documented Here: Class, Padding, Margin, Type, Studio ID, Friendly Name

VALUE DISPLAY – (VALUE, LABEL, SHOW, HIDE) (ALL VERIFIED)

56

3D WIDGETS

57PTC Confidential and Proprietary
57

58PTC Confidential and Proprietary
58

3D CONTAINER

59PTC Confidential and Proprietary
59

3D IMAGE

60PTC Confidential and Proprietary
60

3D LABEL

61PTC Confidential and Proprietary
61

• Set the 3D Model
//Set the 3D Model (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['src'] = 'path to model';

• Set the scale
//Set the scale of the 3D Model (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['scale'] = 1.0;

• Set the X coordinate
//Set the 3D Model X coordinate (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['x'] = 0;

• Set the Y coordinate
//Set the 3D Model Y coordinate (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['y'] = 0;

• Set the Z coordinate
//Set the 3D Model Z coordinate (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['z'] = 0;

3D MODEL - (SOURCE, SCALE, X COORDINATE, Y COORDINATE, Z COORDINATE)

62PTC Confidential and Proprietary
62

• Set the X rotation
//Set the 3D Model X rotation (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['rx'] = 0;

• Set the Y rotation
//Set the 3D Model Y rotation (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['ry'] = 0;

• Set the Z rotation
//Set the 3D Model Z rotation (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['rz'] = 0;

• Show the 3D model
//Show the 3D Model (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['visible'] = true;

• Hide the 3D model
//Hide the 3D Model (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['visible'] = false;

3D MODEL – (X ROTATION, Y ROTATION, Z ROTATION, SHOW, HIDE)

63PTC Confidential and Proprietary
63

• Enable the “Occluding” property
//Enable the occluding property (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['occlude'] = true;

• Disable the “Occluding” property
//Disable the occluding property (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['occlude'] = false;

• Enable the “Always on top” property
//Enable the always on top property (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['decal'] = true;

• Disable the “Always on top” property
//Disable the always on top property (replace ‘3DModel-1’ with the ID of the 3D Model to be controlled)
$scope.view.wdg['3DModel-1']['decal'] = false;

3D MODEL – (OCCLUDING, ALWAYS ON TOP)

64PTC Confidential and Proprietary
64

• Set the text
//Set the text shown on the sensor (replace ‘3DSensor-1’ with the ID of the 3D Sensor to be controlled)
$scope.view.wdg['3DSensor-1']['text'] = 'Enter text here';

• Set the image
//Set the image (replace ‘3DSensor-1’ with the ID of the 3D Sensor to be controlled)
$scope.view.wdg['3DSensor-1']['src'] = 'app/resources/Default/vu_alert1.svg';

• Set the font
//Set the font on the sensor (replace ‘3DSensor-1’ with the ID of the 3D Sensor to be controlled)
$scope.view.wdg['3DSensor-1']['font'] = 'Arial';

• Set the font size
//Set the size of the font (replace ‘3DSensor-1’ with the ID of the 3D Sensor to be controlled)
$scope.view.wdg['3DSensor-1']['fontsize'] = '60px';

3D SENSOR – (TEXT, IMAGE, FONT, FONT SIZE) (ALL VERIFIED)

65PTC Confidential and Proprietary
65

3D SENSOR

66PTC Confidential and Proprietary
66

• Set the ThingMark
– Best practice is to bind the ThingMark property on the ThingMark widget to the ThingMark application

parameter, but here is the syntax to set it programmatically)
//Enter the ThingMark domain and id (replace ‘thingMark-1’ with the ID of the ThingMark to be controlled)
$scope.view.wdg['thingMark-1']['markerId'] = 287:1;

• Set the X coordinate
//Set the ThingMark X coordinate (replace ‘thingMark-1’ with the ID of the ThingMark to be controlled)
$scope.view.wdg['thingMark-1']['x'] = 0;

• Set the Y coordinate
//Set the ThingMark Y coordinate (replace ‘thingMark-1’ with the ID of the ThingMark to be controlled)
$scope.view.wdg['thingMark-1']['y'] = 0;

• Set the Z coordinate
//Set the ThingMark Z coordinate (replace ‘thingMark-1’ with the ID of the ThingMark to be controlled)
$scope.view.wdg['thingMark-1']['z'] = 0;

THINGMARK – (THINGMARK, X COORDINATE, Y COORDINATE, Z
COORDINATE) (ALL VERIFIED)

67PTC Confidential and Proprietary
67

• Set the X rotation
//Set the ThingMark X rotation (replace ‘thingMark-1’ with the ID of the ThingMark to be controlled)
$scope.view.wdg['thingMark-1']['rx'] = -90;

• Set the Y rotation
//Set the ThingMark Y rotation (replace ‘thingMark-1’ with the ID of the ThingMark to be controlled)
$scope.view.wdg['thingMark-1']['ry'] = 0;

• Set the Z rotation
//Set the ThingMark Z rotation (replace ‘thingMark-1’ with the ID of the ThingMark to be controlled)
$scope.view.wdg['thingMark-1']['rz'] = 0;

• Enable the “Always on top” property
//Enable the always on top property (replace ‘thingMark-1’ with the ID of the ThingMark to be controlled)
$scope.view.wdg['thingMark-1']['decal'] = true;

• Disable the “Always on top” property
//Disable the always on top property (replace ‘thingMark-1’ with the ID of the ThingMark to be controlled)
$scope.view.wdg['thingMark-1']['decal'] = false;

THINGMARK – (X ROTATION, Y ROTATION, Z ROTATION, ALWAYS ON TOP) (ALL
VERIFIED)

68PTC Confidential and Proprietary
68

• Enable the “Display tracking indicator” property – I think this works
//Enable the tracking indicator on the ThingMark (replace ‘thingMark-1’ with the ID of the ThingMark to
be controlled)
$scope.view.wdg['thingMark-1']['tracking-indicator'] = true;

• Disable the “Display tracking indicator” property – I think this works
//Disable the tracking indicator on the ThingMark (replace ‘thingMark-1’ with the ID of the ThingMark to
be controlled)
$scope.view.wdg['thingMark-1']['tracking-indicator'] = false;

THINGMARK – (TRACKING INDICATOR)

