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Motivation

• Reliability of Android is well explored but wearables come with a new set 
of challenges

○ Wearable devices are sensor rich and have limited resources

○ User Interface (UI) is designed to require minimal human interaction
(micro transactions)

○ Unique communication pattern where many apps are tethered with a 
mobile counterpart

• A popular use-case is monitoring, accumulating and disseminating of health 
and fitness data

• Existing testing approaches overlook the above unique features of the 
wearable ecosystem
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State Model Parameters

• Sensor activity: Status of a sensor (activated or deactivated)

• Inter-device communication: Presence of active communication between 
mobile and wearable

Vulnerable State:  
States with 
maximum 
concurrent activity
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Vulcan Workflow
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Automated Intent Specification Generation

• We designed a text analysis tool to parse the Android Specification to 
generate semi-valid Intents

• Core analysis techniques:

○ Lexical Matching

○ Pattern Matching

• Accuracy of 93.5%

• Adds Vulcan the capability to dynamically adapt to changes in the Android 
Intent Specification.
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Fuzzing Strategies

• Intent Injection Fuzzing

• Communication Fuzzing: empty

• Communication Fuzzing: random

{act=ACTION.RUN, 

cmp=some.component.name}

{act=fitness.TRACK, 

cmp=some.component.name} ������

[/getOffDismissed, 

(SomeMessage)]

[/getOffDismissed,

(null)] ������

[/getOffDismissed,

(SomeMessage)]

[/getOfDismissed,

(11000111)] ������
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Evaluation through State-aware Fuzzing

• We evaluated 100 apps and sent over 1M Intents to fuzz the Wear OS apps

• Baselines: Ape [ICSE ‘19], QGJ [DSN ‘18], Monkey

• We designed the experiments based on the following goals:

○ Evaluate the effectiveness of a state-aware fuzzing strategy.

○ Evaluate the degree of concurrency on application reliability. We 
developed a Manipulator app to stress the apps and the device by 
activating sensors externally

Slide 10/22

Outline

• Motivation

• Vulcan Design

• State-aware Study Results

• System Reboots Analysis

• Lessons Learned

• Conclusion



7/1/2020

6

Slide 11/22

State-aware Injections are More Effective

• State-aware injections are more effective 
than state-agnostic tools in triggering 
crashes and reboots

• Sensor activation has a negative effect in the 
overall reliability of the system

• ANR and System Reboots were more 
frequent on states with higher sensor 
activity

Impact of Device State in the Reliability
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Distribution of Exception Types

• NullPointerException 
dominates across all tools as the 
main cause of failure

• Most crashes can be avoided by 
doing exception handling in the 
apps
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Unique Crashes across Tools

• QGJ and Vulcan have a large 
degree of overlap primarily 
because they use similar Intent 
injection campaigns

• Vulcan is able to trigger 8 
crashes not triggered by QGJ
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QGJ vs Vulcan

• Efficiency: Vulcan is 5.5X more efficient than QGJ in inducing unique 
crashes through Intent fuzzing with less Intents

• Failure Types: Vulcan was able to identify 5 failures related to inter-device 
communication. These failures were mostly due to IllegalStateException

• Deterministic System Reboots: In our experiments, QGJ did not trigger 
any system reboots. We identified that apps with high concurrency often 
trigger system reboots using Vulcan – Vulcan was able to trigger system 
reboots deterministically on these apps
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System Reboots due to Resource Starvation

• Our results show that it is possible to trigger system reboots on Wear OS 
without any system-level or root privileges

• Watchdog is a protection mechanism to prevent the wearable from 
becoming unresponsive

• The root cause of the System Reboot is related to lock handling in the OS

• Watchdog kills the System Server process if any monitored component is 
hung, triggering a system reboot
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Mitigation of System Reboots

• Use an Intent buffer to alleviate resource 
starvation and thereby prevent system reboots

• Intents sent from one app to another are stored in 
the buffer. Then a Fetcher process fetches one 
Intent every time

• System Intents (trusted) can bypass our buffer

• We tested our solution in a user study with 15 
users and only one noted a significant difference 
in the performance due latency introduced by the 
Intent Fetcher

App #1 App #2

BufferUser level

OS level

Implementation

Slide 18/22

Outline

• Motivation

• Vulcan Design

• State-aware Study Results

• System Reboots Analysis

• Lessons Learned

• Conclusion



7/1/2020

10

Slide 19/22

Lessons Learned

• Input Handling: Improper input validation of Intents is still a major cause 
for crashes in Wear OS

• Android – Wear OS Code Transfer: Legacy code in Wear OS makes 
wearable apps vulnerable to the injection of KEYCODE_SEARCH key

• Error Propagation: Vulnerabilities related to ongoing synchronization 
between mobile and wearable can lead to error propagation

• System Reboots: Resource starvation on Wear OS can lead to system 
reboots 
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Conclusion

• State-aware fuzzing leads to more app crashes compared to state-agnostic 
fuzzing

• It is possible to deterministically reboot a wearable device from a user app, 
no system-level or root privileges, by targeting specific states. Besides, our 
POC solution based on an Intent buffer helps to prevent the system reboot

• Lessons for improving the wearable ecosystem are better exception 
handling, type checking of inter-device communication messages, and 
diagnosing and terminating components that starve sensor resources
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Q&A

Thank you!
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Vulcan Architecture
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Device State affects the Reliability

Failure manifestation for apps that use 
sensors.

Failure manifestation for apps that do not 
use sensors. In parenthesis (Intent 
Fuzzing Result, Communication Fuzzing 
Result).
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Effect of Load on System Reboots

As the number of sensors activated 
increases, we need fewer number of Intents 
to trigger a system reboot.

The faster the sensors are sampled, the 
more resources they consume and therefore, 
it requires fewer Intents to trigger system 
reboots.
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Contributions

• State-aware Fuzzing: We present a state-aware fuzzing tool for the Wear 
OS ecosystem

• Higher Failure Activation: We show that the stateful fuzzing can increase 
the fault activation rate on Wear OS compared to prior works

• System Reboot: We demonstrate that is possible to trigger system reboots 
deterministically through Intent injection, without system-level or root 
privileges. We designed and implemented a POC solution to prevent these 
system reboots




