
7/1/2020

1

Slide 1/22

Vulcan: Lessons on Reliability of Wearables
through State-Aware Fuzzing

Edgardo Barsallo Yi, Heng Zhang, Kefan Xu, Amiya Maji,
Saurabh Bagchi

Dependable Computing System Lab (DCSL)
Purdue University

Slide 2/22

Outline

• Motivation

• Vulcan Design

• State-aware Study Results

• System Reboots Analysis

• Lessons Learned

• Conclusion

7/1/2020

2

Slide 3/22

Motivation

• Reliability of Android is well explored but wearables come with a new set
of challenges

○ Wearable devices are sensor rich and have limited resources

○ User Interface (UI) is designed to require minimal human interaction
(micro transactions)

○ Unique communication pattern where many apps are tethered with a
mobile counterpart

• A popular use-case is monitoring, accumulating and disseminating of health
and fitness data

• Existing testing approaches overlook the above unique features of the
wearable ecosystem

Slide 4/22

Outline

• Motivation

• Vulcan Design

• State-aware Study Results

• System Reboots Analysis

• Lessons Learned

• Conclusion

7/1/2020

3

Slide 5/22

State Model Parameters

• Sensor activity: Status of a sensor (activated or deactivated)

• Inter-device communication: Presence of active communication between
mobile and wearable

Vulnerable State:
States with
maximum
concurrent activity

Slide 6/22

Vulcan Workflow

OFFLINE

ONLINE

RUN app w/
monitoring

tools running

OBSERVE
system logs
sensor logs

PARSE logs for events
and communication

messages

BUILD
state
model

IDENTIFY
vulnerable

states

BUILD event
sequence to
steer the app

STEER app to
vulnerable states

COLLECT
system logs

DETECT app
failures &

system failures

PINPOINT
unique
failures

PERFORM
state aware

fuzzing

ANALYZE:

• Failure types
• Vulnerable states
• Root causes

1 2

1 2

Y

7/1/2020

4

Slide 7/22

Automated Intent Specification Generation

• We designed a text analysis tool to parse the Android Specification to
generate semi-valid Intents

• Core analysis techniques:

○ Lexical Matching

○ Pattern Matching

• Accuracy of 93.5%

• Adds Vulcan the capability to dynamically adapt to changes in the Android
Intent Specification.

Slide 8/22

Fuzzing Strategies

• Intent Injection Fuzzing

• Communication Fuzzing: empty

• Communication Fuzzing: random

{act=ACTION.RUN,

cmp=some.component.name}

{act=fitness.TRACK,

cmp=some.component.name} ������

[/getOffDismissed,

(SomeMessage)]

[/getOffDismissed,

(null)] ������

[/getOffDismissed,

(SomeMessage)]

[/getOfDismissed,

(11000111)] ������

7/1/2020

5

Slide 9/22

Evaluation through State-aware Fuzzing

• We evaluated 100 apps and sent over 1M Intents to fuzz the Wear OS apps

• Baselines: Ape [ICSE ‘19], QGJ [DSN ‘18], Monkey

• We designed the experiments based on the following goals:

○ Evaluate the effectiveness of a state-aware fuzzing strategy.

○ Evaluate the degree of concurrency on application reliability. We
developed a Manipulator app to stress the apps and the device by
activating sensors externally

Slide 10/22

Outline

• Motivation

• Vulcan Design

• State-aware Study Results

• System Reboots Analysis

• Lessons Learned

• Conclusion

7/1/2020

6

Slide 11/22

State-aware Injections are More Effective

• State-aware injections are more effective
than state-agnostic tools in triggering
crashes and reboots

• Sensor activation has a negative effect in the
overall reliability of the system

• ANR and System Reboots were more
frequent on states with higher sensor
activity

Impact of Device State in the Reliability

Slide 12/22

Distribution of Exception Types

• NullPointerException
dominates across all tools as the
main cause of failure

• Most crashes can be avoided by
doing exception handling in the
apps

7/1/2020

7

Slide 13/22

Unique Crashes across Tools

• QGJ and Vulcan have a large
degree of overlap primarily
because they use similar Intent
injection campaigns

• Vulcan is able to trigger 8
crashes not triggered by QGJ

Slide 14/22

QGJ vs Vulcan

• Efficiency: Vulcan is 5.5X more efficient than QGJ in inducing unique
crashes through Intent fuzzing with less Intents

• Failure Types: Vulcan was able to identify 5 failures related to inter-device
communication. These failures were mostly due to IllegalStateException

• Deterministic System Reboots: In our experiments, QGJ did not trigger
any system reboots. We identified that apps with high concurrency often
trigger system reboots using Vulcan – Vulcan was able to trigger system
reboots deterministically on these apps

11

7/1/2020

8

Slide 15/22

Outline

• Motivation

• Vulcan Design

• State-aware Study Results

• System Reboots Analysis

• Lessons Learned

• Conclusion

Slide 16/22

System Reboots due to Resource Starvation

• Our results show that it is possible to trigger system reboots on Wear OS
without any system-level or root privileges

• Watchdog is a protection mechanism to prevent the wearable from
becoming unresponsive

• The root cause of the System Reboot is related to lock handling in the OS

• Watchdog kills the System Server process if any monitored component is
hung, triggering a system reboot

7/1/2020

9

Slide 17/22

Mitigation of System Reboots

• Use an Intent buffer to alleviate resource
starvation and thereby prevent system reboots

• Intents sent from one app to another are stored in
the buffer. Then a Fetcher process fetches one
Intent every time

• System Intents (trusted) can bypass our buffer

• We tested our solution in a user study with 15
users and only one noted a significant difference
in the performance due latency introduced by the
Intent Fetcher

App #1 App #2

BufferUser level

OS level

Implementation

Slide 18/22

Outline

• Motivation

• Vulcan Design

• State-aware Study Results

• System Reboots Analysis

• Lessons Learned

• Conclusion

7/1/2020

10

Slide 19/22

Lessons Learned

• Input Handling: Improper input validation of Intents is still a major cause
for crashes in Wear OS

• Android – Wear OS Code Transfer: Legacy code in Wear OS makes
wearable apps vulnerable to the injection of KEYCODE_SEARCH key

• Error Propagation: Vulnerabilities related to ongoing synchronization
between mobile and wearable can lead to error propagation

• System Reboots: Resource starvation on Wear OS can lead to system
reboots

Slide 20/22

Outline

• Motivation

• Vulcan Design

• State-aware Study Results

• System Reboots Analysis

• Lessons Learned

• Conclusion

7/1/2020

11

Slide 21/22

Conclusion

• State-aware fuzzing leads to more app crashes compared to state-agnostic
fuzzing

• It is possible to deterministically reboot a wearable device from a user app,
no system-level or root privileges, by targeting specific states. Besides, our
POC solution based on an Intent buffer helps to prevent the system reboot

• Lessons for improving the wearable ecosystem are better exception
handling, type checking of inter-device communication messages, and
diagnosing and terminating components that starve sensor resources

Slide 22/22

Q&A

Thank you!

7/1/2020

12

Slide 23/22

Extra Slides

Slide 24/22

Vulcan Architecture

Offline Training

State model

Droidbot

ADB (Android Debug Bridge)

Events

wear
logcat

log
traces

Monitor

Instrumentationapp

Model
Parser/Builder

mobile wearable

computer

Replay

ADB (Android Debug Bridge)

log
traces

Monitor

Instrumentation

State model

app

Orchestrator

mobile wearable

computer

Fuzzer
(Intents)

UI events

Fuzzer

Fuzz Application

7/1/2020

13

Slide 25/22

Device State affects the Reliability

Failure manifestation for apps that use
sensors.

Failure manifestation for apps that do not
use sensors. In parenthesis (Intent
Fuzzing Result, Communication Fuzzing
Result).

2

Slide 26/22

Effect of Load on System Reboots

As the number of sensors activated
increases, we need fewer number of Intents
to trigger a system reboot.

The faster the sensors are sampled, the
more resources they consume and therefore,
it requires fewer Intents to trigger system
reboots.

3

7/1/2020

14

Slide 27/22

Contributions

• State-aware Fuzzing: We present a state-aware fuzzing tool for the Wear
OS ecosystem

• Higher Failure Activation: We show that the stateful fuzzing can increase
the fault activation rate on Wear OS compared to prior works

• System Reboot: We demonstrate that is possible to trigger system reboots
deterministically through Intent injection, without system-level or root
privileges. We designed and implemented a POC solution to prevent these
system reboots

