
Vulkan SDK Version Compatibility

Mark Young, LunarG
Updated June 2021

Introduction
Vulkan was originally released in March of 2016. Since that time the Khronos Vulkan Working
Group continues to update the Vulkan API. When new Vulkan releases become available, the
version number associated with the API gets incremented. This document was originally
published in May of 2018 to share the impact of the new Vulkan 1.1 release on applications
written with Vulkan 1.0. We’ve updated this white paper to explain how new Vulkan 1.x releases
may impact applications.

Major and Minor Releases

The Vulkan API was originally released with three components comprising its release
numbering, indicated by three period-separated numbers in the specification version. For
example:

Vulkan 1.2.131
- The Major version here is 1
- The Minor version here is 2
- The Patch version here is 131

However, starting in Vulkan 1.2.175, the API version was modified so that the release number is
now composed of four components. The first number now indicates the variant identifier. For
typical Vulkan, this value will always be 0. But other variants of Vulkan may be released that
behave differently in some key ways and these will have a unique variant identifier. The other
three numbers remain the same.

So a new version would theoretically appear like this:

Vulkan 0.1.2.131
- The variant identifier here is 0
- The Major version here is 1
- The Minor version here is 2
- The Patch version here is 131

June 2021 Vulkan SDK Version Compatibility 1

This looks confusing, but the good news is that the variant is not going to be typically listed in a
Vulkan version, so you will continue to see versions like 1.2.131 or 1.2.175. However, the
macros used to previously grab Major, Minor, and generate API version values are now
deprecated. This is detailed later in the “Vulkan Version Macros” section. For now, just be
aware that this change has taken place.

The Major version is used to indicate a major change to the API that may or may not be
compatible with other Major versions of the API. For example, a library or tool written for Vulkan
5.0 (hypothetical future release), would not necessarily be compatible with any earlier version of
Vulkan. Therefore, whenever a new Major version of the Vulkan API is released, you will
require newer versions of the entire toolchain to work with the newer API.

On the other hand, the Minor version indicates a backward compatible change to the API. For
example, Vulkan 1.0 and Vulkan 1.1 libraries and layers may be used by Vulkan 1.0
applications. Likewise, a Vulkan 1.2 loader could be used by Vulkan 1.0, 1.1, and 1.2
applications. Each new Minor release simply adds additional functionality to the API that may
be used without modifying pre-existing applications. Of course, since new functionality is
added, a Vulkan 1.2 application requires a Vulkan 1.2 loader and layers to properly function.

The Patch version is used to indicate the specific weekly release of the Vulkan specification and
headers used when generating the files. The Patch version should be ignored in general
application development.

Does the Latest Vulkan Version 1 SDK Support my Older
Vulkan 1.x Application?

Minor releases are backward compatible, so SDKs need not be released for previous Minor
release versions of the API. Minor releases such as Vulkan 1.1 and 1.2 add additional
functionality to the API without modifying the behavior of anything already using Vulkan 1.0
functionality. Therefore, it guarantees compatibility for applications written for earlier 1.x versions
of Vulkan:

1. Application binaries built from a 1.0 Vulkan header will work with the latest Vulkan 1.x
versions of the validation layers, Vulkan runtime (loader), and drivers.

2. Application source written to use an earlier Minor release Vulkan headers (such as those
written for Vulkan 1.0 or 1.1) can be built with the latest release of the Vulkan 1.x SDK.

LunarG no longer plans to release Vulkan SDKs based on older minor releases of the Vulkan
headers because of this compatibility. To continue to get the latest validation layers and other

June 2021 Vulkan SDK Version Compatibility 2

SDK components, you can use the latest Vulkan 1.x versioned SDKs and be
confident that the validation layers, tools, and Vulkan runtime will properly work with your
applications written against an earlier Minor release of Vulkan.

Windows driver updates from independent hardware vendors (IHVs) will continue to bundle the
Vulkan Runtime and will be moving to the latest minor release of Vulkan 1.x as soon as
possible.

Vulkan Version Macros

As mentioned before, starting with Vulkan 1.2.175, the old macros for accessing/creating Vulkan
API version values have been deprecated. This is because the Vulkan version value went from
being a 32-bit value composed of three individual component numbers to a 32-bit value
composed of four component numbers.

Originally the 32-bit version number bitwise layout looked like this:

Major Minor Patch

32 22 21 12 11 0

Vulkan provides macros for creating and querying 32-bit Vulkan API version values. They would
be used in the following way:

// Generate a 32-bit number Vulkan API 1.2.3
uint32_t vulkan_api_version = VK_MAKE_VERSION(1, 2, 3);

// Grab the Major, Minor and Patch versions out of a returned Vulkan version
uint32_t vulkan_instance_api_version;
vkEnumerateInstanceVersion(&vulkan_instance_api_version)
uint32_t vulkan_major_version = VK_VERSION_MAJOR(vulkan_instance_api_version);
uint32_t vulkan_minor_version = VK_VERSION_MINOR(vulkan_instance_api_version);
uint32_t vulkan_patch_version = VK_VERSION_PATCH(vulkan_instance_api_version);

The previous versions of this document used these macros. These macros are still available,
but they have been deprecated starting with 1.2.175. Deprecation simply means that these
macros are going to be removed at some point, likely a Major version update from Vulkan.
Starting with Vulkan 1.2.175, the major version was split up. The lower 7-bits continue to
identify the Major API version, but the higher 3 bits are now used to identify the variant value.

June 2021 Vulkan SDK Version Compatibility 3

The new 32-bit version number bitwise layout looks like the following:

Variant Major Minor Patch

32 29 28 22 21 12 11 0

Vulkan provides macros for creating and querying 32-bit Vulkan API version values. They
should be used in the following way:

// Generate a 32-bit number Vulkan API 1.2.3 (with a variant identifier of 0 meaning
// standard Vulkan).
uint32_t vulkan_api_version = VK_MAKE_API_VERSION(0, 1, 2, 3);

// Grab the Major, Minor and Patch versions out of a returned Vulkan version
uint32_t vulkan_instance_api_version;
vkEnumerateInstanceVersion(&vulkan_instance_api_version)
uint32_t vulkan_major_version =

VK_API_VERSION_MAJOR(vulkan_instance_api_version);
uint32_t vulkan_minor_version =

VK_API_VERSION_MINOR(vulkan_instance_api_version);
uint32_t vulkan_patch_version =

VK_API_VERSION_PATCH(vulkan_instance_api_version);

Since this document aims to show you the ideal usage of the Vulkan API, it has been modified
to only use the new macros.

How to Migrate Your Applications to the Latest Vulkan 1.x
Minor Release

Starting with Vulkan 1.1, the VkApplicationInfo substructure of VkInstanceCreateInfo is no
longer optional if you want to create a Vulkan 1.1 (or newer) application. There is now a process
for properly creating a Vulkan application for Vulkan 1.1 and newer:

1. First, find out what API version the runtime supports for Instances:
a. To do this, you must determine if the vkEnumerateInstanceVersion entry-point

is available on your system.

PFN_vkEnumerateInstanceVersion
pEnumInstanceVersion =

reinterpret_cast<PFN_vkEnumerateInstanceVersion>(
vkGetInstanceProcAddr(VK_NULL_HANDLE,

"vkEnumerateInstanceVersion"));

June 2021 Vulkan SDK Version Compatibility 4

b. If pEnumInstanceVersion is NULL, then your system can only support Vulkan
1.0.

c. If pEnumInstanceVersion is not NULL, then you must query the API version that
your Vulkan loader can support for VkInstance objects by calling the function.

uint32_t api_version = VK_MAKE_API_VERSION(0, 1, 0, 0);
if (NULL != pEnumInstanceVersion) {

// Call down and get the actual Vulkan API Version
// supported.
// NOTE: It should replace what we originally put in.
pEnumInstanceVersion(&api_version);

}

This is the maximum API version an instance can be created for on a system. If the
returned version is greater than or equal to Vulkan 1.2 you may create a Vulkan 1.2
Instance. If not, you may only create an application using the largest minor version
returned by the vkEnumerateInstanceVersion function pointer.

For example:

if (VK_MAKE_API_VERSION(0, 1, 2, 0) <= apiVersion) {
// 1.2 or newer is available

} else if (VK_MAKE_API_VERSION(0, 1, 1, 0) <= apiVersion) {
// 1.1 or newer is available

} else {
// Only Vulkan 1.0 is available

}

2. Next, if Vulkan 1.2 instances are supported, you must create a VkApplicationInfo
structure, and set the “apiVersion” field to the following:

VkApplicationInfo myApplicationInfo = {};
...
myApplicationInfo.apiVersion = VK_MAKE_API_VERSION(0, 1, 2, 0);

3. Then, you must set the VkInstanceCreateInfo pApplicationInfo to point to the above
application info struct:

VkInstanceCreateInfo myInstanceCreateInfo = {};
…
myInstanceCreateInfo.pApplicationInfo = &myApplicationInfo;

June 2021 Vulkan SDK Version Compatibility 5

4. Finally, call vkCreateInstance as you normally would with your
VkInstanceCreateInfo structure.

Ensuring That Your Physical Devices Support the Latest
Minor Release of Vulkan

An additional process is necessary to ensure that your physical devices support the latest Minor
release of Vulkan:

1. Once you have created a Vulkan instance at the proper release version, you still must
check which physical devices support Vulkan at that specific Minor release. This check
is necessary because multiple Vulkan-capable devices may be available on your system.
While one physical device may have been updated to support the latest Minor release,
one or more of the others may not yet support the latest Minor release. To verify the
version on any physical device, call:

VkPhysicalDeviceProperties properties = {};
…
vkGetPhysicalDeviceProperties(physicalDevice, &properties);

2. The supported API version of this physical device will be given in the “apiVersion” field of
the VkPhysicalDeviceProperties structure and will take the same format as the
“apiVersion” field in vkEnumerateInstanceVersion.

Code Snippet

[Based on the “vulkan_1_1_flexible.cpp” sample in the Vulkan SDK]

VkInstance instance = VK_NULL_HANDLE;

// Keep track of the major/minor version we can actually use
uint16_t using_major_version = 1;
uint16_t using_minor_version = 0;
std::string using_version_string = "";

// Set the desired version we want
uint16_t desired_major_version = 1;
uint16_t desired_minor_version = 1; // Set this to the version you desire
uint32_t desired_version = VK_MAKE_API_VERSION(

0, // Variant value (always 0 for standard Vulkan)

June 2021 Vulkan SDK Version Compatibility 6

https://vulkan.lunarg.com/

desired_major_version,
desired_minor_version,
0);

std::string desired_version_string = "";
desired_version_string += std::to_string(desired_major_version);
desired_version_string += ".";
desired_version_string += std::to_string(desired_minor_version);
VkInstance instance = VK_NULL_HANDLE;
std::vector<VkPhysicalDevice> physical_devices_desired;

// Determine if the new instance version command is available
PFN_vkEnumerateInstanceVersion pEnumerateInstanceVersion =

(PFN_vkEnumerateInstanceVersion)vkGetInstanceProcAddr(
VK_NULL_HANDLE,
"vkEnumerateInstanceVersion");

// If the command exists, query what version the Vulkan instance supports
uint32_t api_version = 0;
uint16_t instance_major_version = 1;
uint16_t instance_minor_version = 0;
if (NULL != pEnumerateInstanceVersion &&

VK_SUCCESS == pEnumerateInstanceVersion(&api_version)) {

// Translate the version into major/minor for easier comparison
instance_major_version = VK_API_VERSION_MAJOR(api_version);
instance_minor_version = VK_API_VERSION_MINOR(api_version);
std::cout <<

"Instance support detected for Vulkan " <<
instance_major_version << "." << instance_minor_version << "\n";

}

// Check current version against what we want to run
if (instance_major_version > desired_major_version ||

(instance_major_version == desired_major_version &&
instance_minor_version >= desired_minor_version)) {

// Initialize the VkApplicationInfo structure with the version
// of the API we're intending to use
VkApplicationInfo app_info = {};
app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
app_info.pNext = NULL;
app_info.pApplicationName = APP_SHORT_NAME;
app_info.applicationVersion = 1;
app_info.pEngineName = APP_SHORT_NAME;
app_info.engineVersion = 1;
app_info.apiVersion = desired_version;

June 2021 Vulkan SDK Version Compatibility 7

// Initialize the VkInstanceCreateInfo structure
VkInstanceCreateInfo inst_info = {};
inst_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
inst_info.pNext = NULL;
inst_info.flags = 0;
inst_info.pApplicationInfo = &app_info;
inst_info.enabledExtensionCount = 0;
inst_info.ppEnabledExtensionNames = NULL;
inst_info.enabledLayerCount = 0;
inst_info.ppEnabledLayerNames = NULL;

// Attempt to create the instance
if (VK_SUCCESS != vkCreateInstance(&inst_info, NULL, &instance)) {

std::cout << "Unknown error creating " <<
desired_version_string << " Instance\n";

exit(-1);
}

// Get the list of physical devices
uint32_t phys_dev_count = 1;
if (VK_SUCCESS != vkEnumeratePhysicalDevices(instance,

&phys_dev_count, NULL) ||
phys_dev_count == 0) {

std::cout << "Failed searching for Vulkan physical devices\n";
exit(-1);

}
std::vector<VkPhysicalDevice> physical_devices;
physical_devices.resize(phys_dev_count);
if (VK_SUCCESS != vkEnumeratePhysicalDevices(instance,

&phys_dev_count, physical_devices.data()) ||
phys_dev_count == 0) {

std::cout << "Failed enumerating Vulkan physical devices\n";
exit(-1);

}

// Go through the list of physical devices and select only
// those that are capable of running the API version we want.
for (uint32_t dev = 0; dev < physical_devices.size(); ++dev) {

VkPhysicalDeviceProperties physical_device_props = {};
vkGetPhysicalDeviceProperties(physical_devices[dev],

&physical_device_props);
if (physical_device_props.apiVersion >= desired_version) {

June 2021 Vulkan SDK Version Compatibility 8

physical_devices_desired.push_back(physical_devices[dev]);
}

}

// If we have something in the desired version physical device
// list, we're good
if (physical_devices_desired.size() > 0) {

using_major_version = desired_major_version;
using_minor_version = desired_minor_version;

}
}

if (using_major_version < desired_major_version ||
(using_major_version == desired_major_version &&
using_minor_version < desired_minor_version)) {

using_version_string += std::to_string(using_major_version);
using_version_string += ".";
using_version_string += std::to_string(using_minor_version);

std::cout <<
"Determined this system can only use Vulkan API version " <<
using_version_string <<
" instead of desired version " << desired_version_string <<
std::endl;

vkDestroyInstance(instance, nullptr);
exit(-1);

}

std::cout <<
"Determined that this system can run desired Vulkan API version " <<
desired_version_string << std::endl;

// You can now use Vulkan desired_major_version.desired_minor_version!

Supporting 1.0 and Later Vulkan Loaders

If you intend to support Vulkan 1.0 loaders as well as any newer Vulkan loaders, you can't link
directly to any Vulkan 1.1, 1.2, or newer commands. Otherwise, when your Vulkan application
attempts to utilize the newer commands on a user’s system, it will crash since the dynamic
linking will fail. If you do intend to support users who may have older versions of the Vulkan
loader installed, you must build your own dispatch table of newer non-Vulkan 1.0 commands

June 2021 Vulkan SDK Version Compatibility 9

using vkGetInstanceProcAddr and vkGetDeviceProcAddr and then
validate that the commands are present as well as verifying the Vulkan version as mentioned
above.

Since there is a likelihood of your application reaching a user who still has a Vulkan 1.0 loader
on their system, it is best to make sure you consider this during your creation process.

In Summary

It is not valid to use any Vulkan functionality beyond Vulkan 1.0 if you do any of the following:
1. Fail to successfully call vkEnumerateInstanceVersion.
2. Set myInstanceCreateInfo.pApplicationInfo = NULL when creating your instance.
3. Set myApplicationInfo.apiVersion incorrectly when creating your instance. Incorrect

values include:
a. 0
b. VK_MAKE_API_VERSION(<any_non-zero_integer>, 1, 0, 0)

i. Remember the variant must be 0 for standard Vulkan
c. VK_MAKE_API_VERSION(0, 1, 0, <any_non-zero_integer>)

i. The patch is ignored when querying Vulkan versions

Remember, to legally use any Vulkan 1.x functionality beyond Vulkan 1.0 in your application you
should:

1. Query the vkEnumerateInstanceVersion function pointer by calling
vkGetInstanceProcAddr

2. Call returned vkEnumerateInstanceVersion function pointer
a. Verify that it returns VK_SUCCESS
b. Determine that the API version returned is greater than or equal to

VK_MAKE_API_VERSION(0, 1, <target_minor_version>, 0)
3. Create an instance with VkApplicationInfo defined and the “apiVersion” field set to

VK_MAKE_API_VERSION(0, 1, <target_minor_version>, 0)
4. Select a physical device that supports Vulkan 1.<target_minor_version> by querying

device support through vkGetPhysicalDeviceProperties and checking the “apiVersion”
field of the generated VkPhysicalDeviceProperties structure.

All these steps are required to properly select a device that supports the latest Vulkan 1.x
version. If you don’t perform all of these steps, you can only be guaranteed that Vulkan 1.0
functionality is present.

June 2021 Vulkan SDK Version Compatibility 10

Document Change Log

May 2018 First publication date

January 2019 Added clarifications for some descriptions and a
requested code snippet.

April 2020 Updated document for Vulkan 1.2 release and minor spec
changes.

June 2021 Updated to remove deprecated Vulkan version macros
and add a description of the newly defined Vulkan variant
ID.

June 2021 Vulkan SDK Version Compatibility 11

