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Abstract—Deep Neural Networks have found many practical
applications that are beginning to demand their implementation
in hardware for a variety of cost, performance reasons. Microelec-
tronic variability, that is, variations in manufactured hardware
to variations in operating conditions are a practical reality that
has led to design guardbands. These guardbands increasingly
undermine the cost/performance advantage of hardware imple-
mentations and force us to seek more efficient solutions often
spanning the entire system design.

In this paper, we explore to what extent microelectronic
variations affect the quality of results from neural networks
and then understand with what opportunities we can improve
networks to survive the challenges aroused by physical variations.
Given the inherent resilience of neural networks due to the
adaptation of their learning parameters, one would expect the
quality of results produced by neural networks to be relatively
insensitive to the rising timing error rates caused by increased
variations. On the contrary, our results of error injection on
multiple-layer perceptron (MLP) and convolutional neural net-
work (CNN) show that the two canonical network types cannot
withstand typical physical variations with voltage droops as
small as 20 mV. Instead, alternative algorithmic implementations
provide greater resilience. In particular, we examine here two
such alternatives: the binarized neural network (BNN) and local
binary pattern network (LBPNet) and present results that show
greater sustenance against physical variations.

I. INTRODUCTION

Neural network algorithms have found use in a wide range
of applications such as medical diagnostics, image classifi-
cation, speech recognition, and natural language processing.
This versatility has led to their implementation on a variety of
hardware platforms: GPU, FPGA, and ASIC.

With the continuous scaling of CMOS technology, the
underlying transistors in all these implementations are in-
creasingly susceptible to variations in manufacturing and
operating conditions. Dynamic variations in microelectronic
systems, which are the main focus of this paper, are caused
by environmental factors such as supply voltage droops and
temperature fluctuations. Voltage droops are caused in re-
sponse to instantaneous current fluctuations due to activities
on the power delivery network. Temperature fluctuation could
alter the circuit parameters such as carrier mobility and
threshold voltage. Such variations can manifest themselves
as timing errors, leading to incorrect computation outputs
and system failures. Notwithstanding setting up guardbands

is the standard solution to ensure the system’s functionality,
the incomprehension of NNs’ vulnerability can derive over-
designed guardbands encumbering the throughput of hardware
accelerators or GPUs.

Due to the ability to adapt neural networks’ learnable
parameters for extracting the abstract common features in
data, NNs have an inherent resilience to errors. Thus, one
would expect that the quality of results produced by hardware
neural networks (HNNs) to be relatively insensitive to the
rising timing error rates caused by increased variation, thus
opening doors for opportunistic reduction of guardbands to
increase the operational efficiency of hardware. There is a
need for a quantitative assessment here to explore the extent
to which guardbands can be reduced in HNNs. We investigate
this question as to whether and how much accuracy of HNNs
could be affected by dynamic variations. To do this, we capture
and represent variations from low-level hardware, and then
expose them to neural network inferences. Unlike logic errors
which can be derived through a mathematical formulation[2],
variation-induced timing errors can only be obtained using
gate-level simulation, making the error injection implemen-
tation time-consuming and not scalable.

Approach and Contributions: We propose a cross-layer
approach to assess the vulnerability of HNNs to dynamic volt-
age and temperature variations, in which we extract the timing
errors from the hardware layer using gate-level simulations
and examine their effects on the software layer using error
injections. To evaluate the soundness of this approach, we
measure the timing errors using gate-level simulations (GLS)
of post-layout circuits in TSMC 45nm technology. We vary
the voltage and temperature in a wide range to examine the
effects of variations. Then, we represent and inject these timing
errors to neural networks during their inference. Finally, we
examine the resilience of four types of neural networks, multi-
layer perceptron (MLP), convolutional neural network (CNN),
binarized convolutional neural network (BCNN) [3]], and local
binary pattern network (LBPNet) [5], [6]], by testing them on
MNIST dataset.

Based on our implementation and evaluation, this paper
makes the following contributions:

e We extract the circuit level timing errors caused by

voltage and temperature variations from twenty different
operating conditions using gate-level simulations.
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Fig. 1. An example of a 4-layer multi-layer perceptron neural network.
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Fig. 2. The processes among a convolutional layer.

« We inject such timing errors back into neural network
inference and evaluate the accuracy of MNIST dataset at
different conditions.

o Our results quantitatively show that variations can signif-
icantly affect the inference accuracy on NNs.

« Among the four subject networks, LBPNet provides the
most reliable error immunity that the other three networks
cannot be on par.

II. HARDWARE NEURAL NETWORKS

Modeled for neural processing, Figure [T] shows a typical
neural network, an MLP consisting of an input layer, hid-
den layers, and an output layer. Except for the input layer,
all remaining layers are composed of artificial neurons that
represent the basic computation unit. An artificial neuron
consists of a linear processing part followed by a nonlinear
processing part. The linear part collects the output information,
a.k.a activations, from the previous layer, and the collection
method is a dot production between weights and activations.
The nonlinear part includes regularization like dropout, and
activation functions such as logistic sigmoid, hyperbolic tan-
gent, or rectilinear unit (ReLU). The nonlinear activation
function enables a neural network to be a universal function
approximator. The forward-backward propagation algorithm
intelligently applies the chain rule of calculus and gradient
descent on neural networks to train the weights and hence
minimizes the classification errors.

Since proposed in 1989, CNNs have pushed the perfor-
mance of neural networks to a new realm. Figure [2] depicts
the internal processes in a convolutional layer with nine
kernels, each of which consists of three filters. The convolution

operation models the hardwired bonding between the neurons
on adjacent layers. It uses a sliding filter to perform dot-
products of the filter and uses a portion of the input image
gradually to generate an output image, namely the feature map.
Since the convolution operations are differentiable, the filters
can be trained to capture the features of the input images with
backward propagation. Pooling is used to reduce the size of a
feature map and increase the reception area by selecting the
maximum pixel strength or averaging several pixel strengths. It
benefits the translation invariance because it drops unnecessary
minor information and preserves the most dominant features
for the overall classification task.

The robustness of neural networks comes from many as-
pects. From a higher-level point of view, the training process
of a neural network model is an ensemble of multiple linear or
logistic regressions working in parallel. The regression ignores
minor noises of the data and yields a model for the most
likely distribution of the given data. Second, the regularization
process inside a neural network also contributes to robustness
because weights are deterministically penalized if the tensor
norms grow too large and the connections can be dropped
stochastically to elude a network learning unwanted noises.
The weights are, thereby, trained to accommodate the majority
of the data with the simplest probable distribution. Moreover,
if a re-training process is involved, the convex optimization
enforces the learnable parameters in a model to descend on
the error surface again. Please note that we only assess the
inference performance in this work without performing any
re-training.

Binarized neural network (BNN) [3] was proposed as an
extreme case of network quantization. During the training
phase, it maintained two sets of weights: The set of weights
contained floating-point numbers to guarantee a smooth gradi-
ent descent, and the other set was the binarized one obtained
by a hard-hyperbolic tangent function that returned ‘41’ if
the input was positive; otherwise, returns ‘—1’. The forward
propagation used the binarized weights to predict network
output and calculate loss, and the backward propagation relied
on the floating weights to descend the model on a smooth
error surface. Whenever the floating-numbered weights got
updated, they were binarized and stored in the binarized
weights. However, given that the binarized weights cannot
carry sufficient information for most classification tasks, a
small number of floating number calculations were introduced
to compensate for the information loss, i.e., both bias addition
and batch normalization were in floating numbers.

Local binary pattern network (LBPNet) [3]], [6]], as shown
in Figure 3] was proposed as an alternative deep learning
method to CNN for optical character recognition tasks. Instead
of using multiplication-and-accumulation (MAC) operations,
LBP operation [9] leveraged sampling, and comparison to
efficiently capture features. Gupta et al. further introduced
LBP to deep learning by stacking the LBP layers together, ap-
plying random projection to avoid channel accumulation, and
deriving calculus chain rule to develop LBPNet’s backward
propagation. For OCR tasks, LBPNets delivered near state-of-
the-art classification accuracy while reducing the computation
demand and model size of convolutional layers by two to three
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Fig. 3. A detailed illustration of an LBP layer. Three LBP patterns work like
masks for sampling through the pivot aperture (pvt) and sampling apertures
(samp). The comparison results are allocated to a bit array according to the
random projection map.
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Fig. 4. Cross-layer assessment flow with two stages: a) HW-layer: Timing
Error Extraction to extract the timing errors under different operating condi-
tions; b) SW-layer: Timing Error injection into a neural network and perform
inference.

orders of magnitudes. In this work, we also binarized the fully-
connected layers of an LBPNet for the test of vulnerability.

Hardware variations could impact HNNs through timing er-
rors in both computation logic and control logic. The errors in
control logic could lead to catastrophic results, but, fortunately,
most critical paths lie in computation logic, which is mainly
composed of additions and multiplications, two of the most
frequently used operations. Both the forward and backward
propagation require intensive additions and multiplications,
but most HNNs on ASIC, FPGA, and embedded GPUs do
not support on-chip learning. Thus, we mainly focus on the
timing errors that occur in addition and multiplication during
the inference phase of HNNs.

III. CROSS-LAYER VULNERABILITY ASSESSMENT

The cross-layer vulnerability assessment is comprised of
two phases, as shown in Figure 4f Timing Error Extraction
and Timing Error Injection. a) The Timing Error Extraction
phase implements the standard ASIC flow and uses gate-level
simulation (GLS) to generate timing errors at each operating
condition. b) In the Timing Error Injection phase, we inject the
timing errors into neural networks and then perform inference.
We vary the neural network genres and operating conditions
to examine the resulted accuracy. More details about the two
phases are illustrated as follows.

A. HW-layer: Timing Error Extraction

We extract the timing errors through the Timing Error
Extraction module, as illustrated in FigureEIl, which is divided
into several steps. Note that we focus on dynamic variation-
induced timing errors of computation units. We extract timing
errors from the adder and the multiplier, which are the two
most frequently used computation units in neural network
computation. We use FloPoCo [1]] to generate the synthesiz-
able VHDL codes of floating-point units. We use Synopsys
Design Compiler to synthesize the Verilog codes and use Syn-
opsys IC Compiler to generate the post-place-and-route netlist
in TSMC 45nm technology. Next, we use Synopsys PrimeTime
to perform static timing analysis, generating Standard Delay
Format (SDF) files at different operating conditions. To do this,
we use the voltage-temperature scaling features of Synopsys
PrimeTime for the composite current source approach of
modeling cell behavior. We consider twenty operating condi-
tions, as shown in Figure |8} which could introduce both mild
and aggressive timing errors. Then, we use Mentor Graphics
ModelSim to do SDF back-annotation gate-level simulations
under nominal frequency to generate output data at different
operating conditions. To extract timing errors, we compare the
GLS output y[t] with a pure-RTL simulation result y_gold|[t],
which is free from timing errors because there is no delay
annotation. If there is a mismatch, then we define it as a timing
error.

B. SW-layer: Timing Error Injection

We inject the timing errors extracted by the Timing Error
Extraction phase to the neural networks by using the second
phase Timing Error Injection. During the forward propagation
in the neural network inference, we inject the errors into
the arithmetic computations (addition and multiplication) in
the convolutional layer (Conv layer), fully-connected layer
(FC layer), average pooling layer (AvgPool layer), batch nor-
malization layer (BatchNrom layer), and local binary pattern
layer (LBP layer). There are several noteworthy facts must
be highlighted regarding the error injection in the software
layer: First, the XNOR operation and pop-count accumulation
in BCNN and the comparison operation in an LBP Layer are
not implemented in conventional arithmetic and logic units
(ALUs) on CPUs or processing elements (PEs) on GPUs.
We have to use multiplier and adders to carry out the 1-bit
XNOR and the following accumulation in BCNN. For the
comparison in an LBP Layer, we use the sign bit of subtraction
to produce the comparison result instead. Therefore, the TER
from adders and multipliers can affect the outputs of binarized
Conv, binarized FC, and LBP layers.

On a circuit, different input could excite different paths,
resulting in an input-specific timing error behavior. To mimic
this, an exhaustive look-up table containing the entire input
space for each bit position of each computation unit under
all operating conditions needs to be implemented. Then, the
computations need to look up the table to check whether it
has a match on any input operands in the input space. This
makes the inference process prohibitively slow. To approx-
imate the situation, we inject the timing errors as [10]: let
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Fig. 5. MLP accuracy as a function of TER.

the computation units return a random value each time they
have timing errors. We inject the error into the computation
with the pair of adder TER and multiplier TER extracted from
the Timing Error Extraction phase to mimic the time error
behavior. For example, if the adder has a TER at 0.1, we
inject errors to 10% of the total additions. This probability
is determined by operating conditions and computation logic
(addition or multiplication), which can represent the impact of
timing errors on computation logic. We vary the error injection
probability for each operating condition.

IV. EXPERIMENTS

In this section, we measure timing errors under twenty
operating conditions. Then, we measure HNNs accuracy as a
function of varying timing error rates. Finally, we characterize
the HNNs accuracy under dynamic variations using MLP,
CNN, BCNN, and LBPNet.

A. Experimental Setups

In this work, we wuse tiny-dnn [8], a header-only,
dependency-free deep learning library written in C++, as our
deep learning platform for MLP and CNN. This platform
is light weighted and is designed for deep learning on the
limited computational resource, such as embedded systems
and IoT devices. For CNN, we use LeNet-5 like architecture
and replace LeNet-5’s RBF layer with a fully-connected layer.
For MLP, we use 3-layer MLP with a hidden layer of 60
neurons. We adopt the same structure of the BCNN for SVHN
in the BNN paper and the LBPNet for MNIST in the LBPNet
paper [3]. The synthesizable C codes for BCNN and LBPNet
implemented by us for FPGA accelerators are used for the
error injection. All the four sets of weights and kernels are
pre-trained either from the referred tiny-dnn source or by us
on an Nvidia Tesla K40 GPU.

We use MNIST and CIFAR-10 as our datasets to evaluate
the neural network accuracy. MNIST (Mixed National Institute
of Standards and Technology) of handwritten numbers is a
well-known dataset for evaluating the performance of neural
network classifiers. MNIST is into training set and test set
with 60,000 and 10,000 28 x 28 images. The features in
MNIST are mainly strokes and outlines. Images in CIFAR-
10 are daily objects of size 32 x 32, and the training and
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Fig. 6. CNN accuracy as a function of TER.

test sets include 50,000 and 10, 000, respectively. CIFAR-10
is considered to be a more challenging datasets because the
information and features reside in both outlines and textures.
We choose MNIST to conduct a decent evaluation of vulnera-
bility as the first step. Then, we deepen and widen BCNN
and LBPNet by adding more layers, kernels, and random
projection maps to conduct the second step of experiment on
CIFAR-10 to understand the vulnerability of HNN on general
object recognition.

For the hardware variations, we vary the voltage from 0.81V
to 0.90V with a step at 0.01V and the temperature from 50°C
to 100°C.

B. Accuracy under the Threat of Timing Errors

Before the error extraction, we assess the performance
degeneration as a function of timing error rates. The accuracy
is evaluated for both MLP and CNN under the TER at
0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, and 0.9 at three
configurations as shown in Figure [5] and Figure [6} add_only
means we only inject timing errors to adder, mul_only means
we only inject timing errors to multiplier and both means we
inject errors to adder and multiplier at the same time. We
observe that for both MLP and CNN, as the TER increases,
the accuracy drops monotonically. When the TER is 0.00001,
the HNN can still deliver a decent accuracy close to original
accuracy. Once the TER of adder reaches 0.0001, the accuracy
drops to around 90% and continues dropping to 60% when
the TER of adder reaches 0.001. In contrast, the multiplier
exhibits a much less significant impact on HNN accuracy:
the HNN can still deliver 90% accuracy even when the TER
of multiplier reaches 0.001. In fact, for all examined TERs,
the mul_only resulted accuracy is always higher than that of
add_only. Moreover, the accuracy under both configuration is
almost identical to that of add_only configuration, suggesting
that adders-induced errors contribute to most of the accuracy
drop.

One main reason is that the accumulated convolution sum
or dot-product sum is fed into a nonlinear activation function
and thereby directly affect the activation, while the errors from
multipliers will be averaged and diluted. This suggests that
more hardware design effort should be made on the adder to
ensure its low TER. On the other hand, the worst accuracy
of both NN genres is around 10%, when either add_only or
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Fig. 7. TER of adder and multiplier under different operating conditions.

mul_only is 0.1. We can observe that such an accuracy drop
starts saturating at 0.1 TER, almost identical to a random guess
of the 10-class recognition task.

Another important observation is that the accuracy of CNN
decreases more drastically than that of MLP, which conflicts
our intuition of the higher capability of CNN. The classifica-
tion accuracy at adder-only 0.001 TER is 61%, which is higher
than CNN’s 40% accuracy at 0.001 TER. However, when we
inspect in detail, the fan-in of a neuron and a convolutional
kernel explains the surprising observation. The fan-in of a
convolutional kernel is defined by the spatial size of a filter,
which is 3 x 3 and relatively small compared to a neuron’
fan-in in the MLP. Therefore, the injected error in MLP gets
diluted better.

In summary, such observations show that even though neural
networks have inherent error resilience, the timing errors still
can significantly affect neural network accuracy and motivate
this work.

C. Vulnerability on MNIST

We then use the real dynamic operating conditions to
obtain realistic timing error rates and thereby characterize
the vulnerability of HNNs to dynamic variations. Notably, we
use the Timing Error Extraction described in section to
characterize the timing error behavior of 32-bit floating-point
adder and multiplier under different operating conditions, as
shown in Figure [/| Besides the ideal condition without any
error, the selected operating conditions cover a wide range
of TERs: at the best condition (0.90V, 50°C) with TERs less
than 0.0001; at the worst condition (0.81V, 50°C), 0.5 and
1.0 TER are found in adders and multipliers, respectively.
By comparing these two computing units, we find that TER
of the multiplier is always higher than the adder under the
same condition. This is because the multiplier design has
more critical paths than the adder, resulting in more timing
violations. The TER of adder reaches 1% when the operating
condition is around 0.86V. Based on Figure [5] and Figure [6}
the accuracy drop starts to saturate when the TER of adder

5

reaches 0.01; thus we expect to see the worst accuracy starting
at around 0.86V.

We then present the accuracy of MLP, CNN, BCNN, and
LBPNet under the twenty operating conditions, as shown in
Figure [8] where we observe several important facts:

1) The lowest accuracy under worst-case operating condi-
tions is around 10% for all the four networks across mul-
tiple conditions from (0.85V, 100°C) to (0.81V, 100°C).
For MLP, CNN, and BCNN, this observation is expected
as we can see from Figure [5] and Figure [ where the
accuracy drops to 10% when the TER of either unit
reaches 0.01.

2) The four curves can be categorized into two groups
because the MLP, CNN, and BCNN behaviors similarly,
and the LBPNet’s accuracy curve demonstrate a high
immunity to the TER residing in adders and multipliers.

3) Fig. B] shows that under the condition between (0.90V,
50°C) and (0.86V, 50°C), where the TER of adder is
less than 0.01, the accuracy drop of MLP to its original
accuracy is less than that of CNN, indicating MLP might
be more resilient than CNN within a certain TER. Part
of the reason for this is that given the same TER, the
amount of errors in CNN is larger than MLP because
CNN has more arithmetic operations, and the percentile
of multiplications among all arithmetic computations are
higher in CNN.

4) BCNN sustains slightly more timing errors than MLP and
CNN. Compared with MLP’s curve, BNN’s vulnerability
is enhanced twice since the classification drops to the
same with MLP when the TER is doubled.

5) LBPNet keeps immune against the variation until we
impose much harsher conditions. A 10% accuracy dete-
rioration is observed at (0.86V, 50°C), while all the other
three models significantly lose classification ability and
fall around 10% accuracy. LBPNet totally fails to classify
upon (0.85V, 100°C), at with the TERs climb to 0.1 and
0.5 for adders and multipliers, respectively.

6) Last but not least, we find the voltage and temperature
both play an important role in determining the inference
accuracy. By fixing the temperature at 100°C, reducing
the voltage by 0.01V from 0.89V to 0.88V results an ac-
curacy drop of the CNN model from 85.15% to 48.64%;
by fixing the voltage as 0.88V, increasing the temperature
by 50°C results in an accuracy drop from 70.34% to
48.64%. By comparing the accuracy at (0.90V, 50°C) and
(0.86V, 50°C), we find the accuracy drops to worst-case
at around 10% from the best case at around 98% by a
voltage reduction of 0.04V.

D. Vulnerability on CIFAR-10

Fig. [9 shows the result of CIFAR-10. In the second step,
besides deepen and widen the BCNN and LBPNet, we reduced
the size of MLP classifiers to two layers of 512 and 10
neurons. Only one batch normalization layer is preserved so
that the training process is accelerated and the vulnerability
of the binarized convolutional layers and local binary pattern
layers can be more prominent. The structure of BCNN is the
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Fig. 9. HNN accuracy as a function of dynamic variations on CIFAR-10.

same with the structure in the original BNN paper except for
the simplified fully-connected classifier. We stack the LBPNet
to 10 layers and utilized an ensemble of 15 sets of random
projection maps to achieve a competent accuracy with the
BCNN.

The initial accuracy of BCNN and LBPNet is around 81%.
As the hardware variation increases, BCNN’s classification
ability start to degrade after (0.89V, 50°C), which is not far
from the result in the first experiment. However, the immunity
of the deeper and wider LBPNet becomes less robust since
LBPNet’s accuracy starts to fall off the cliff at (0.88V, 50°C).
In other words, if overlapping Fig. [§] and Fig. 0] we can see
the curves of BCNN and LBPNet recede to the left, and the
extent of degradation for LBPNet is more obvious. Although
there is still a gap between the two curves, the gap is reduced

because the network depth of LBPNet is grown to more than
twice of that in the first experiment, but the depth of BCNN
remains the same. The classifier in a deeper network would
collect more errors than in a shallow network.

E. Discussion of BNN and LBPNet

The binarized values and operations in BCNN rectify a por-
tion of the injected errors and thereby enhances the robustness.
Specifically, the 1-bit multiplication and 1-bit accumulation
again dilute the impact of the injected errors. Moreover, when
the binary activation function converts the erroneous inner-
product sum or convolution sum, only the sign inversion
changes the activation output. That is, the total of injected
errors collected by the activation function must be strong
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enough to invert the sign; otherwise, the activation output
remains the same without the error injection.

The immunity of LBPNet outperforms the other models
with a remarkable gap. There are multiple causes contribute
to this immunity that can be qualitatively justified through
a re-visit of the details in an LBP Layer. The comparison
is simulated with the sign bit from the adder’s subtraction
output. Then, the sign bits corresponding to an LBP kernel
are produced by adders in parallel and form a bit sequence to
represent an integer on the output feature map. Whenever the
adder is stochastically selected for an error injection, the sign
bit is flipped randomly according to a uniform distribution.
Therefore, an injected error can only affect a single bit rather
than an output value as in MLP and CNN. Furthermore, if
the selected bit is not the most significant bit (MSB) of the
output value, the effect of error injection is scarce. On the other
hand, the sign bits are combined with a bit shift and a logic
OR operations in parallel, which are relatively less affected
by the hardware variations given their circuitry simplicity
and not discussed in the scope of this work. The absence of
accumulation helps LBPNet to preclude the error accumulation
and hinder the propagation of errors.

V. RELATED WORK

Various works study the vulnerability of hardware neural
networks under logic errors induced by inexact design [2],
[7], [12]]. [2] substituted the regular multipliers with inexact
multipliers that provide inexact logic but with less hardware
cost. [[7]] further optimized such design with a uniform struc-
ture suitable for hardware implementation. [12] provided a
framework for hardware neural network designers to choose
which parts were suitable for an approximation that led to less
impact on accuracy based on a criticality ranking. These works
intentionally designed inexact hardware and introduced logic
errors in exchange for less hardware cost.

Compared to logic errors, timing errors were less exploited
in neural networks because of its unpredictability and uncer-
tainty [4]. Logic errors could be determined once the design
is fixed, but timing errors can only be obtained through
simulations. A retraining-based method has been proposed to
mitigate the timing errors in hardware neural networks [L1].
However, these works assumed a fixed timing variation for
each gate without considering hardware variations as the root
cause, which might be unrealistic.

In summary, there have been no prior works assessing the
neural network vulnerability to dynamic operating condition
variations. In this work, we do not introduce the errors inten-
tionally but focus on the unintentional timing errors caused
by hardware variations. We link the timing errors with low-
level hardware variations and characterize them under different
operating conditions and present the importance of considering
variations when designing hardware neural networks.

VI. CONCLUSION

Threats to Validity: We mainly focus on variation-induced
timing errors in computation logic. However, the timing errors
could also occur in control logic, which might lead to more

severe accuracy drop or malfunction. Fortunately, it was ob-
served that control logic only contributes a small set of critical
paths [11]], making it less vulnerable to timing errors.

Promising Solutions: The observations and discussion in
previous sections have enlightened us several directions to
strengthen the immunity of the voltage and temperature vari-
ations.

1) Considering the experiments on the MLP and CNN,
we can increase the fan-in of each accumulation to
dilute the impact of hardware variations. However, this
trend conflicts with pruning, which is a prevailing model
reduction method. People need to be aware of the side
effects of pruning includes the degradation of network
vulnerability.

2) Binarizing the network also dilutes the timing error’s
impact, and it works for both MLP and BCNN. More
generally, quantization of a network not only make the
nework hardware-friendly but also increase its vulnera-
bility.

3) While deepening a network structure can usually increase
classification accuracy, we need to keep in mind that the
increase of depth will reduce the immunity to hardware
variations.

4) Another method is to adopt LBPNet because the lack of
floating number MAC operations and the high parallelism
in the LBP operations have demonstrated that both the
error injection and propagation in LBPNets can be limited
effectively.

Future Work: In this work, we focus on assessing the
effects of hardware variations on neural network performance.
The next question is how we can mitigate such timing errors.
For future work, we focus on integrating the timing errors as
a vector for backpropagation to enable an adaptive training
method. Moreover, we plan to design a reconfigurable archi-
tecture that can automatically select suitable weights for a
given voltage and temperature from a set of pre-stored weights.
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