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Set the stage:  fundamental concepts and terms 
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• Math model:  math representation  

of reality (always approximate) 

• Comp model:  implements algorithms  

for approx. solution of math model 

• Verification 

– Code:  find and eliminate bugs 

– Solution:  quantify numerical error 

• Calibration:  use data to infer values of uncertain parameters  

• Validation:  assess accuracy of model for its intended use 

• Prediction:  prediction of a QOI from a “new” problem 

• Uncertainty Quantification (UQ):  quantify range of values that a QOI 

may take in a given problem (includes propagation of input uncertainties) 



The ball-drop example illustrates much of this. 

Simple	case	study:	dropping	balls	from	
a	tower	

• Can	get	field	data	from	tossing	
objects	off	of	floors	1-6.	

• Have	computa onal	model	
which	predicts	drop	 mes	
given	ball	radius,	density,	and	
flo

o

r .	

• Computa onal	model	has	
parameter	for	air	fric on	which	
depends	on	cross	sec on,	
density	and	velocity.	

• Have	baseball,	basketball,	golf	
ball,	tennis,	light	&	heavy	
bowling	balls.	

• Want	to	predict	so ball	drop	

me	from	10th	floo r 	(100m).	

• Also	want	to	understand	the	

value	of	various	types	of	
poten al	experiments	&	
simula ons	for	the	so ball	
predic on	at	100m.	
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We often speak in terms of the “problem at hand.” 

• We envision a setting in which specific QOIs must be predicted 

for a specific problem.   

– Example:  electricity generated as a function of wind speed (the QOI) by a 

specific proposed wind-turbine design (the “problem”) 

– Example:  drop time (the QOI) of a golf ball from 100m (the “problem”) 

• The combination of specific QOIs and the specific problem—for 

which data have not been observed—is the “problem at hand.” 

• We assume that previous observations of other problems have 

generated data that can be used in validation assessments. 
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The committee identified 

several over-arching principles of VVUQ. 

• VVUQ tasks are inter-related 

– Solution verification and propagation of input uncertainties should be 

integral parts of any validation assessment, for example. 

• VVUQ should be applied in the context of specified Quantities of 

Interest (QOIs). 

– If not, VVUQ questions are not well posed. 

• Verification and Validation are not yes/no questions with yes/no 

answers. 

– Solution verification attempts to quantify or bound numerical error. 

– Validation attempts to quantify or bound model error. 
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Verification Principles and Practices 



Principle:  Verification is best performed on software 

created under appropriate software-quality practices. 

Best practice: 

• Use software configuration management and regression testing. 

• Strive to understand and improve the degree of code coverage 

attained by regression suites. 

• Code-to-code comparisons can help, especially in early stages 

of development, but they do not by themselves constitute 

sufficient code or solution verification. 

• Compare against analytic solutions, including those generated 

by the method of manufactured solutions. 
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Principle:  Solution verification is well defined only in 

terms of specified QOIs. 

Best practices: 

• Clearly define QOIs for a given solution-verification assessment. 

– Different QOIs will be affected differently by numerical errors. 

• Solution verification should encompass the full range of inputs 

that will be employed during UQ assessments. 

– Numerical error may differ for different values of input parameters. 

 

Example QOIs:   

Peak power density in a proposed nuclear reactor. 

Load under which a proposed bridge will fail. 
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Principle:  Code and solution verification can be 

enhanced by exploiting hierarchical compositions. 

Best practices: 

• Identify hierarchies in  

mathematical models. 

• Design codes with hierarchical  

code verification in mind. 

• Begin code and solution  

verification at lowest levels  

of hierarchy, then move upward. 
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Multi-group  

 

One energy 

group 

 

One direction 

Example:   

neutron transport in reactor 



Principle:  Solution verification should estimate 

numerical error for the problem at hand. 

Best practices: 

• When possible, use goal-oriented a posteriori error estimates (which 

estimate numerical error for specified QOIs in the problem at hand). 

• If goal-oriented a posteriori estimates are not available, use self-

convergence studies for the problem at hand, if possible. 

• If possible, control numerical error so that the uncertainty it causes is 

smaller than those from other sources. 

Remark:  for many problems of interest in science and engineering, these 

practices are not possible today.   

– R&D should broaden availability of 1st practice, which helps enable the 3rd. 

– Better algorithms and computers can broaden availability of the 2nd. 
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Validation Principles and Practices 



We speak in terms of a “domain of applicability.” 

• This appealing concept is useful in 
validation and prediction. 
– It helps in assessing relevance of validation 

data to the problem at hand. 

• Problem features/descriptors form axes 
that define a “domain space.” 
– Problems map to points in the space. 

– If a new problem is “surrounded” by validation 
problems, relevance appears high. 

• BUT:  DoA relies on judgment (not math). 
– Who chooses the axes?  Omission of an 

important axis could be fatal. 

– What if the new problem is not “surrounded” 
by validation problems—the usual case given 
lots of axes?  How do we assess relevance & 
quantify any added uncertainty?   
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Simple	case	study:	dropping	balls	from	
a	tower	

• Can	get	field	data	from	tossing	
objects	off	of	floors	1-6.	

• Have	computa onal	model	
which	predicts	drop	 mes	
given	ball	radius,	density,	and	
flo

o

r .	

• Computa onal	model	has	
parameter	for	air	fric on	which	
depends	on	cross	sec on,	
density	and	velocity.	

• Have	baseball,	basketball,	golf	
ball,	tennis,	light	&	heavy	
bowling	balls.	

• Want	to	predict	so ball	drop	

me	from	10th	floo r 	(100m).	

• Also	want	to	understand	the	

value	of	various	types	of	
poten al	experiments	&	
simula ons	for	the	so ball	
predic on	at	100m.	
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Principle:  A validation assessment informs about 

model accuracy only in the “domain of applicability” 

covered by its physical observations. 

Best practices: 

• Given a QOI and a problem at hand, assess relevance of 

supporting validation assessments. 

– Validation assessment used data from different problems/experiments, 

often with different QOIs. 

– Subject-matter expertise must inform the assessment of relevance. 

• Use “holdout tests” to test validation and prediction 

methodologies. 

– If methodology does not “predict” a held-out validation dataset, there is 

little justification for believing the prediction of the problem at hand. 
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Principle:  Validation assessments can be improved by 

exploiting hierarchical composition of models. 

Best practices: 

• Identify hierarchies in mathematical and computational models. 

• Seek physical observations that facilitate hierarchical validation 

assessments. 

• If possible, use physical observations to constrain uncertainties 

in model inputs and parameters. 

– This is “calibration.” 

– This is best done at lowest levels of hierarchy,  

where causes and effects are clearer. 
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Principle:  Validation assessments must account for 

errors and uncertainties in physical observations. 

Best practices: 

• Identify all important sources of uncertainty and error in the 
measured data used for validation.  Quantify the impact of each 
on the inferred QOI. 

– Sources include instrument calibration, uncontrolled variation in 
initial/boundary conditions, variability in measurement setup, random 
variations in physical processes, etc. 

• Use replicates to inform about variability and measurement 
uncertainty. 

Remark:  assessing measurement uncertainties and errors is often 
complicated by the fact that the “measured” QOI is actually 

inferred from measurement of something else. 
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Prediction Principles and Practices 



Principle:  Uncertainty in prediction of a QOI must be 

aggregated from uncertainties from many sources. 

Sources include model discrepancy, numerical errors, code errors, 

and uncertain values of input parameters. 

Best practice: 

• Assess sensitivity of the predicted QOI, and of its assessed 

uncertainties, to each important source of uncertainty and to 

key assumptions and omissions. 

• Document key judgments—including those regarding relevance 

of validation studies to the problem at hand—and assess 

sensitivity of the QOI (and its uncertainties) to reasonable 

variations in these judgments. 
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Closing remarks 



Observation:  Judgment informed by subject-matter 

expertise plays a substantial role in predictions. 

• Who chose radius and density to define 
the ball-drop domain space?  Why? 

• Do other features matter?   

– Temperature, pressure, humidity, wind,  
height, surface roughness, elasticity, … 

• Are validation data from tennis ball, golf ball,  
and basketball relevant for the softball? 

• How do we map validation-data model error to problem-at-hand 
model error?  No math prescription will work in general. 

• Peer review may buy some insurance. 

• We do not see anything foolproof. 
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Simple	case	study:	dropping	balls	from	
a	tower	

• Can	get	field	data	from	tossing	
objects	off	of	floors	1-6.	

• Have	computa onal	model	
which	predicts	drop	 mes	
given	ball	radius,	density,	and	
flo

o

r .	

• Computa onal	model	has	
parameter	for	air	fric on	which	
depends	on	cross	sec on,	
density	and	velocity.	

• Have	baseball,	basketball,	golf	
ball,	tennis,	light	&	heavy	
bowling	balls.	

• Want	to	predict	so ball	drop	

me	from	10th	floo r 	(100m).	
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Remark:  It is premature to specify best  

methodologies for VVUQ tasks. 

• We have identified best practices, but we deliberately do not 

identify best methodologies.   

– Example:  We identify that a best practice is to assess sensitivity of a QOI 

to each source of uncertainty.  We do not specify a method for 

quantifying this sensitivity. 

• Method development and improvement are active research 

areas—the field is in flux. 

• Today, some methods work better for some applications while 

others are better for other applications. 
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Still to come from the committee … 

• Wei Chen:  Educational changes to foster advances in VVUQ 

methods and applications. 

• Omar Ghattas:  Research needed to improve mathematical 

foundations of VVUQ. 
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