VVUQ: Principles and Best Practices

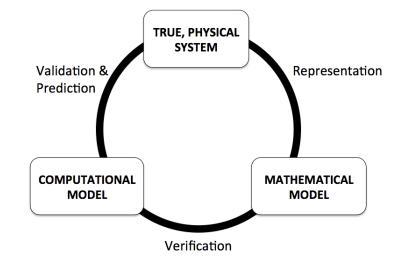
From NRC report "Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification"

March 28, 2012

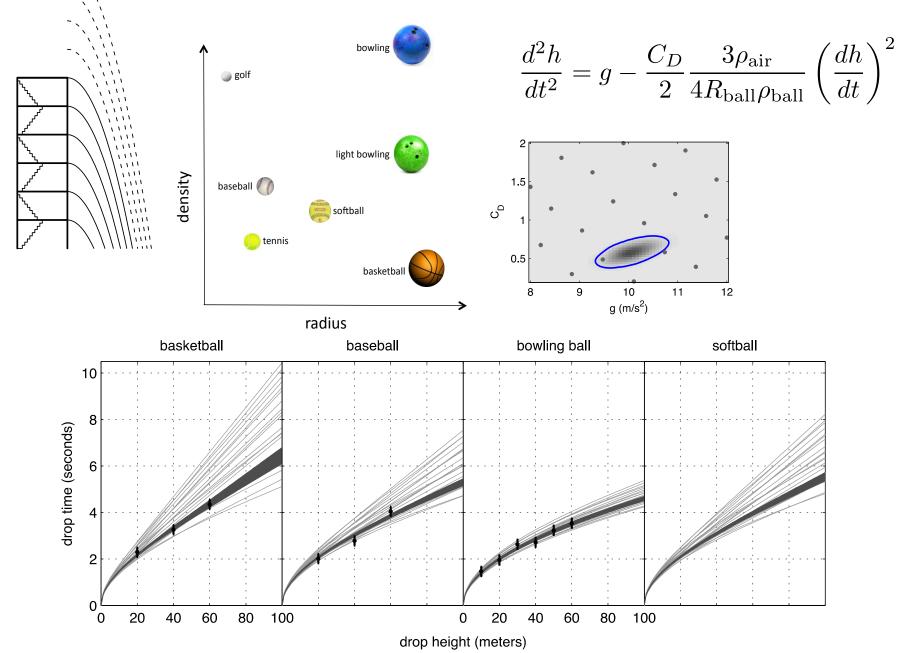
Marvin L. Adams (Co-Chair) Texas A&M University

Set the stage: fundamental concepts and terms

- Math model: math representation of reality (always approximate)
- Comp model: implements algorithms for approx. solution of math model
- Verification
 - Code: find and eliminate bugs
 - Solution: quantify numerical error
- Calibration: use data to infer values of uncertain parameters
- Validation: assess accuracy of model for its intended use
- **Prediction:** prediction of a QOI from a "new" problem
- Uncertainty Quantification (UQ): quantify range of values that a QOI may take in a given problem (includes propagation of input uncertainties)



The ball-drop example illustrates much of this.



We often speak in terms of the "problem at hand."

- We envision a setting in which specific QOIs must be predicted for a specific problem.
 - Example: electricity generated as a function of wind speed (the QOI) by a specific proposed wind-turbine design (the "problem")
 - Example: drop time (the QOI) of a golf ball from 100m (the "problem")
- The combination of specific QOIs and the specific problem—for which data have not been observed—is the "problem at hand."
- We assume that previous observations of other problems have generated data that can be used in validation assessments.

The committee identified several over-arching principles of VVUQ.

- VVUQ tasks are inter-related
 - Solution verification and propagation of input uncertainties should be integral parts of any validation assessment, for example.
- VVUQ should be applied in the context of specified Quantities of Interest (QOIs).
 - If not, VVUQ questions are not well posed.
- Verification and Validation are not yes/no questions with yes/no answers.
 - Solution verification attempts to quantify or bound numerical error.
 - Validation attempts to quantify or bound model error.

Verification Principles and Practices

Principle: Verification is best performed on software created under appropriate software-quality practices.

- Use software configuration management and regression testing.
- Strive to understand and improve the degree of code coverage attained by regression suites.
- Code-to-code comparisons can help, especially in early stages of development, but they do not by themselves constitute sufficient code or solution verification.
- Compare against analytic solutions, including those generated by the method of manufactured solutions.

Principle: Solution verification is well defined only in terms of specified QOIs.

Best practices:

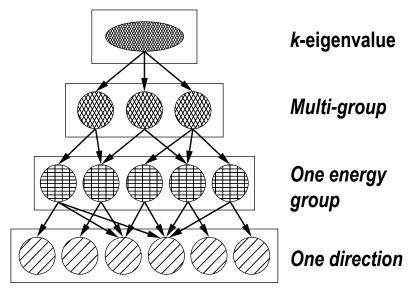
- Clearly define QOIs for a given solution-verification assessment.
 Different QOIs will be affected differently by numerical errors.
- Solution verification should encompass the full range of inputs that will be employed during UQ assessments.
 - Numerical error may differ for different values of input parameters.

Example QOIs:

Peak power density in a proposed nuclear reactor. Load under which a proposed bridge will fail.

Principle: Code and solution verification can be enhanced by exploiting hierarchical compositions.

- Identify hierarchies in mathematical models.
- Design codes with hierarchical code verification in mind.
- Begin code and solution verification at lowest levels of hierarchy, then move upward.



Example: neutron transport in reactor

Principle: Solution verification should estimate numerical error *for the problem at hand.*

Best practices:

- When possible, use goal-oriented *a posteriori* error estimates (which estimate numerical error for specified QOIs in the problem at hand).
- If goal-oriented *a posteriori* estimates are not available, use selfconvergence studies for the problem at hand, if possible.
- If possible, control numerical error so that the uncertainty it causes is smaller than those from other sources.

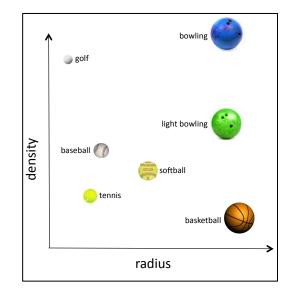
Remark: for many problems of interest in science and engineering, these practices are not possible today.

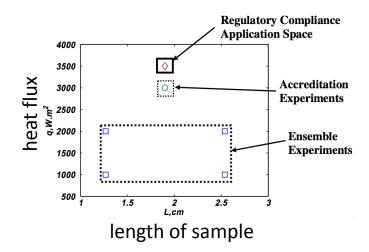
- R&D should broaden availability of 1st practice, which helps enable the 3rd.
- Better algorithms and computers can broaden availability of the 2nd.

Validation Principles and Practices

We speak in terms of a "domain of applicability."

- This appealing concept is useful in validation and prediction.
 - It helps in assessing relevance of validation data to the problem at hand.
- Problem features/descriptors form axes that define a "domain space."
 - Problems map to points in the space.
 - If a new problem is "surrounded" by validation problems, relevance appears high.
- BUT: DoA relies on judgment (not math).
 - Who chooses the axes? Omission of an important axis could be fatal.
 - What if the new problem is not "surrounded" by validation problems—the usual case given lots of axes? How do we assess relevance & quantify any added uncertainty?



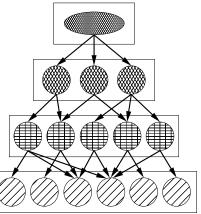


Principle: A validation assessment informs about model accuracy only in the "domain of applicability" covered by its physical observations.

- Given a QOI and a problem at hand, assess relevance of supporting validation assessments.
 - Validation assessment used data from different problems/experiments, often with different QOIs.
 - Subject-matter expertise must inform the assessment of relevance.
- Use "holdout tests" to test validation and prediction methodologies.
 - If methodology does not "predict" a held-out validation dataset, there is little justification for believing the prediction of the problem at hand.

Principle: Validation assessments can be improved by exploiting hierarchical composition of models.

- Identify hierarchies in mathematical and computational models.
- Seek physical observations that facilitate hierarchical validation assessments.
- If possible, use physical observations to constrain uncertainties in model inputs and parameters.
 - This is "calibration."
 - This is best done at lowest levels of hierarchy, where causes and effects are clearer.



Principle: Validation assessments must account for errors and uncertainties in physical observations.

- Identify all important sources of uncertainty and error in the measured data used for validation. Quantify the impact of each on the inferred QOI.
 - Sources include instrument calibration, uncontrolled variation in initial/boundary conditions, variability in measurement setup, random variations in physical processes, etc.
- Use replicates to inform about variability and measurement uncertainty.
- Remark: assessing measurement uncertainties and errors is often complicated by the fact that the "measured" QOI is actually inferred from measurement of something else.

Prediction Principles and Practices

Principle: Uncertainty in prediction of a QOI must be aggregated from uncertainties from many sources.

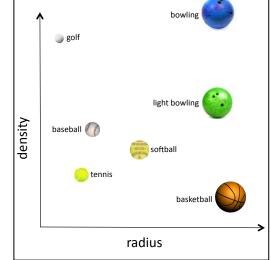
Sources include model discrepancy, numerical errors, code errors, and uncertain values of input parameters.

- Assess sensitivity of the predicted QOI, and of its assessed uncertainties, to each important source of uncertainty and to key assumptions and omissions.
- Document key judgments—including those regarding relevance of validation studies to the problem at hand—and assess sensitivity of the QOI (and its uncertainties) to reasonable variations in these judgments.

Closing remarks

Observation: Judgment informed by subject-matter expertise plays a substantial role in predictions.

- Who chose radius and density to define the ball-drop domain space? Why?
- Do other features matter?
 - Temperature, pressure, humidity, wind, height, surface roughness, elasticity, …
- Are validation data from tennis ball, golf ball, and basketball relevant for the softball?
- How do we map validation-data model error to problem-at-hand model error? No math prescription will work in general.
- Peer review may buy some insurance.
- We do not see anything foolproof.



Remark: It is premature to specify best methodologies for VVUQ tasks.

- We have identified best practices, but we deliberately do not identify best methodologies.
 - Example: We identify that a best practice is to assess sensitivity of a QOI to each source of uncertainty. We do not specify a method for quantifying this sensitivity.
- Method development and improvement are active research areas—the field is in flux.
- Today, some methods work better for some applications while others are better for other applications.

Still to come from the committee ...

- Wei Chen: Educational changes to foster advances in VVUQ methods and applications.
- Omar Ghattas: Research needed to improve mathematical foundations of VVUQ.