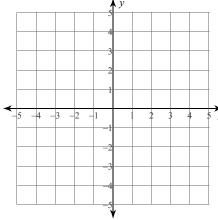
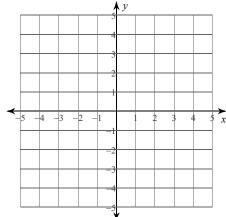

Period Date

Definition of a System of Linear Inequalities - A system of linear inequalities in two variables consists of at least two linear inequalities in the same variables.


1)

Graph the linear inequality $y \ge 3x + 2$.

Where on the graph are the solutions to the inequality?


2)

Graph the linear inequality $y \le -x - 2$.

Where on the graph are the solutions to the inequality?

3)

Graph both linear inequalities on the same graph.

$$y \ge 3x + 2$$

$$y \le -x - 2$$

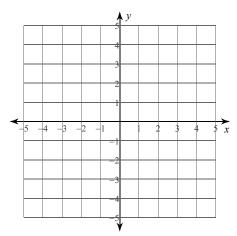
Where on the graph are the solutions to the system of inequalities?

4) The solutions of a system of linear

inequalities are the _____ that are solutions to _____ inequalities in the system.

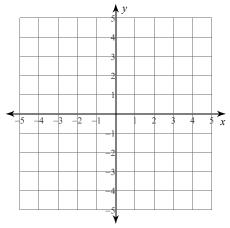
On a graph the solutions to a system of inequalities is the

of the half-planes or where the shaded regions

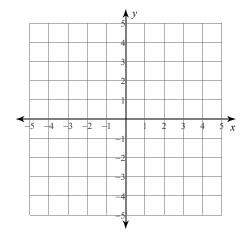

WORD BANK

- overlap
- intersection
- all
- ordered pairs

Sketch the solution to each system of inequalities.

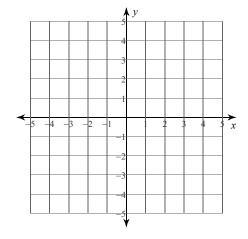

5)
$$y \ge \frac{1}{2}x + 2$$

$$x > -2$$


7)
$$y < -\frac{2}{3}x + 1$$

 $y \le \frac{1}{3}x - 2$

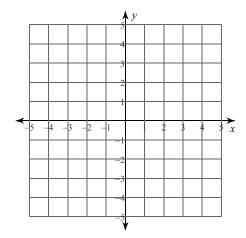
$$y \le \frac{1}{3}x - 2$$



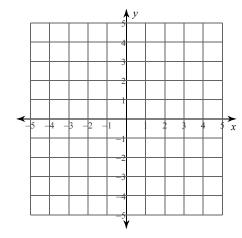
9)
$$y < -x - 2$$

9)
$$y < -x - 2$$

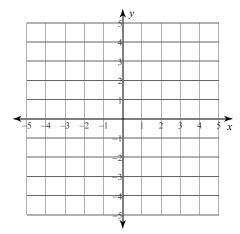
 $y < \frac{1}{3}x + 2$



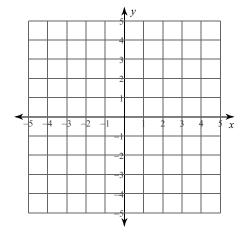
6)
$$y > -3$$
 $y > 4x + 1$

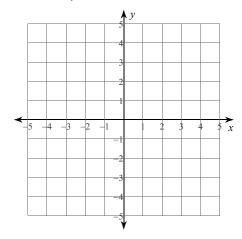

8)
$$y \ge -\frac{2}{3}x + 1$$

$$x \le 3$$

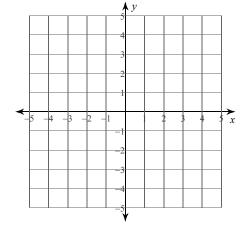


10)
$$y < -1$$

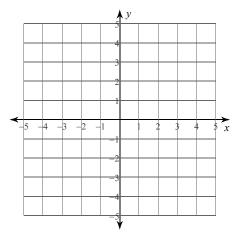

$$y > -x + 1$$


11)
$$x + y < 2$$

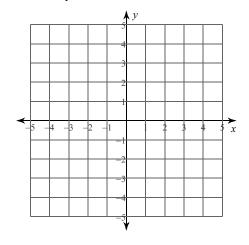
 $4x + y < -1$


12)
$$x - 3y > -6$$

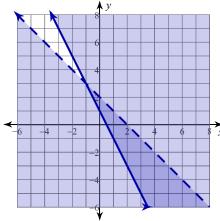
 $4x - 3y \ge 3$


13)
$$3x + y \ge 3$$

 $x + 2y < -4$


14)
$$x + y < -3$$

 $x + y \le 3$

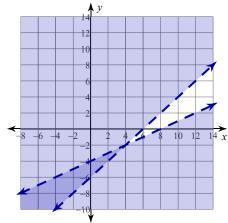

15)
$$x + 3y \ge 6$$

 $2x - 3y > 3$

$$\begin{array}{ll}
16) & x \ge -2 \\
 & x - y \ge 1
\end{array}$$

17)

Which x-values make the ordered pair (x, -5) a solution of the system of inequalities represented by the graph below?


A)
$$-9 \le x < -3$$

B)
$$-3 \le x < -2$$

C)
$$-7 \le x < -3$$

D)
$$3 \le x < 7$$

18)

Which *x*-values make the ordered pair (x, -6) a solution of the system of inequalities represented by the graph below?

A)
$$-4 < x < 0$$

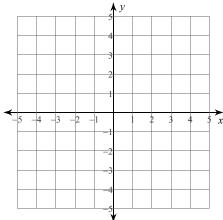
B)
$$-4 < x \le 0$$

C)
$$-4 \le x < 0$$
 D) $-4 \le x \le 0$

D)
$$-4 \le x \le 0$$

19) In a community service program, students earn points for two tasks: painting over graffiti and picking up trash. The following constraints are imposed on the program.

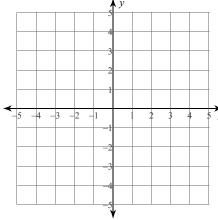
1) A student may not serve more than 10 total hours per week.


2) A student must serve at least 1 hour per week at each task.

Let g = the number of hours a student spends in a week painting over graffiti. Let t = the number of hours a student spends in a week picking up trash.

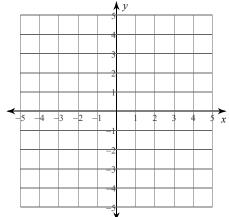
Write a system that represents the imposed constraints.

Definition of a System of Linear Inequalities - A system of linear inequalities in two variables consists of at least two linear inequalities in the same variables.


1)

Graph the linear inequality $y \ge 3x + 2$.

Where on the graph are the solutions to the inequality?


2)

Graph the linear inequality $y \le -x - 2$.

Where on the graph are the solutions to the inequality?

3)

Graph both linear inequalities on the same graph.

$$y \ge 3x + 2$$

$$y \le -x - 2$$

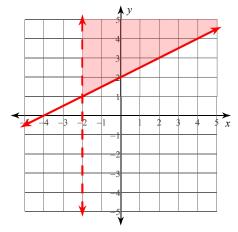
Where on the graph are the solutions to the system of inequalities?

4) The solutions of a system of linear

inequalities are the _____ that are solutions to _____ inequalities in the system.

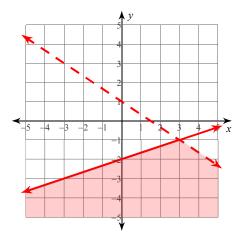
On a graph the solutions to a system of inequalities is the

of the half-planes or where the shaded regions


WORD BANK

- overlap
- intersection
- all
- ordered pairs

Sketch the solution to each system of inequalities.

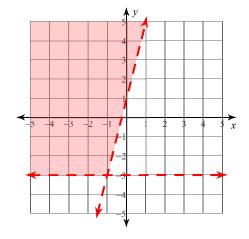

5)
$$y \ge \frac{1}{2}x + 2$$

$$x > -2$$

7)
$$y < -\frac{2}{3}x + 1$$

 $y \le \frac{1}{3}x - 2$

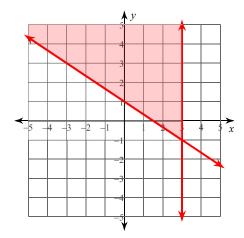
$$y \le \frac{1}{3}x - 2$$



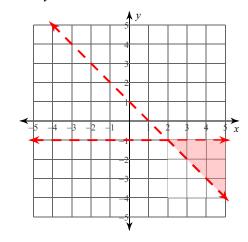
9)
$$y < -x - 2$$

9)
$$y < -x - 2$$

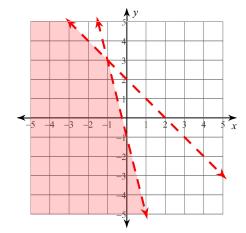
 $y < \frac{1}{3}x + 2$



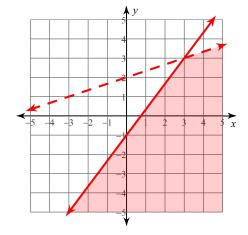
6)
$$y > -3$$
 $y > 4x + 1$

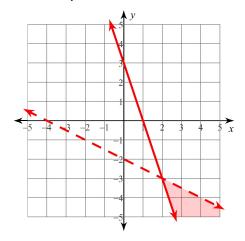

8)
$$y \ge -\frac{2}{3}x + 1$$

$$x \le 3$$

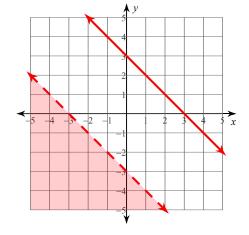


10)
$$y < -1$$

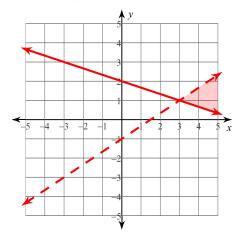

$$y > -x + 1$$


11)
$$x + y < 2$$

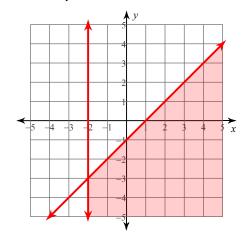
 $4x + y < -1$


12)
$$x - 3y > -6$$

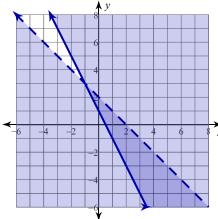
 $4x - 3y \ge 3$


13)
$$3x + y \ge 3$$

 $x + 2y < -4$


14)
$$x + y < -3$$

 $x + y \le 3$


15)
$$x + 3y \ge 6$$

 $2x - 3y > 3$

$$\begin{array}{ll}
16) & x \ge -2 \\
 & x - y \ge 1
\end{array}$$

17)

Which x-values make the ordered pair (x, -5) a solution of the system of inequalities represented by the graph below?

A)
$$-9 \le x < -3$$

B)
$$-3 \le x < -2$$

C)
$$-7 \le x < -3$$

*D)
$$3 \le x < 7$$

18)

Which *x*-values make the ordered pair (x, -6) a solution of the system of inequalities represented by the graph below?

*A)
$$-4 < x < 0$$

B)
$$-4 < x \le 0$$

C)
$$-4 \le x < 0$$

C)
$$-4 \le x < 0$$
 D) $-4 \le x \le 0$

19) In a community service program, students earn points for two tasks: painting over graffiti and picking up trash. The following constraints are imposed on the program.

1) A student may not serve more than 10 total hours per week.

2) A student must serve at least 1 hour per week at each task.

Let g = the number of hours a student spends in a week painting over graffiti. Let t = the number of hours a student spends in a week picking up trash.

Write a system that represents the imposed constraints.