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Chapter 2: Energy, Entropy and Fundamental 
Thermodynamic Concepts 

2.1 THE THERMODYNAMIC PERSPECTIVE 
e defined geochemistry as the application of chemical knowledge and techniques to solve 
geological problems.  It is appropriate, then, to begin our study of geochemistry with a re-
view of physical chemistry.  Our initial focus will be on thermodynamics.  Strictly defined, 

thermodynamics is the study of energy and its transformations.  Chemical reactions and changes of 
states of matter inevitably involve energy changes. By using thermodynamics to follow the energy, we 
will find that we can predict the outcome of chemical reactions, and hence the state of matter in the 
Earth.  In principle at least, we can use thermodynamics to predict at what temperature a rock will melt 
and the composition of that melt, and we can predict the sequence of minerals that will crystallize to 
form an igneous rock from the melt.  We can predict the new minerals that will form when that igneous 
rock undergoes metamorphism, and we can predict the minerals and the composition of the solution 
that forms when that metamorphic rocks weathers.  Thus thermodynamics allows us to understand (in 
the sense that we defined understanding in Chapter 1) a great variety of geologic processes. 
 Thermodynamics embodies a macroscopic viewpoint, i.e., it concerns itself with the properties of a sys-
tem, such as temperature, volume, heat capacity, and it does not concern itself with how these proper-
ties are reflected in the internal arrangement of atoms.  The microscopic viewpoint, which is concerned 
with transformations on the atomic and subatomic levels, is the realm of statistical mechanics and quan-
tum mechanics.  In our treatment, we will focus mainly on the macroscopic (thermodynamic) viewpoint, 
but we will occasionally consider the microscopic (statistical mechanical) viewpoint when our under-
standing can be enhanced by doing so. 
 In principle, thermodynamics is only usefully applied to systems at equilibrium.  If an equilibrium system is 
perturbed, thermodynamics can predict the new equilibrium state, but cannot predict how, how fast, or 
indeed whether, the equilibrium state will be achieved.  (The field of irreversible thermodynamics, which 
we will not treat in this book, attempts to apply thermodynamics to non-equilibrium states.  However, 
we will see in Chapter 5 that thermodynamics, through the principle of detailed balancing and transition 
state theory, can help us predict reaction rates.) 
 Kinetics is the study of rates and mechanisms of reaction.  Whereas thermodynamics is concerned 
with the ultimate equilibrium state and not concerned with the pathway to equilibrium, kinetics con-
cerns itself with the pathway to equilibrium.  Very often, equilibrium in the Earth is not achieved, or 
achieved only very slowly, which naturally limits the usefulness of thermodynamics.  Kinetics helps us 
to understand how equilibrium is achieved and why it is occasionally not achieved. Thus these two 
fields are closely related, and together form the basis of much of geochemistry.  We will treat kinetics in 
Chapter 5. 

2.2 THERMODYNAMIC SYSTEMS AND EQUILIBRIUM 
 We now need to define a few terms.  We begin with the term system, which we have already used.  A 
thermodynamic system is simply that part of the universe we are considering.  Everything else is re-
ferred to as the surroundings.  A thermodynamic system is defined at the convenience of the observer in 
a manner so that thermodynamics may be applied.   While we are free to choose the boundaries of a 
system, our choice must nevertheless be a careful one as the success or failure of thermodynamics in 
describing the system will depend on how we have defined its boundaries.  Thermodynamics often al-
lows us this sort of freedom of definition.  This can certainly be frustrating, particularly for someone 
exposed to thermodynamics for the first time (and often even the second or third time).  But this free-
dom allows us to apply thermodynamics successfully to a much broader range of problems than other-
wise.   

W 
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 A system may be related to its envi-
ronment in a number of ways.  An iso-
lated system can exchange neither energy 
(heat or work) nor matter with its sur-
roundings.  A truly isolated system does 
not exist in nature, so this is strictly a 
theoretical concept.  An adiabatic system 
can exchange energy in the form of work, 
but not heat or matter, with its sur-
roundings, that is to say it has thermally 
insulating boundaries. Though a truly 
adiabatic system is probably also a fic-
tion, heat transport in many geologic sys-
tems is sufficiently slow that they may be 
considered adiabatic.  Closed systems 
may exchange energy, in the form of both 
heat and work with their surrounding 
but cannot exchange matter.  An open 
system may exchange both matter and 
energy across it boundaries.  The various 
possible relationships of a system to its 
environment are illustrated in Figure 2.1. 
 Depending on how they behave over 

time, systems are said to be either in transient or time-invariant states.  Transient states are those that 
change with time.  Time-independent states may be either static or dynamic.  A dynamic time-inde-
pendent state, or steady-state, is one whose thermodynamic and chemical characteristics do not change 
with time despite internal changes or exchanges of mass and energy with its surroundings.  As we will 
see, the ocean is a good example of a steady-state system.  Despite a constant influx of water and salts 
from rivers and loss of salts and water to sediments and the atmosphere, it composition does not 
change with time (at least on geologically short time scales).  Thus a steady-state system may also be an 
open system.  We could define a static system is one in which nothing is happening.  For example, an 
igneous rock or a flask of seawater (or some other solution) is static in the macroscopic perspective.  
From the statistical mechanical viewpoint, however, there is a constant reshuffling of atoms and elec-
trons, but with no net changes.  Thus static states are generally also dynamic states when viewed on a 
sufficiently fine scale. 
 Let’s now consider one of the most important concepts in physical chemistry, that of equilibrium.  One 
of the characteristics of the equilibrium state is that it is static from a macroscopic perspective, that is, it 
does not change measurably with time.  Thus the equilibrium state is always time-invariant.  However, 
while a reaction A→B may appear to have reached static equilibrium on a macroscopic scale this reac-
tion may still proceed on a microscopic scale but with the rate of reaction A→B being the same as that 
of B→A.  Indeed, a kinetic definition of equilibrium is that the forward and reverse rates of reaction are 
equal. 
 The equilibrium state is entirely independent of the manner or pathway in which equilibrium is 
achieved.  Indeed, once equilibrium is achieved, no information about previous states of the system can 
be recovered from its thermodynamic properties.  Thus a flask of CO2 produced by combustion of 
graphite cannot be distinguished from CO2 produced by combustion of diamond.  In achieving a new 
equilibrium state, all records of past states are destroyed. 
 Time-invariance is a necessary but not sufficient condition for equilibrium.  Many systems exist in 
metastable states.  Diamond at the surface of the Earth is not in an equilibrium state, despite its time-
invariance on geologic time scales.  Carbon exists in this metastable state because of kinetic barriers that 
inhibit transformation to graphite, the equilibrium state of pure carbon at the Earth’s surface.  Over-

 
Figure 2.01.  Systems in relationship to their surround-
ings.  The ball represents mass exchange, the arrow rep-
resents energy exchange. 
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coming these kinetic barriers generally re-
quires energy.  If diamond is heated suffi-
ciently, it will transform to graphite, or in 
the presence of sufficient oxygen, to CO2. 
 The concept of equilibrium versus metas-
table or unstable (transient) states is illus-
trated in Figure 2.2 by a ball on a hill.  The 
equilibrium state is when the ball is in the 
valley at the bottom of the hill, because its 
gravitational potential energy is minimized 
in this position.  When the ball is on a 
slope, it is in an unstable, or transient, state 
and will tend to roll down the hill.  How-
ever, it may also become trapped in small 
depressions on the side of the hill, which 
represent metastable states.  The small hill 
bordering the depression represents a kinetic barrier.  This kinetic barrier can only be overcome when 
the ball acquires enough energy to roll up and over it.  Lacking that energy, it will exist in the metasta-
ble state indefinitely.   
 In Figure 2.2, the ball is at equilibrium when its (gravitational) potential energy lowest (i.e., at the bot-
tom of the hill).  This is a good definition of equilibrium in this system, but as we will soon see, is not 
adequate in all cases.  A more general statement would be to say that the equilibrium state is the one to-
ward which a system will change in the absence of constraints.  So in this case, if we plane down the bump 
(remove a constraint), the ball rolls to the bottom of the hill.  At the end of this Chapter, we will be able 
to produce a thermodynamic definition of equilibrium based on the Gibbs Free Energy.  We will find 
that, for a given pressure and temperature, the chemical equilibrium state occurs when the Gibbs Free 
Energy of the system is lowest. 
 Natural processes proceeding at a finite rate are irreversible: under a given set of conditions; i.e., they 
will only proceed in one direction.  Here we encounter a problem in the application of thermody-
namics: if a reaction is proceeding, then the system is out of equilibrium and thermodynamic analysis 
cannot be applied.  This is one of the first of many paradoxes in thermodynamics.  This limitation might 
at first seem fatal, but we get around it by imagining a comparable reversible reaction.  Reversibility and 
local equilibrium are concepts that allow us to 'cheat' and apply thermodynamics to non-equilibrium 
situations.  A “reversible” process is an idealized one where the reaction proceeds in sufficiently small steps that 
it is in equilibrium at any given time (thus allowing the application of thermodynamics).   
 Local equilibrium embodies the concept that in a closed or open system, which may not be at equi-
librium on the whole, small volumes of the system may nonetheless be at equilibrium.  There are many 
such examples.  In the example of mineral crystallizing from magma, only the rim of the crystal may be 
in equilibrium with the melt. Information about the system may nevertheless be derived from the rela-
tionship of this rim to the surrounding magma.  Local equilibrium is in a sense the spatial equivalent to 
the temporal concept of reversibility and allows the application of thermodynamics to real systems, 
which are invariably non-equilibrium at large scales.  Both local equilibrium and reversibility are exam-
ples of simplifying assumptions that allow us to treat complex situations.  In making such assumptions, 
some accuracy in the answer may be lost.  Knowing when and how to simplify a problem is an impor-
tant scientific skill. 

2.2.1 Fundamental Thermodynamic Variables 
 In the next two chapters we will be using a number of variables, or properties, to describe thermody-
namic systems.  Some of these will be quite familiar to you, others less so.  Volume, pressure, energy, 
heat, work, entropy, and temperature are most fundamental variables in thermodynamics.  As all other 

 
Figure 2.02.  States of a system. 
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thermodynamic variables are derived from them, it is worth our while to consider a few of these prop-
erties. 
 Energy is the capacity to produce change.  It is a fundamental property of any system, and it should 
be familiar from physics.  By choosing a suitable reference frame, we can define an absolute energy 
scale.  However, it is changes in energy that are generally of interest to us rather than absolute 
amounts.  Work and heat are two of many forms of energy. Heat, or thermal energy, results from ran-
dom motions of molecules or atoms in a substance and is closely related to kinetic energy.  Work is 
done by moving a mass, M, through some distance, x = X, against a force F: 

  w = − F
0

X

∫ dx  2.01 

where w is work and force is defined as mass times acceleration: 

  F = −M dv
dt

 2.02 

(the minus signs are there because of the convention that work done on a system is positive, work done by a 
system is negative).  This is, of course, Newton’s first law. In chemical thermodynamics, pressure–
volume work is usually of more interest.  Pressure is defined as force per unit area: 

  P = 
F
A  2.03 

Since volume is area times distance, we can substitute equation 2.03 and dV = Adx into 2.1 and obtain: 

  w = − F
A
A

x0

x1∫ dx = − PdV
V0

V1∫  2.04 

Thus work is also done as a result of a volume change in the presence of pressure.   
 Potential energy is energy possessed by a body by virtue of its position in a force field, such as the 
gravitational field of the Earth, or an electric field. Chemical energy will be of most interest to us in this 
book.   Chemical energy is a form a potential energy stored in chemical bonds of a substance.  Chemical 
energy arises from the electromagnetic forces acting on atoms and electrons.   Internal energy, which 
we denote with the symbol U, is the sum of the potential energy arising from these forces as well as the 
kinetic energy of the atoms and molecules (i.e., thermal energy) in a substance.  It is internal energy that 
will be of most interest to us. 
 We will discuss all these fundamental variables in more detail in the next few sections. 

2.2.1.1 Properties of State 
 Properties or variables of a system that depend only on the present state of the system, and not on the 
manner in which that state was achieved are called variables of state or state functions.  Extensive proper-
ties depend on total size of the system.  Mass, volume, and energy are all extensive properties.  Exten-
sive properties are additive, the value for the whole being the sum of values for the parts.  Intensive 
properties are independent of the size of a system, for example temperature, pressure, and viscosity.  
They are not additive, e.g., the temperature of a system is not the sum of the temperature of its parts.  In 
general, an extensive property can be converted to an intensive one by dividing it by some other exten-
sive property.  For example, density is the mass per volume and is an intensive property.  It is generally 
more convenient to work with intensive rather than extensive properties.  For a single component sys-
tem not undergoing reaction, specification of 3 variables (2 intensive, 1 extensive) is generally sufficient 
to determine the rest, and specification of any 2 intensive variables is generally sufficient to determine 
the remaining intensive variables. 
 A final definition is that of a pure substance.  A pure substance is one that cannot be separated into 
fractions of different properties by the same processes as those considered.  For example, in most proc-
esses, the compound H2O can be considered a pure substance.  However, if electrolysis were involved, 
this would not be the case. 
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2.3 EQUATIONS OF STATE 
 Equations of state describe the relationship that exists among the state variables of a system.    We 
will begin by considering the ideal gas law and then very briefly consider two more complex equations 
of state for gases. 

2.3.1 Ideal Gas Law 
 The simplest and most fundamental of the equations of state is the ideal gas law†.  It states that pres-
sure, volume, temperature, and the number of moles of a gas are related as: 
  PV = NRT 2.05 
where P is pressure, V is volume, N is the number of moles, T is thermodynamic, or absolute tempera-
ture (which we will explain shortly), and R is the ideal gas constant* (an empirically determined con-
stant equal to 8.314 J/mol-K, 1.987 cal/mol-K or 82.06 cc-atm/deg-mol).  This equation describes the re-
lation between two extensive (mass dependent) parameters, volume and the number of moles, and two 
intensive (mass independent) parameters, temperature and pressure.  We earlier stated that if we de-
fined two intensive and one extensive system parameter, we could determine the remaining parame-
ters.  We can see from equation 2.05 that this is indeed the case for an ideal gas.  For example, if we 
know N, P, and T, we can use equation 2.05 to determine V. 
 The ideal gas law, and any equation of state, can be rewritten with intensive properties only.  Di-
viding V by N we obtain the molar volume, V–  .  Substituting V–   for V and rearranging, the ideal gas equa-
tion becomes: 

  V =
RT
P

 2.06  

The ideal gas equation tells us how the volume of a given amount of gas will vary with pressure and 
temperature.  To see how molar volume will vary with temperature alone, we can differentiate equa-
tion 2.06 with respect to temperature holding pressure constant and obtain: 

  ∂V
∂T

⎛
⎝⎜

⎞
⎠⎟ P

=
∂ NRT / P( )

∂T
 2.07 

which reduces to: ∂V
∂T

⎛
⎝⎜

⎞
⎠⎟ P

=
NR
P

 2.08 

It would be more useful to know to fractional volume change rather than the absolute volume change 
with temperature, because the result in that case does not depend on the size of the system.  To convert 
to the fractional volume change, we simply divide the equation by V: 

  1
V

∂V
∂T

⎛
⎝⎜

⎞
⎠⎟ P

=
NR
PV

 2.09 

Comparing equation 2.09 with 2.05, we see that the right hand side of the equation is simply 1/T, thus 

  

� 

1
V

∂V
∂T

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
P

= 1
T

 2.10 

The left hand side of this equation, the fractional change in volume with change in temperature, is 
known as the coefficient of thermal expansion, α: 

                                                
† Frenchman Joseph Gay-Lussac (1778-1850) established this law based on earlier work of Englishman Robert Boyle 
and Frenchman Edme Mariotte. 
* We will generally refer to it merely as the gas constant. 
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� 

α ≡
1
V

∂V
∂T
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
P

 2.11 

For an ideal gas, the coefficient 
of thermal expansion is simply 
the inverse of temperature.  
 The compressibility of a sub-
stance is defined in a similar 
manner as the fractional change 
in volume produced by a change 
in pressure at constant tempera-
ture: 

  

� 

β ≡ −
1
V

∂V
∂P

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
T

 2.12 

Geologists sometimes use the isothermal bulk modulus, KT, in place of compressibility.  The isothermal 
bulk modulus is simply the inverse of compressibility: KT = 1/β.  Through a similar derivation to the 
one we have just done for the coefficient of thermal expansion, it can be shown that the compressibility 
of an ideal gas is β = 1/P. 
 The ideal gas law can be derived from statistical physics (first principles), assuming the molecules oc-
cupy no volume and have no electrostatic interaction.  Doing so, we find, R = N0k, where k is Boltzmann’s 
constant (1.381 x 10-16 erg/K) and N0 is Avagadro's Number (the number of atoms in one mole of a sub-
stance).  k is a fundamentally constant that relates the average molecular energy, e, of an ideal gas to its 
temperature (K) as e = 3kT/2.  
 Since the assumptions just stated are ultimately invalid, it is not surprising that the ideal gas law is 
only an approximation for real gases, it applies best in the limit of high temperature and low pressure.  
Deviations are largest near the condensation point of the gas. 
The compressibility factor is a measure of deviation from ideality and is defined as 
  Z = PV/NRT 2.13 
By definition, Z= 1 for an ideal gas. 

2.3.2 Equations of State for Real Gases 
2.3.2.1 Van der Waals Equation: 
 Factors we need to consider in constructing an equation of state for a real gas are the finite volume of 
molecules and the attractive and repulsive forces between molecules arising from electric charges.  The 
Van der Waals equation is probably the simplest equation of state that takes account of these factors.  
The Van der Waals equation is: 

  P =
RT
V − b

−
a
V
2  2.14 

Here again we have converted volume from an extensive to an intensive property by dividing by N.  
 Let’s examine the way in which the Van der Waals equation attempts to take account of finite mo-
lecular volume and forces between molecules.  Considering first the forces between molecules, imagine 
two volume elements v1 and v2.  The attractive forces will be proportional to the number of molecules 
or the concentrations, c1 and c2, in each.  Therefore, attractive forces are proportional to c1 x c2 = c2.  
Since c is the number of molecules per unit volume, c=n/V, we see that attractive forces are propor-
tional to 1/V– 2.  Thus it is the second term on the right that takes account of forces between molecules.  
The a term is a constant that depends on the nature and strength of the forces between molecules, and 
will therefore be different for each type of gas. 

Table 2.1. Van der Waals Constants for Selected Gases 
Gas  a b 
  liter2-atm/mole2 liter/mole 

Helium 0.034 0.0237 
Argon 1.345 0.0171 
Hydrogen 0.244 0.0266 
Oxygen 1.360 0.0318 
Nitrogen 1.390 0.0391 
Carbon Dioxide 3.592 0.0399 
Water 5.464 0.0305 
Benzene 18.00 0.1154 
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 In the first term on the right, V
—

  has been replaced by V
—

  – b. b is the volume actually occupied by 
molecules, and the term V

—
  – b is the volume available for movement of the molecules.  Since different 

gases have molecules of differing size, we can expect that the value of b will also depend on the nature 
of the gas.  Table 2.1 lists the values of a and b for a few common gases. 

2.3.2.2 Other Equations of State for Gases 
 The Redlich-Kwong Equation (1949) expresses the attractive forces as a more complex function: 

    P =
RT
V − b

−
a

T1 / 2V (V + b)
 2.15 

The Virial Equation is much easier to handle algebraically than the van der Waals equation and has 
some theoretical basis in statistical mechanics: 

   

� 

PV = A + BP + CP2 + DP3 + …  2.16 
A, B, C, .... are empirically determined (temperature dependent) constants.  

2.3.3 Equation of State for Other Substances 
 The compressibility and coefficient of thermal expansion parameters allow us to construct an equa-
tion of state for any substance.  Such an equation relates the fundamental properties of the substance: 
its temperature, pressure, and volume.  The partial differential of volume with respect to temperature 
and pressure is such an equation: 

  dV =
∂V
∂T

⎛
⎝⎜

⎞
⎠⎟ P
dT +

∂V
∂P

⎛
⎝⎜

⎞
⎠⎟ T
dP  2.17 

Substituting the coefficient of thermal expansion and compressibility for ∂V/∂T and ∂V/∂P respectively 
we have: 
  dV = V (αdT – βdP) 2.18 
Thus to write an equation of state for a substance, our task becomes to determine its compressibility 
and coefficient of thermal expansion.  Once we know them, we can integrate equation 2.18 to obtain the 
equation of state.  These, however, will generally be complex functions of temperature and pressure, so 
the task is often not easy. 

2.2 TEMPERATURE, ABSOLUTE ZERO, AND THE ZEROTH LAW OF 
THERMODYNAMICS  

 How do you define and measure temperature?  We discussed temperature with respect to the ideal 
gas law without defining it, though we all have an intuitive sense of what temperature is.  We noted 
above that temperature of a gas is measure of the average (kinetic) energy of its molecules. Another ap-
proach might be to use the ideal gas law to construct a thermometer and define a temperature scale.  A 
convenient thermometer might be one based on the linear relationship between temperature and the 
volume of an ideal gas.  Such a thermometer is illustrated in Figure 2.03.  The equation describing the 
relationship between the volume of the gas in the thermometer and our temperature, τ, is: 
  V=V0(1 +γτ) 2.19 
where V0 is the volume at some reference point where τ = 0 (Figure 2.03a) and γ is a scale factor.  For 
example, we might choose τ=0 to be the freezing point of water and the scale factor such that τ=100 
(Figure 2.03b) occurs at the boiling point of water, as is the case in the centigrade scale.  Rearranging, 
we have: 

  

� 

τ =
1
γ

V
V0

−1
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  2.20 
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 Then τ = 0 at V = V0.  If V is less than the reference volume, 
then temperature will be negative on our scale.  But notice that 
while any positive value of temperature is possible on this scale, 
there is a limit to the range of possible negative values.  This is 
because V can never be negative.  The minimum value of tem-
perature on this scale will occur when V is 0.  This occurs at: 

  τ 0 = − 1
γ

 2.21 

Thus implicit in the ideal gas law, which we used to make this 
thermometer, is the idea that there is an absolute minimum 
value, or an absolute zero, of temperature, which occurs when 
the volume of an ideal gas is 0.  Notice that while the value (–
1/γ) of this absolute zero will depend on how we designed our 
thermometer, i.e., on V0, the result, that a minimum value exists, 
does not.  We should also point out that only an ideal gas will 
have a volume of 0 at the absolute 0.  The molecules of real 
gases have a finite volume, and such a gas will have a finite 
volume at absolute 0. 
 The temperature scale used by convention in thermodynam-
ics is the Kelvin* scale.  The magnitude of units, called kelvins 
(not degrees kelvin) and designated K (not ° K), on this scale are 
the same as the centigrade scale, i.e., there are exactly 100 
kelvins between the freezing and boiling point of water.  There 
is some slight uncertainty (a very much smaller uncertainty 
than we need to concern ourselves with) concerning the value 
of absolute zero (i.e., the value of γ in 2.20 and 2.21).  The scale 
has been fixed by choosing 273.16 kelvins to be the triple point 
of water (0.01° C).  On this scale, the absolute zero of tempera-
ture occurs at 0±0.01 kelvins.  The Kelvin scale should be used 
wherever temperature occurs in a thermodynamic equation. 
 Temperature has another fundamental property, and this is 

embodied in the zeroth law of thermodynamics.  It is sufficiently obvious from everyday experience that 
we might overlook it.  It concerns thermal equilibrium and may be stated in several ways: two bodies in 
thermal equilibrium have the same temperature and any two bodies in thermal equilibrium with a third are in 
equilibrium with each other. 

2.3 ENERGY AND THE FIRST LAW OF THERMODYNAMICS  
2.3.1 Energy 
 The first law may be stated various ways: 
 •heat and work are equivalent 
 •energy is conserved in any transformation;  
 •the change of energy of a system is independent of the path taken.‡ 

                                                
* Named for Lord Kelvin.  Born William Thomson in Scotland in 1824, he was appointed Professor at Glasgow 
University at the age of 22.  Among his many contributions to physics and thermodynamics was the concept of ab-
solute temperature.  He died in 1907. 
‡This may seem intuitively obvious to us, but it wasn’t to James Joule (1818-1889), English brewer and physicist, 
who postulated it on the basis of experimental results.  It wasn’t obvious to his contemporaries either.  His presen-
tation of the idea of equivalence of heat and work to the British Association in 1843 was received with “entire in-

 
Figure 2.03.  An ideal gas ther-
mometer. 
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All are restatements of the law of conservation of energy: 
  Energy can be neither created nor destroyed. 
 Mathematically:     ΔU=Q+W  or  dU=dQ+dW  2.22 
 Thermodynamics is concerned only with the internal energy of a system.  We don’t really care 
whether the system as a whole is in motion, i.e., whether it has kinetic energy (we do care, however, 
about the internal kinetic energy, or heat).  For the most part, we also don’t care whether it has po-
tential energy, i.e., what it's position in potential fields is, except to the extent that this influences the 
state of our system (e.g., pressure in the atmosphere is a function of the altitude, and hence would be of 
interest to us).  In addition, we are almost always concerned only with energy changes, not with the ab-
solute energy of a system.  In thermodynamics ΔU, not U, is the interesting quantity. 
 Energy may be transferred between a system and it surroundings in several ways: heat, work, radia-
tion, and advection (i.e., energy associated with mass gained or lost by the system).  Whenever possible, 
we will want to chose our system such that it is closed and we don’t have to worry about the latter.  In 
most, but not all, instances of geochemical interest, radiation is not important.  Thus in geochemical 
thermodynamics, heat and work are the forms of energy flow of primary interest. 

2.3.2 Work 
 We have seen that work is the integral of force applied through a distance.  Force times distance has 
units of energy (mass-velocity2), thus work is form of energy.  The SI (Systeme International) unit of en-
ergy is the Joule = 1 kg-m2/s2. 
 There are several kinds of work of interest to thermodynamics, the most important of which is that 
involved in chemical reactions (later, when we consider oxidation and reduction reactions, we will be 
concerned with electrochemical work).  One of the most important forms of work in classical thermo-
dynamics is ‘PV’ work: expansion and contraction.  Expressing equation 2.04 in differential form: 
  dW = –Pext dV 2.23 
Pressure is force per unit area and therefore has units of mass-time-2-distance-1, volume has units of dis-
tance3.  The product of P and V therefore has units of energy: mass-(distance/time)2.†  The negative sign 
arises because, by convention, we define energy flowing into the system as positive.  Work done by the system 
is thus negative, work done on the system is positive.  This conforms to a 1970 I.U.P.A.C. (International 
Union of Pure and Applied Chemistry) recommendation. 
 While ‘PV’ work is not as important in geochemistry as in other applications of thermodynamics, it is 
nevertheless of significant interest.  There is, of course, a great range of pressures within the Earth.  Sys-
tems rising within the Earth, such a magma, a hydrothermal fluid, or upwelling water in the ocean will 
thus do work on their surroundings, and systems sinking, such as sediments being buried or litho-
sphere being subducted, will have work done on them. 

                                                
credulity” and “general silence”.  The Royal Society rejected his paper on the subject a year later.   If you think 
about it a bit, it is not so obvious — in fact, there is no good reason why heat and work should be equivalent.  This 
law is simply an empirical observation.  The proof is a negative one: experience has found no contradiction of it.  
German physician Julius Mayer (1814-1878) formulated the idea of conservation of energy in 1842, but his writing 
attracted little attention.  It was Joule’s experiments with heat and work that conclusively established the principle 
of conservation of energy.  By 1850, the idea of conservation of energy began to take hold among physicists, thanks 
to Joule’s persistence and the support of a brilliant young physicist named William Thomson, who also had been 
initially skeptical. 

† The pascal, the SI unit of pressure, is equal to 1 kg/m-s2.  Thus if pressure is measured in MPa (megapascals, 1 atm 
≈ 1 bar = 0.1 MPa) and volume in cc (= 10-6 m-3), the product of pressure times volume will be in joules.  This is rather 
convenient.  It is named for French mathematician and physicist Blaise Pascal (1623-1662).   Among his many contri-
butions was the demonstration that atmospheric pressure was lower atop the Puy de Dome volcano than in the town 
of Clermont-Ferrand below it. 
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 We mentioned the concept of reversible and irreversible reactions, and stated that a reversible reac-
tion is one that occurs in sufficiently small steps that equilibrium is maintained.  In an expansion or 
contraction reaction, equilibrium is maintained and the reaction is reversible if the external pressure is 
equal to the internal pressure.  The work done under these conditions is said to be reversible: 
  dWrev = –PdV 2.24 

2.3.4 Path Independence, Exact Differentials, State Functions, and the First Law 
 We said earlier that state functions are those that depend only on the present state of a system.  An-
other way of expressing this is to say that state functions are path independent.  Indeed, path in-
dependence may be used as a test of whether a variable is a state function or not.  This is to say that if Y 
is a state function, then for any process that results in a change Y1 →Y2, the net change in Y, ΔY, is in-
dependent of how one gets from Y1 to Y2.  Furthermore, if Y is a state function, then the differential dY 
is said to be mathematically exact. 
 Let’s explore what is meant by an exact differential. An exact differential is the familiar kind, the kind 
we would obtain by differentiating the function u with respect to x and y, and also the kind we can in-
tegrate. But not all differential equations are exact.  Let’s first consider the mathematical definition of an 
exact differential, then consider some thermodynamic examples of exact and inexact differentials. 
 Consider the first order differential expression: 
  Mdx + Ndy 2.25 
containing variables M and N, which may or may not be functions of x and y.  Equation 2.25 is said to 
be an exact differential if there exists some function u of x and y relating them such that the expression:  
  du = Mdx + Ndy 2.26  
is the total differential of u, i.e.,: 

  du = ∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ y
dx + ∂u

∂y
⎛
⎝⎜

⎞
⎠⎟ x
dy  2.27 

Let’s consider what this implies.  Comparing 2.26 and 2.27, we see that:  

  
∂u
∂x  = M     and    

∂u
∂y  = N 2.28 

A necessary, but not sufficient, condition for 2.25 to be an exact differential is that M and N must be 
functions of x and y.   
 A general property of partial differentials is the reciprocity relation or cross-differentiation identity, 
which that the order of differentiation does not matter, so that: 

  

� 

∂2u
∂x∂y

= ∂2u
∂y∂x

 2.29 

(The reciprocity relation is an important and useful property in thermodynamics, as we shall see at the 
end of this chapter.) If equation 2.26 is the total differential of u, it follows that: 

  

� 

∂M
∂y

= ∂N
∂x

 2.30 

which is equivalent to: 
dM
dy

⎛
⎝⎜

⎞
⎠⎟ x

=
dN
dx

⎛
⎝⎜

⎞
⎠⎟ y

 2.31 

 
Equation 2.31 is a necessary and sufficient condition for 2.25 to be an exact differential, that is, if the 
cross differentials are equal, then the differential expression is exact. 
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 Exact differentials have the property that they can be integrated and an exact value obtained.  This is 
true because they depend only on the initial and final values of the independent variables (e.g., x and y 
in 2.27). 
 Now let’s consider some thermodynamic examples.  Volume is a state function and we can express it 
as an exact differential in terms of other state functions: 

  

� 

dV =
∂V
∂T

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
P

dT +
∂V
∂P

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
T

dP  (2.17) 

Substituting the coefficient of thermal expansion and compressibility for ∂V/∂T and ∂V/∂P respectively, 
equation 2.30 becomes: 
  dV =αVdT − βVdP  (2.18) 
According to equation 2.31, if V is a state function, then: 

  

� 

∂ αV( )
∂P

= −
∂ βV( )
∂T

 2.32 

You should satisfy yourself that equation 2.32 indeed holds for ideal gases and therefore that V is a 
state variable. 
 Work is not a state function, that is, the work done does not depend only on the initial and final state 
of a system.  We would expect then that dW is not an exact differential, and indeed, this is easily shown 
for an ideal gas.   
 For PV work, dW = –PdV.  Substituting equation 2.17 for dV and rearranging, we have: 

  

� 

dW = −P ∂V
∂T

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
P

dT +
∂V
∂P
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
T

dP
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  2.33 

Evaluating ∂V/∂T and ∂V/∂P for the ideal gas equation and multiplying through by P, this becomes: 

  

� 

dW = −NRdT + NRT
P

dP  2.34 

but 

� 

∂NR
∂P

≠ ∂(NRT /P)
∂T

 2.35 

We cannot integrate equation 2.34 and obtain a value for the work done without additional knowledge 
of the variation of T and P because the amount of work done does not depend only on the initial and fi-
nal values of T and P; it depends on the path taken.  Heat is also not a state function, not an exact dif-
ferential, and also path dependent.  Path dependent functions always have inexact differentials; path 
independent functions always have exact differentials. 
 On a less mathematical level, let’s consider how the work and heat will vary in a transformation of a 
system, say from state 1 to state 2.  Imagine that we burn gasoline in an open container. In this case, in 
the transformation from state 1 (gasoline) to state 2 (combustion products of gasoline) energy is given 
up by the system only as heat.  Alternatively, we could burn the gasoline in an engine and recover 
some of the energy as work (expansion of the volume of the cylinder resulting in motion of the piston).  
The end states of these two transformations are the same, but the amount of heat released and work 
done varied depending on the path we took.  Thus neither work nor heat can be state functions.  En-
ergy is a state function, is path independent, and is an exact differential.  Whether we burn the gasoline 
in an open container or an engine, the energy released will be the same.  Herein lies the significance for 
thermodynamics of Joule’s discovery: that the sum of heat and work is independent of the path taken even 
though, independently, work and heat are not. 
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2.4 THE SECOND LAW AND ENTROPY  
2.4.1 Statement 
 Imagine a well-insulated box (an isolated system) somewhere 
in the universe (Figure 2.04).  Imagine that within the box are 
two gases, separated by a removable partition.  If we remove 
the partition, what happens?  You know: the two gases mix 
completely.  The process is entirely spontaneous.  We have nei-
ther added energy to nor taken energy from the system, hence 
the first law says nothing about this process.  Nor did removing 
the partition “cause” the reaction.  This is apparent from the 
observation that if we reinsert the partition, the gases do not 
unmix.  That you knew that the gases would mix (and knew as 
well that they would not unmix upon reinserting the partition) 
suggests there is something very fundamental and universal about this.  We need a physical law that 
describes it.  This is the second law. 
  The Second Law may be stated in a number of ways: 

It is impossible to construct a machine that is able to convey heat by a cyclical process from one reservoir at a 
lower temperature to another at a higher temperature unless work is done by some outside agency (i.e., air 
conditioning is never free). § 

Heat cannot be entirely extracted from a body and turned into work (thus car engines always have cooling sys-
tems). 

Every system left to itself will, on the average, change toward a condition of maximum probability. 
Introducing a new state function S called entropy, we may state the second law as: 

The entropy of the universe always increases. 
In colloquial terms we could say: 
You can't shovel manure into the rear end of a horse and expect to get hay out its mouth. 
 The second law codifies some of our everyday experience.  The first law would not prevent us from 
using a horse to manufacture hay from manure.  It only says we can’t get more joules worth of hay out 
than we put in as manure.  We would search in vain for any other physical law that prohibited this 
event.  Yet our experience shows that it won’t happen.  Indeed, this event is so improbable that we find 
it comical.  Similarly, we know that we can convert gasoline and oxygen to carbon dioxide and water in 
an internal combustion engine and use the resulting energy to drive a vehicle down the road.  But add-
ing CO2 and water to the engine and pushing the car backwards down the street does not produce 
gasoline and oxygen, although such a result violates no other law of physics.  The second law states that 
there is a natural direction in which reactions will tend to proceed.  This direction is inevitably that of higher 
entropy of the system and its surroundings.  

2.4.2 Statistical Mechanics: A Microscopic Perspective of Entropy 
 Whereas energy is a property for which we gain an intuitive feel through every day experience, the 
concept of entropy is usually more difficult to grasp.  Perhaps the best intuitive understanding of en-

                                                
§Rudolf Clausius (1822-1888), a physicist at the Prussian military engineering academy in Berlin, formulated what we 
now refer to as the second law and the concept of entropy in a paper published in 1850.  Similar ideas were published 
a year later by William Thomson (Lord Kelvin), who is responsible for the word “entropy”.  Clausius was a theorist 
who deserves much of the credit for founding what we now call “thermodynamics” (he was responsible for, among 
many other things, the virial equation for gases).  However, a case can be made that Sadi Carnot (1796-1832) should 
be given the credit.  Carnot was a Parisian military officer (the son of a general in the French revolutionary army) 
interested in the efficiency of steam engines.  The question of credit hinges on whether he was referring to what we 
now call entropy when he used the word “calorique”.   

 
Figure 2.04.  A gas-filled box with a 
removable partition.  When the parti-
tion is removed, the gases mix.  En-
tropy increases during this process. 
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tropy can be obtained from the microscopic viewpoint of statistical me-
chanics.  So for that reason, we will make the first of several brief excur-
sions into the world of atoms, molecules, and quanta.   
 Let’s return to our box of gas and consider what happens on a micro-
scopic scale when we remove the partition.  To make things tractable, 
we’ll consider that each gas consists of only two molecules, so there are 
four all together, two red and two black.  For this thought experiment, 
we’ll keep track of the individual molecules, so we label them 1red, 2red, 
1black, 2 black.  Before we removed the partition, the red molecules were 
on one side and the black ones on the other.  Our molecules have some 
thermal energy, so they are free to move around.  So by removing the par-
tition, we are essentially saying that each molecule is equally likely to be 
found in either side of the box. 
 Before we removed the partition, there was only one possible arrange-
ment of the system: this is shown in Figure 2.05a.  Once we remove the 
partition, we have 4 molecules and two subvolumes, and a total of 24 = 16 
possible configurations (Fig. 2.05b) of the system.  The basic postulate of 
statistical mechanics is: a system is equally likely to be found in any of the states 
accessible to it.  Thus we postulate that each of these configurations is 
equally likely.  Only one of these states corresponds to the original one 
(all red molecules on the left).  Thus the probability of the system being 
found in its original state is 1/16.  That is not particularly improbable.  
However, suppose that we had altogether a mole of gas (≈6 × 1023 mole-
cules).  The probability of the system ever being found again in its origi-
nal state is then ≈ 2-1024, which is unlikely indeed. 
 Now consider a second example.  Suppose that we have two copper 
blocks of identical mass at different temperatures and separated by a 
thermally insulating barrier (Figure 2.06).  Imagine that our system, which 
is the two copper blocks, is isolated in space so that the total energy of the 
system remains constant.  What happens if we remove the insulating bar-

rier?  Experience tells us that the 
two copper blocks will eventually 
come into thermal equilibrium, 
i.e., their temperatures will eventually be identical. 
 Now let’s look at this process on a microscopic scale.  We 
have already mentioned that temperature is related to internal 
energy.  As we shall see, this relationship will differ depending 
on the nature and mass of the material of interest, but since our 
blocks are of identical size and composition, we can assume 
temperature and energy are directly related in this case.  Sup-
pose that before we remove the insulation, the left block has 1 
unit of energy and the right one has 5 (we can think of these as 
quanta, but this is not necessary).  The question is, how will en-
ergy be distributed after we remove the insulation? 
 In the statistical mechanical viewpoint, we cannot determine how 
the energy will be distributed; we can only compute the possible ways 
it could be distributed.  Each of these energy distributions is then 

equally likely according to the basic postulate.  So let’s examine how it can be distributed.  Since we as-
sume that the distribution is completely random, we proceed by randomly assigning the first unit to ei-
ther to left or right block, then the second unit to either, etc.  With 6 units of energy, there are already 
more ways of distributing it (26 = 64) than we have space to enumerate here.  For example, there are 6 

 
Figure 2.05.  Possible dis-
tribution of molecules of a 
red and and a black gas in 
a box before (a) and after 
(b) removal of a partition 
separating them. 

 
Figure 2.06.  Two copper blocks 
at different temperatures sepa-
rated by an insulator.  When the 
insulator is removed and the 
blocks brought in contact, the 
blocks come to thermal equilib-
rium.  Entropy increases in this 
process. 
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ways energy can be distributed 
so that the left block has 1 unit 
and the right one 5 units.  This 
is illustrated in Figure 2.7.  
However, since we can’t actu-
ally distinguish the energy 
units, all these ways are effec-
tively identical.  There are 15 
ways, or combinations, we can 
distribute energy so that the left block has 2 units and the right 4 units.  Similarly there are 15 combina-
tions where the left block has 4 units and the right has 2 units.  For this particular example, the rule is 
that if there are a total of E units of energy, e of which are assigned to the left block and (E-e) to the 
right, then there will be Ω(e) identical combinations where Ω(e) is calculated as: 

  Ω(e) = E!
e!(E − e)!

 2.36†  

Here we use Ω(e) to denote the function that describes the number of states accessible to the system for 
a given value of e.  In this particular example, “states accessible to the system” refers to a given dis-
tribution of energy units between the two blocks.  According to equation 2.36 there are 20 ways of dis-
tributing our 6 units of energy so that each block has three.  There is, of course, only one way to dis-
tribute energy so that the left block has all of the energy and only one combination where the right 
block has all of it. 
 According to the basic postulate, any of the 64 possible distributions of energy are equally likely.  The 
key observation, however, is that there are many ways to distribute energy for some values of e and 
only a few for other values.  Thus the chances of the system being found in a state where each block has 
three units is 20/64 = 0.3125, whereas the chances of the system being in the state with the original dis-
tribution (1 unit to the left, 5 to the right) are only 6/64 = 0.0938.  So it is much more likely that we will 
find the system in a state where energy is equally divided than in the original state. 
 Of course, two macroscopic blocks of copper at any reasonable temperature will have far more than 6 
quanta of energy.  Let’s take a just slightly more realistic example and suppose that they have a total of 
20 quanta, and compute the distribution.  There will be 220 possible distributions, far too many to con-
sider individually, so let’s do it the easy way and use equation 2.36 to produce a graph of the probabil-
ity distribution.  Equation 2.36 gives the number of identical states of the system for a given value of e.  
The other thing that we need to know is that the chances of any one of these states occurring, which is 
simply (1/2)20.  So to compute the probability of a particular distinguishable distribution of energy oc-
curring, we multiply this probability by Ω.  More generally the probability, P, will be: 

  
  

� 

P (e) =
E!

e!(E − e)! p
eqE−e  2.37 

where p is the probability of an energy unit being in the left block and q is the probability of it being in 
the right.  This equation is known as the binomial distribution*.  Since both p and q are equal to 0.5 in our 

                                                
† This is the equation when there are two possible outcomes.  A more general form for a situation where there are m 
possible outcomes (e.g., copper blocks) would be: 

  
  

� 

Ω =
N!

n1!n2!…nm!
 2.36a 

where there are n1 outcomes of the first kind (i.e., objects assigned to the first block), n2 outcomes of the second, etc. 
and N = ∑ni (i.e., N objects to be distributed). 
* If you have a spreadsheet program available to you, this equation may be a built-in function, which makes comput-
ing graphs such as Figure 2.08 much easier.  In Microsoft Excel™, this is the BINOMDIST function. 

 
Figure 2.07.  There are 6 possible ways to distribute 6 energy units 
so that the left block has 1 unit and the right block has 5. 
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case (if the blocks were of different mass or 
of different composition, p and q would not 
be equal), the product peqE-e is just pE and 
2.37 simplifies to: 

 
 
P (e) = E!

e!(E − e)!
pE =Ω(e)pE  2.38 

Since pE is a constant (for a given value of E 
and configuration of the system), the prob-
ability of the left block having e units of en-
ergy is directly proportional to Ω(e).  It 
turns out that this is general relationship, 
so that for any system we may write: 
   P ( f ) = CΩ( f )  2.39 
where ƒ is some property describing the 
system and C is some constant (in this case 
0.520).  Figure 2.08a shows the probability 
of the left block having e units of energy.  
Clearly, the most likely situation is that 
both will have approximately equal en-
ergy.  The chances of one block having 1 
unit and the other 19 units is very small (2 
× 10-5 to be exact).  In reality of course, the 
number of quanta of energy available to 
the two copper blocks will be on the order 
of Avagadro’s number.  If one or the other 
block has 10 or 20 more units or even 1010 
more quanta than the other, we wouldn’t 
be able to detect it.  Thus energy will al-
ways appear to be distributed evenly be-
tween the two, once the system has had 
time to adjust. 
 Figure 2.08b shows Ω as a function of e, 
the number of energy units in the left 
block.  Comparing the two, as well as equa-
tion 2.38, we see that the most probable 
distribution of energy between the blocks 
corresponds to the situation where the sys-
tem has the maximal number of states ac-
cessible to it, i.e., to where Ω(e) is maxi-
mum. 
 According to our earlier definition of equilibrium, the state ultimately reached by this system when 
we removed the constraint (the insulation) is the equilibrium one.  We can see here that, unlike the ball 
on the hill, we cannot determine whether this system is at equilibrium or not simply from its energy: 
the total energy of the system remained constant.  In general for a thermodynamic system, whether or 
not the system is at equilibrium depends not on its total energy, but on how that energy is internally distributed. 
 Clearly, it would be useful to have a function that could predict the internal distribution of energy at 
equilibrium.  The function that does this is the entropy.  To understand this, let’s return to our copper 
blocks.  Initially, the two copper blocks are separated by a thermal barrier and we can think of each as 
an isolated system.  We assume that each has an internal energy distribution that is at or close to the 
most probable one; i.e., each is internally at equilibrium.  Each block has its own function Ω (which we 

 
Figure 2.08.  (a) Probability of one of two copper blocks 
of equal mass in thermal equilibrium having e units of 
energy when the total energy of the two blocks is 20 
units. (b) Ω, number of states available to the system 
(combinations of energy distribution) as a function of ε. 
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denote as Ωl and Ωr for the left and right block respectively) that gives the number of states accessible to 
it at a particular energy distribution.  We assume that initial energy distribution is not the final one, so 
that when we remove the insulation, the energy distribution of system will spontaneously change.  In 
other words: 
  

� 

Ωl
i ≠ Ωl

f  and 

� 

Ωr
i ≠ Ωr

f  
where we use the superscripts i and f to denote initial and final respectively. 
 When the left block has energy e, it can be in any one of Ωl = Ω(e) possible states, and the right block 
can be in any one of Ωr = Ω(E-e) states.  Both P and Ω are multiplicative, so the total number of possible 
states after we remove the insulation, Ω, will be: 
  

� 

Ω(e) = Ωl(e) × Ωr (E − e)   
To make P and Ω additive we simply take the log:  
  

� 

lnΩ(e) = lnΩl (e) + lnΩr (E − e)  2.40 
and  ln P = ln C + ln Ω 2.41 
As additive properties, ln P and ln Ω are consistent with our other extensive state variables (e.g., E, V). 
  We want to know which energy distribution, i.e., values of e and E–e, is the most likely one, because 
that corresponds to the equilibrium state of the system.   This is the same as asking where the proba-
bility function, P(e), is maximum.  Maximum values of functions have the useful property that they occur at 
points where the derivative of the function is 0.  That is, a maximum of function ƒ(x) will occur where 
dƒ(x)/d(x) = 0†.  Thus the maximum value of P(e) in Figure 2.8 occurs where dP/de = 0.  The most 
probable energy distribution will therefore occur at: 

  
  

� 

∂P (e)
∂e = 0  or equivalently 

  

� 

∂ lnP (e)
∂e = 0  2.42 

(we use the partial differential notation to indicate that, since the system is isolated, all other state vari-
ables are held constant).  Substituting equation 2.41 into 2.42, we have: 

  
  

� 

∂ lnP (e)
∂e =

∂(lnC + lnΩ(e))
∂e =

∂ lnΩ(e)
∂e = 0  2.43 

(since C is a constant).  Then substituting 2.40 into 2.43 we have: 

  ∂ lnΩ(e)
∂e

=
∂ lnΩl

∂e
+
∂Ωr (E − e)

∂e
= 0  2.44 

so the maximum occurs at: ∂ lnΩl

∂e
= −

∂Ωr (E − e)
∂e

 2.45 

The maximum then occurs where the function ∂ ln Ω/∂e for the two blocks are equal (the negative sign 
will cancel because we are taking the derivative ∂ƒ(-e)/∂e).  More generally, we may write: 

  ∂ lnΩl
f (El

f )
∂El

f =
∂ lnΩr

f (Er
f )

∂Er
f  2.46 

 Notice two interesting things: the equilibrium energy distribution is the one where ln Ω is maximum (since 
it proportional to P) and where the function ∂lnΩ/∂E of the two blocks are equal.  It would appear that both are 
very useful functions.  We define entropy, S, as: 

  S = k ln Ω   2.47¶ 
                                                
† Either a maximum or minimum can occur where the derivative is 0, and a function may have several of both; so 
some foreknowledge of the properties of the function of interest is useful in using this property. 
¶ This equation, which relates microscopic and macroscopic variables, is inscribed on the tombstone of Ludwig 
Boltzmann (1844-1906), the Austrian physicist responsible for it. 
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and a function β such that: β =
∂ lnΩ
∂E

 2.48 

where k is some constant (which turns out to be Boltzmann’s constant or the gas constant; the choice 
depends on whether we work in units of atoms or moles).  The function S then has the property that it is 
maximum at equilibrium and β has the property that it is the same in every part of the system at equilibrium.   
 Entropy also has the interesting property that in any spontaneous reaction, the total entropy of the system plus 
its surroundings must increase.  In our example, this is a simple consequence of the observation that the 
final probability, P(E), and therefore also Ω, will be maximum and hence never be less than the original 
one.  Because of that, the final number of accessible states must exceed the initial number and: 
  

� 

lnΩl
f (El

f ) + lnΩr
f (Er

f ) ≥ lnΩl
i (El

i ) + lnΩr
i(Er

i )  2.49 
rearranging: 

� 

[lnΩl
f (El

f ) − lnΩl
i (El

i)] ≥ −[lnΩr
f (Er

f ) − lnΩr
i(Er

i )]  
The quantities in brackets are simply the entropy changes of the two blocks.  Hence: 
  ∆Sl ≥-∆Sr  2.50 
In other words, any decrease in entropy in one of the blocks must be at least compensated for by an increase in 
entropy of the other block. 
 For an irreversible process, that is, a spontaneous one such as thermal equilibrium between two cop-
per blocks, we cannot determine exactly the increase in entropy.  Experience has shown, however, that 
the increase in entropy will always exceed the ratio of heat exchanged to temperature.  Thus the 
mathematical formulation of the second law is: 

  

� 

dQ
T

≤ dS  2.51 

Like the first law, equation 2.51 cannot be derived or formally proven; it is simply a postulate that has 
never been contradicted by experience.  For a reversible reaction, i.e., one that is never far from equilib-
rium and therefore one where dQ is small relative to T,  

  

� 

dS = dQrev

T
 2.52 

(see the box “the second law in the reversible case”).  In thermodynamics, we restrict our attention to 
systems that are close to equilibrium, so equation 2.52 serves as an operational definition of entropy. 

2.4.2.1 Microscopic Interpretation of Temperature 
 Let’s now return to our function β.  The macroscopic function having the property of our new func-
tion β is temperature.  The relation of temperature to β is  
  kT = 1/β 2.53 

and 
  

� 

1
kT =

∂ lnΩ
∂E  2.54 

Equation 2.53 provides a statistical mechanical definition of temperature.  We can easily show that T is 
measure of the energy per degree of freedom.  Do to this though, we need one other relationship, which we 
introduce without proof.  This is that Ω increases roughly with E as: 
  

� 

Ω ∝ E ƒ  
where ƒ is the number of degrees of freedom of the system (which in turn is proportional to the number 
of atoms or molecules in the system times the modes of motion, e.g., vibrational, rotational, transla-
tional, available to them).  Hence: 

  

� 

β =
∂ lnΩ
∂E ∝

ƒ
E  2.55 
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Substituting T = 1/β, then 

� 

T ∝
E
kƒ

  

2.4.2.2 Entropy and Volume 
 Our discussion of entropy might leave the impression that entropy is associated only with heat and 
temperature.  This is certainly not the case.  Our first example, that of the gases in the box, is a good 
demonstration of how entropy changes can also accompany isothermal processes.  When the partition 
is removed and the gases mix, there is an increase in the number of states accessible to the system.  Be-
fore the partition is removed, there is only one state accessible to the system (here “accessible states” 
means distribution of red and black molecules between the two sides of the box), so Ω = 1.  Suppose 
that after we remove the partition, we find the system in a state is one where there is one molecule of 
each kind on each side (the most probable case).  There are four such possible configurations, so Ω = 4.  
The entropy change has thus been 
  ∆S = k(ln 4 – ln 1) = k ln 4 = 2k ln 2  
From the macroscopic perspective, we could say that the red gas, initially confined to the left volume, 
expands into the volume of the entire box, and the black gas expands from the right half to the entire 
volume.  Thus entropy changes accompany volume changes. 

2.4.2.3 Summary 
 It is often said that entropy is a measure of the randomness of a system.  From the discussion above, 
we can understand why.   Entropy is a function of the number of states accessible to a system.  Because 
there are more states available to a system when energy or molecules are  “evenly” or “randomly” dis-
tributed than when we impose a specific constraint on a system (such as the thermal insulation between 
the blocks or the partition between the gases), there is indeed an association between randomness and 
entropy.  When we remove the insulation between the copper blocks, we allow energy to be randomly 
distributed between them.  In the example of the combustion of gasoline, before combustion all oxygen 
atoms are constrained to be associated with oxygen molecules.  After combustion, oxygen is randomly 
distributed between water and CO2 molecules. 
 More precisely, we may say that an increase in entropy of a system corresponds to a decrease in 
knowledge of it.  In the example of our two gases in the box, before the partition is removed, we know 
all red molecules are located somewhere in the left half of the box and all black ones somewhere in the 
right half.  After the partition is removed, we know only that the molecules are located somewhere 
within the combined volume.  Thus our knowledge of the location of the molecules decreases in pro-
portion to the change in volume.  Molecules in ice are located at specific points in the crystal lattice.  
When ice melts, or evaporates, molecules are no longer constrained to specific locations: there is an in-
crease in entropy of H2O and a corresponding decrease in our knowledge of molecular positions.  
When we allowed the two copper blocks to come to thermal equilibrium, entropy increased.  There 
were more possible ways to distribute energy after the blocks equilibrated than before.  As a result, we 
knew less how energy was distributed after removing the insulation. 
 As a final point, we emphasize that the second law does not mean we cannot decrease the entropy of 
a “system”.  If that were so, the organization of molecules we call life would not be possible.  However, 
if the entropy of a system is to decrease, the entropy of the surroundings must increase.  Thus we can 
air condition a room, but the result is that the surroundings (the “outside”) are warmed by more than 
the air in the room is cooled.  Organisms can grow, but in doing so they inevitably, through consump-
tion and respiration, increase the entropy of their environment.  Thus we should not be surprised to 
find that the entropy of the manure is greater than that of hay plus oxygen. 
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2.4.3 Integrating Factors and Exact Differentials 
 A theorem of mathematics states that any inexact differential that is a function of only two variables 
can be converted to an exact differential.  dW is an inexact differential, and dV is an exact differential.  
Since dWrev = -PdV, dWrev  can be converted to a state function by dividing by P since 

  

� 

dWrev

P = −dV  2.56 
and V is a state function.  Variables such as P which convert non-state functions to state functions are 
termed integrating factors.  Similarly, for a reversible reaction, heat can be converted to the state function 
entropy by dividing by T:  

  

� 

dQrev

T = dS  2.57 

Thus temperature is the integrating factor of heat.  Entropy is a state function and therefore an exact 
differential.   Therefore equation 2.57 is telling us that although the heat gained or lost in the trans-
formation from state 1 to state 2 will depend on the path taken, for a reversible reaction the ratio of heat 
gained or lost to temperature will always be the same, regardless of path.   
 If we return to our example of the combustion of gasoline above, the second law also formalizes our 
experience that we cannot build a 100% efficient engine: the transformation from state 1 to state 2 can-
not be made in such a way that all energy is extracted as work; some heat must be given up as well.  In 
this sense, the automobile radiator is necessitated by the second law. 
 Where P-V work is the only work of interest, we can combine the first and second laws as: 
  dU ≤ TdS - PdV 
The implication of this equation is that equilibrium is approached at prescribed S and V, the energy of 
the system is minimized. For the specific situation of a reversible reaction where dS = dQ/T, this be-
comes 

  

� 

dUrev = TdSrev −PdV  2.58 
This expresses energy in terms of its natural or characteristic variables, S and V.  The characteristic vari-
ables of a function are those that give the simplest form of the exact differential.  Since neither T nor P 
may have negative values, we can see from this equation that energy will always increase with increas-
ing entropy (at constant volume) and that energy will decrease with increasing volume (at constant en-
tropy).  This equation also relates all the primary state variables of thermodynamics, U, S, T, P, and V.  
For this reason, it is sometimes called the fundamental equation of thermodynamics.  We will introduce 
several other state variables derived from these 5, but these will be simply a convenience. 
 By definition, an adiabatic system is one where dQ = 0.  Since –dQrev/T = dSrev (equation 2.52), it fol-
lows that for a reversible process, an adiabatic change is one carried out at constant entropy, or in other words, 
an isoentropic change.  For adiabatic expansion or compression therefore, dU = –PdV.  

2.5 ENTHALPY 
 We have now introduced all the fundamental variables of thermodynamics, T, S, U, P and V.  Eve-
rything else can be developed and derived from these functions.  Thermodynamicists have found it 
convenient to define several other state functions, the first of which is called enthalpy.  Enthalpy is a com-
posite function and is the sum of the internal energy plus the product PV: 
  H = U + PV 2.59 
 As is the case for most thermodynamic functions, it is enthalpy changes rather than absolute enthalpy 
that are most often of interest.  For a system going from state 1 to state 2, the enthalpy change is:   
  H2 – H1 = U2 – U1 + P2V2 - P1V1 2.60 
The First Law states: U2 – U1 = ∆Q + ∆W 
so: H2 – H1 =  ∆Q + ∆W + P2V2 - P1V1  
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If pressure is constant, then: ∆H = ∆QP + ∆W + P∆V 2.61 
(we use the subscript P in ∆QP to remind us that pressure is constant).  In thermodynamics, PV work is 
often the only kind of work of interest.  If the change takes place at constant pressure and P-V work is the 
only work done by the system, then the last two terms cancel and enthalpy is simply equal to the heat gained or 
lost by the system: 
  ∆H = ∆QP  
or in differential form: dH = dQp 2.62 
H is a state function because it is defined in terms of state functions U, P, and V.  Because enthalpy is a 
state function, dQ must also be a state function under the conditions of constant pressure and the only 
work done being PV work. 
 More generally, the enthalpy change of a system may be expressed as: 
  dH = dU + VdP + PdV 
 or at constant pressure as: 
     dH = dU + PdV 2.63 
In terms of its characteristic variables, it may also be expressed as: 

  dH ≤ TdS + VdP 2.64 
From this it can be show that H will be at a minimum at equilibrium when S and P are prescribed: 

  

� 

dHrev = TdSrev +VdP  2.65 
 The primary value of enthalpy is measuring the energy consumed or released in changes of state of a 
system.  For example, how much energy is given off by the reaction: 
  2H2 + O2 ® 2H2O 
To determine the answer we could place hydrogen and oxygen in a well-insulated piston-cylinder 
maintaining constant pressure.  We would design it such that we could easily measure the temperature 

Example 2.1. Entropy in Reversible and Irreversible Reactions 
 Air conditioners work by allowing freon contained in a closed system of pipes to evaporate in the 
presence of the air to be cooled, then recondensing the freon (by compressing it) on the warm or ex-
haust side of the system.  Let us define our “system” as only the freon in the pipes.  The system is 
closed since it can exchange heat and do work but not exchange mass.  Suppose our system is con-
tained in an air conditioner maintaining a room at 20° C or 293 K and exhausting to outside air at 303 
K.  Let’s assume the heat of evaporation of the coolant (the energy required to transform it from liquid 
to gas), is 1000 joules.  During evaporation, the heat absorbed by the coolant, dQ, will be 1000 J.  Dur-
ing condensation –1000 J will be given up by the system.  For each cycle, the minimum entropy change 
during these transformations is easy to calculate from equation 2.51: 

 Evaporation: dS ≥ 
dQ
 T   = 1000/293 = 3.413 J/K  

 Condensation: dS ≥ 
dQ
 T   = -1000/303 = -3.300 J/K  

The minimum net entropy change in this cycle is the sum of the two or 3.413 - 3.300 = 0.113 J/K.  This 
is a “real” process and irreversible, so the entropy change will be greater than this. 
 If we performed the evaporation and condensation isothermally at the equilibrium condensation 
temperature, i.e. reversibly, then this result gives the exact entropy change in each case.  In this imagi-
nary reversible reaction, where equilibrium is always maintained, there would be no net entropy 
change over the cycle.  But of course no cooling would be achieved either, so it would be pointless 
from a practical viewpoint.  It is nevertheless useful to assume this sort of reversible reaction for the 
purposes of thermodynamic calculations, because exact solutions are obtained. 
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before and after reaction.  Such an apparatus is known as a calorimeter.  By measuring the temperature 
before and after the reaction, and knowing the heat capacity of the reactants and our calorimeter, we 
could determine the enthalpy of this reaction. This enthalpy value is often also called the heat of reaction 
or heat of formation and is designated ΔHr ( or ΔHƒ).  Similarly, we might wish to know how much heat is 
given off when NaCl is dissolved in water.  Measuring temperature before and after reaction would al-
low us to calculate the heat of solution.  The enthalpy change of a system that undergoes melting is 
known as the heat of fusion or heat of melting, ∆Hm (this quantity is sometimes denoted ∆Hf; we will 
use the subscript m to avoid confusion with heat of formation); that of a system undergoing boiling is 
known as the heat of vaporization, ∆Hv. As equation 2.65 suggests, measuring enthalpy change is also a 
convenient way of determining the entropy change. 
 At this point, it might seem that we have wandered rather far from geochemistry.  However, we shall 
shortly see that functions such as entropy and enthalpy and measurements of such things as heats of 
solutions and heats of melting are essential to predicting equilibrium geochemical systems. 

2.6 HEAT CAPACITY 
 It is a matter of every day experience that the addition of heat to a body will raise its temperature.  
We also know that if we bring two bodies in contact, they will eventually reach the same temperature.  
In that state, the bodies are said to be in thermal equilibrium.  However, thermal energy will not neces-
sarily be partitioned equally between the 2 bodies.  It would require half again as much heat to increase 
the temperature of 1g of quartz by 1° C as it would to increase the temperature of 1g of iron metal by 1° 
C.  (We saw that temperature is a measure of the energy per degree of freedom.  It would appear then 
that quartz and iron have different degrees of freedom per gram, something we will explore below.)  
Heat capacity is the amount of heat (in joules or calories) required to raise the temperature of a given 
amount (usually a mole) of a substance by 1 K.  Mathematically, we would say: 

  

� 

C =
dQ
dT  2.66 

However, the heat capacity of a substance will depend on whether heat is added at constant volume or 
constant pressure, because some of the heat will be consumed as work if the volume changes.  Thus a 
substance will have two values of heat capacity: one for constant volume and one for constant pressure. 

2.6.1 Constant Volume Heat Capacity 
 Recall that the first law states:  dU = dQ + dW   
If we restrict work to PV work, this may be rewritten as: 
  dU = dQ - PdV  
If the heating is carried out at constant volume, i.e., dV= 0, then dU = dQ (all energy change takes the 
form of heat) and: 

  

� 

Cv = ∂U
∂T

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
V

 2.67 

The value of CV for an ideal gas is 3/2R where R is the gas constant, as is shown in the boxed discussion 
below.  Molecular gases, however, are not ideal.  Vibrational and rotation modes also come into play, 
and heat capacity of real gases, as well as solids and liquids, is a function of temperature. 
 For solids, motion is vibrational and heat capacities depend on vibrational frequencies, which in turn 
depend on temperature and bond strength (for stronger bonds there is less energy stored as potential 
energy, hence less energy is required to raise temperature), for reasons discussed below.  For incom-
pressible substances such as solids, the difference between CV and CP is generally small. 
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2.6.2 Constant Pressure Heat Capacity 
 In geochemistry, constant volume situations are rare and temperature changes at constant pressure 
are of greater interest.   Equation 2.61 states that ∆H = ∆Qp.  Substituting this expression in equation 
2.66 we have: 

     

� 

CP = ∂H
∂T

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
P

 2.68 

Thus enthalpy change at constant pressure may also be expressed as: 
  dH = CPdT 2.69 
 In geochemistry, it will be mainly constant pressure heat capacity that will be of primary interest to 
us, because in natural situations, volumes do not usually remain fixed. 

2.6.3 Energy Associated with Volume and the Relationship between Cv and Cp 

 Constant pressure and constant temperature heat capacities are different because there is energy as-
sociated (work done) with expansion and contraction.  Thus how much energy we must transfer to a 
substance to raise its temperature will depend on whether some of this energy will be consumed in this 
process of expansion.  These energy changes are due to potential energy changes associated with 
changing the position of an atom or molecule in the electrostatic fields of its neighbors.  The difference 
between Cv and Cp reflects this energy associated with volume.  Let’s now determine what this differ-
ence is. 
 We can combine relations 2.67 and 2.68 as: 

  

� 

CP − CV =
∂H
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
P

−
∂U
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
V

 2.70 

From this, we may derive the following relationship: 

  

� 

CP − CV =
∂U
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
P

−
∂U
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
V

+ P ∂V
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
P

 2.71 

and further: 

� 

CP − CV =
∂U
∂V

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
T

+ P
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
∂V
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
P

 2.72 

Example 2.02: Measuring Enthalpies of Reaction 
 Sodium reacts spontaneously and vigorously with oxygen to form Na2O.  The heat given off by this 
reaction is the enthalpy of formation ΔHƒ of Na2O.  Suppose that you react 23 g of Na metal with oxy-
gen in a calorimeter that has the effective heat capacity of 5 kg of water.  The heat capacity of water is 
75.3 J/mol K.  If the calorimeter has a temperature of 20°C before the reaction and a temperature of 
29.9°C after the reaction, what is ∆Hƒ of Na2O?  Assume that the Na2O contributes negligibly to the heat 
capacity of the system. 
 Answer:  The heat capacity of the calorimeter is 
   75.3J/mol K × 5000g ÷ 18g/mol = 20917 J/K. 
The heat required to raise its temperature by 9.9 K is then 
  9.9 × 20917 = 207.08 kJ 
which is the enthaply of this reaction.  Our experiment created 0.5 moles of Na2O, so ∆H is –414.16 
kJ/mol. 
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It can also be shown that, for a reversible process: 

  ∂U
∂V

⎛
⎝⎜

⎞
⎠⎟ T

= T α
β
− P  2.73 

 (∂U/∂V)T is the energy associated with the volume occupied by a substance and is known as the in-
ternal pressure  (Pint, which we introduced earlier in our discussion of the van der Waals law, e.g., equa-
tion 2.17).  It is a measure of the energy associated with the forces holding molecules or atoms together.  
For real substances, energy changes associated with volume changes reflect potential energy increases 
associated with increase separation between charged molecules and/or atoms; there are no such forces 
in an ideal gas, so this term is 0 for an ideal gas.  Substituting 2.73 into 2.72, we obtain: 

  

� 

CP − Cv = TV α
2

β  2.74 

 Thus the difference between Cp and Cv will depend on temperature and pressure for real substances.  
The terms on the right will always be positive, so that Cp will always be greater than Cv.  This accords 
with our expectation, since energy will be consumed in expansion when a substance is heated at con-
stant pressure, whereas this will not be the case for heating at constant volume.  For an ideal gas, Cp–Cv 
= R. 
 For gases, it is fairly straightforward to measure either Cp or Cv.  It is impractical to measure Cv for 
solids and liquids.  Thus only experimentally determined values of Cp are available for solids and liq-
uids, and values of Cv must be obtained from equation 2.74 when required. 
 We found earlier that Cp is the variation of heat with temperature at constant pressure.  How does 
this differ from the variation of energy with temperature at constant volume?  To answer this question, 
we rearrange equation 2.71 and substitute Cv for (∂U/∂T)V and Vα for (∂V/∂T)P.  After simplifying the 
result, we obtain (on a molar basis): 

  

� 

∂U
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

P

= CP − PV α  2.75 

For an ideal gas, the term PVα reduces to R, so that (∂U/∂T)P = Cp – R.  Cp – R may be shown to be 
equal to Cv, so the energy change with temperature for an ideal gas is the same for both constant pres-
sure and constant volume conditions.  This is consistent with the notion that the difference between Cp 
and Cv reflects the energy associated with and changing distances between atoms and molecules in the 
presence of attractive forces between them.  In an ideal gas, there are no such forces, hence (∂U/∂T)P = 
(∂U/∂T)V.   

2.6.4 Heat Capacity of Solids: A Problem in Quantum Physics 
 As we shall see, knowledge of the heat capacity of substances turns out to be critical to determining 
properties such as enthalpy and entropy, and, ultimately, to predicting chemical equilibrium.  The heat 
capacity of a substance reflects the internal motion of its atoms.  There are 3 kinds of motion available 
to atoms and molecules: translational, vibrational and rotational£, but often one or more of these modes 
will not be available and not contribute to the energy of a substance.  For gases at low temperature, 
only rotational and translational motions are important (for a monatomic gas, only translational modes 
are available), while only vibrational motions are important for solids (translational modes are avail-
able to solids, which is why solids have finite vapor pressures, but they are extremely improbable, 
which is why vapor pressures of solids are very small and can usually be neglected).  Twice as much 
energy is typically required to raise the temperature of a vibrational mode by 1 K as for a translational 
mode.  This is because vibration involves both kinetic and potential energy of two or more atoms.  Also, 
vibrational modes do not accept much energy at low temperature.  This latter phenomenon is not pre-
dicted by classical physics; as a result 19th century physicists were puzzled by the temperature depen-

                                                
£ R. Clausius recognized the possibility that molecules might have these three kinds of motion in 1855. 
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dence of heat capacity.    In 1869 James Maxwell referred to the problem as “the greatest difficulty yet 
encountered in molecular theory.”  The solution required a more radical revision to physics than Max-
well imagined: the heat capacity problem turned out to be one of the first indications of the inadequacy 
of classical physics.  An understanding of the dependence of heat capacity on temperature was only 
achieved in the 20th century with the aid of quantum physics.  A complete theoretical treatment of heat 
capacity of real substances is beyond the scope of this book.  However, even the few statements we will 
make will require us to make another excursion into statistical mechanics, a closely related field to dis-
cover the Boltzmann Distribution Law.  What we learn will be of considerable use in subsequent chap-
ters. 

2.6.4.1 The Boltzmann Distribution Law 
Consider a mineral sample, A, in a heat bath, B (B having much more mass than A), and assume they 
are perfectly isolated from their surroundings.  The total energy of the system is fixed, but the energy of 
A and B will oscillate about their most probable values.  The question we ask is what is the probability 
that system A is in a state such that it has energy EA? 
 We assume that the number of states accessible to A when it has energy EA is some function of en-
ergy, i.e., 
  Ω(a) = Ω(EA) 2.76 
Following the basic postulate, we also assume that all states are equally probable and that the prob-
ability of a system having a given energy is simply proportional to the number of states the system can 
assume when it has that energy: 
  P = C Ω (2.39) 
where C is a constant.  Thus the probability of A being in state a with energy EA is: 
  Pa = CAΩ(EA) 2.77 
Since the total energy of the two system is fixed, system B will have some fixed energy EB when A is in 
state a with energy EA, and: 
  EB = E – EA 
where E is the total energy of the system.  As we mentioned earlier, Ω is multiplicative, so the number 
of states available to the total system, A + B, is the product of the number of states available to A times 
the states available to B: 
  ΩTotal = ΩAΩB 
If we stipulate that A is in state a, then ΩA is 1 and the total number of states available to the system in 
that situation is just ΩB:    
  ΩTotal = 1 × ΩB = Ω(EB) 
Thus the probability of finding A in state a is equal to the probability of finding B in one of the states 
associated with energy EB, so that: 
  Pa = CBΩ(EB) = CBΩ(E – EA) = CBexp[ln Ω (E – EA)] 2.78 
where E is the total energy of the system (i.e., E = EA + EB).  We can expand ln Ω (E-EA) as a Taylor Se-
ries about E: 

  
  

� 

lnΩ(E − EA ) = lnΩ(E ) − EA
d lnΩ(E)

dE
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ + … 2.79 

and since B is much larger than A, E >> EA, higher order terms may be neglected. 
 Substituting β for ∂lnΩ(E)/dE (Equ 2.48), we have: 

  Ω(E – EA) = exp(ln Ω(E) – EAβ) = Ω(E)e–βEA 
and  Pa = CBΩ(E)e–βEA 2.80  
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Since the total energy of the system, E, is fixed, 
Ω(E) must also be fixed, i.e., constant, so: 

  Pa = Ce–βEA 2.81  
Substituting 1/kT for β (Equ. 2.53), we have: 
  Pa = Ce–EA/kT 
We can deduce the value of the constant C by 
noting that ∑Pi = 1, i.e., the probabilities over all 
energy levels must sum to one (because the sys-
tem must always be in one of these states).  There-
fore: 

 ∑Pi = C∑e–βEi = 1 2.82 
so that C = 1/∑e–βEi  2.83 
Generalizing our result, the probability of the 
system being in state i corresponding to energy εi 
is:  

  

  

� 

Pi =
e−ε i / kT

e−ε n / kT
n
∑  2.84 

This equation is the Boltzmann distribution law*, 
and one of the most important equations in sta-
tistical mechanics.  Though we derived it for a specific situation and introduced an approximation (the 
Taylor Series expansion), these were merely conveniences; the result is very general.  If we define our 
“system” as an atom or molecule, then this equation tells us the probability of an atom having a given 
energy value, εi.  This is the statistical mechanical interpretation of this equation.  The basic tenet of 
quantum physics is that energy is quantized: only discrete values are possible.  The Boltzmann distribu-
tion law tells the probability of an atom having the energy associated with quantum level i. 
 The Boltzmann distribution law says that the population of energy levels decreases exponentially as 
the energy of that level increases (energy among atoms is like money among men: the poor are many and the 
rich few).  A hypothetical example is shown in Figure 2.9. 

2.6.4.2 The Partition Function 
 The denominator of Equ. 2.84, which is the probability normalizing factor or the sum of the energy dis-
tribution over all accessible states, is called the partition function and is denoted Q: 

  
  

� 

Q = e−ε i / kT
i
∑  2.85 

 The partition function is a key variable in statistical mechanics and quantum physics.  It is related to 
macroscopic variables with which we are already familiar, namely energy and entropy.  Let’s examine 
these relationships. 

                                                
* We now understand and interpret this law in terms of quantum physics, but Boltzmann formulated it 30 years be-
fore Planck and Einstein laid the foundations of quantum theory.  Ludwig Boltzmann’s work in the second half of the 
nineteenth century laid the foundations of statistical mechanics and paved the way for quantum theory in the next 
century.  His work was heavily attacked by other physicists of the time, who felt physics should deal only with mac-
roscopic observable quantities and not with atoms, which were then purely hypothetical constructs.  These attacks 
contributed to increasingly frequent bouts of depression, which ultimately led to Boltzmann's suicide in 1906.  Ironi-
cally and sadly, this was about the time that Perrin's experiments with Brownian motion, Millikan's oil drop experi-
ment, and Einstein's work on the photoelectric effect confirmed the discrete nature of mass, charge, and energy, and 
thereby the enduring value of Boltzmann’s work. 

 
Figure 2.09.  Occupation of vibrational energy lev-
els calculated from the Boltzmann distribution.  
The probability of an energy level associated with 
the vibrational quantum number n is shown as a 
function of n for a hypothetical diatomic molecule 
at 273 K and 673 K. 
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 We can compute the total internal energy of a system, U, as the average energy of the atoms times the 
number of atoms, n.  To do this we need to know how energy is distributed among atoms.  Macroscopic 
systems have a very large number of atoms (~1023, give or take a few in the exponent).  In this case, the 
number of atoms having some energy εi is proportional to the probability of one atom having this en-
ergy.   So to find the average, we take the sum over all possible energies of the product of energy times 
the possibility of an atom having that energy.   Thus the internal energy of the system is just: 

  
  

� 

U = n εiPi
i
∑ =

n εie
−ε i / kT∑

Q  2.86 

The derivative of Q with respect to temperature (at constant volume) can be obtained from 2.85:  

  
  

� 

∂Q
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
V

=
1
kT ε ie

−ε i / kT∑  2.87 

Comparing this with equation 2.86, we see that this is equivalent to: 

  
  

� 

∂Q
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
V

=
Q
nkT 2U  2.88 

It is also easy to show that ∂lnQ/∂T = 1/Q ∂Q/∂T, so the internal energy of the system is: 

  
  

� 

U = nkT 2 ∂ lnQ
∂T

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
V

 2.89 

For 1 mole of substance, n is equal to Avagadro’s number, N0.  Since R = N0k, equation 2.89, when ex-
pressed on a molar basis, becomes: 

  
  

� 

U = RT 2 ∂ lnQ
∂T

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
V

 2.90 

 We should not be surprised to find that entropy is also related to Q.  This relationship, the derivation 
of which is left to you (Problem 2.12), is: 

  S = U
T

+ R lnQ  2.91 

 Since the partition function is a sum over all possible states, it might appear that computing it would 
be a formidable, if not impossible, task.  As we shall see, however, the partition function can very often be 
approximated to a high degree of accuracy by quite simple functions.  The partition function and Boltzmann 
distribution will prove useful to us in subsequent chapters in discussing several geologically important 
phenomena such as diffusion and the distribution of stable isotopes between phases, as well as in un-
derstanding heat capacities. 

2.6.4.3 Energy Distribution in Solids 
 According to quantum theory, all modes of motion are quantized.  Consider, for example, vibrations 
of atoms in a hydrogen molecule.  Even at absolute zero temperature, the atoms will vibrate at a 
ground state frequency.  The energy associated with this vibration will be:  

  ε0 = 
1
2  hν0 2.92 

where h is Planck’s constant and ν0 is the vibrational frequency of the ground state.  Higher quantum 
levels have higher frequencies (and hence higher energies) that are multiples of this ground state: 

  εn = (n+
1
2 )hν0 2.93 

where n is the quantum number ( an integer ≥ 0).   
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 Now consider a monatomic solid, such as diamond, composed of N identical atoms arranged in a 
crystal lattice.  For each vibration of each atom, we may write an atomic partition function, q.  Since vi-
brational motion is the only form of energy available to atoms in a lattice, the atomic partition function 
may be written as: 

  

� 

q = e−ε m / kT

m
∑ = e

−( n+ 1
2
)hν 0 / kT

n

∞

∑  2.94 

We can rewrite 2.94 as: 

� 

q = e−hν 0 / 2kT e−nhν 0 / kT
n

∞

∑  2.95 

The summation term can be expressed as geometric series, 1 + x + x2 + x3 +..., where x = e–hν0/kT.  Such 
a series is equal to 1/(1 – x) if x<1.  Thus 2.95 may be rewritten in simpler form as: 

  

� 

q =
e−hν 0 / 2 kT

1− e−hν 0 / kT
 2.96 

At high temperature, hν0/kT<< 1, and we may approximate e–hν0/kT in the denominator of Equ. 2.96 
by 1 – hν0/kT, so that at high temperature: 

  

� 

q ≅ kTe
−hν 0 / 2 kT

hν0
 2.97  

Using this relationship, and those between constant volume heat capacity and energy and between en-
ergy and the partition function it is possible to show that: 
  CV = 3R 2.98 
This is called the Dulong-Petit Limit and it holds only where the temperature is high enough that the 
approximation e-hν0/kT = 1-hν0/kT holds.  For a solid consisting of N different kinds of atoms, the pre-
dicted heat capacity is 3NR.  Observations bear out these predictions.  For example, at 25°C the ob-
served heat capacity for NaCl, for which N is 2, is 49.7 J/K, whereas the predicted value is 49.9 J/K.  
Substances whose heat capacity agrees with that predicted in this manner are said to be fully activated.  
The temperature at which this occurs, called the characteristic or Einstein temperature, varies considerably 
from substance to substance (for reasons explained below).  For most metals, it is in the range of 100 to 
600 K.  For diamond, however, the Einstein temperature is in excess of 2000 K.   
 Now consider the case where the temperature is very low.  In this case, the hν0/kT >>1 and the de-
nominator of equation 2.99 therefore tends to 1, so that 2.99 reduces to: 
  

� 

q ≅ e−hν 0 / 2kT  2.99 
The differential with respect to temperature of lnq is then simply: 

  

� 

∂q
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
V

=
hν0
2kT

 2.100 

If we insert this into equation 2.90 and then into 2.80 and differentiate U with respect to temperature, 
we find that the predicted heat capacity is 0!  In actuality, only a perfectly crystalline solid would have 
0 heat capacity near absolute 0.  Real solids have a small but finite heat capacity. 
 On a less mathematical level, the heat capacities of solids at low temperature are small because the 
spacings between the first few vibrational energy levels are large.  As a result, energy transitions are 
large and therefore improbable.  Thus at low temperature, relatively little energy will go into vibra-
tional motions.  
 We can also see from equation 2.93 that the gaps between energy levels depend on the fundamental 
frequency ν0.  The larger the gap in vibrational frequency, the less likely will be the transition to higher 
energy states.  The ground state frequency in turn depends on bond strength.  Strong bonds have 
higher vibrational frequencies and as a result, energy is less readily stored in atomic vibrations.  In gen-
eral, covalent bonds will be stronger than ionic ones, which in turn are stronger than metallic bonds.  
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Thus diamond, which has strong covalent bonds, has a low heat capacity until it is fully activated, and 
full activation occurs at very high temperatures.  The bonds in quartz and alumina (Al2O3) are also 
largely covalent, and these substances also have low heat capacities until fully activated.  Metals, on the 
other hand, tend to have weaker bonds and high heat capacities. 
 Heat capacities are more difficult to predict at in-
termediate temperatures and require some knowl-
edge of the vibrational frequencies.  One simple as-
sumption, used by Einstein‡, is that all vibrations 
have the same frequency. The Einstein model pro-
vides reasonable predictions of Cv at intermediate 
and high temperatures, but does not work well at 
low temperatures.  A somewhat more sophisticated 
assumption was used by Debye§, who assumed a 
range of frequencies up to a maximum value, νD, now 
called the Debye frequency, and then integrated the 
frequency spectrum.  The procedure is too complex 
for us to treat here.  At low temperature, the Debye 
theory predicts: 

  

� 

CV =
12π 4

5 NR T
θD

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
3

 2.101 

where θD = hνD/k and is called the Debye temperature. 
 Nevertheless, geochemists generally use empirically determined heat capacities.  Constant pressure 
heat capacities are easier to determine, and therefore more generally available and used.  For minerals, 
which are relatively incompressible, the difference between Cv and Cp is small and can often be ne-
glected.  Empirical heat capacity data is generally in the form of the coefficients of polynomial expres-
sions of temperature.  The Maier-Kelley formulation is: 

  

� 

CP = a + bT −
c
T 2  2.102 

 where a, b, and c are the empirically determined coefficients.  The Haas-Fisher formulation is: 

  

� 

CP = a + bT +
c
T 2 + fT 2 + gT −1/ 2   2.103 

with a, b, c, f, and g as empirically determined constants. 
 Since these formulae and there associated constants are purely empirical (i.e., neither the equations 
nor constants have a theoretical basis), they should not be extrapolated beyond the calibrated rang. 

                                                
‡ Albert Einstein, though best know for his relativity theories, was also the founder, along with Max Planck, of quan-
tum physics.  His work on the quantum basis of heat capacity of solids was published in 1907.  Einstein was born in 
1879 in Ulm, Germany, and published some of his most significant papers while working as a patent clerk in Bern, 
Switzerland.  He later joined the Prussian Academy of Sciences in Berlin.  A dedicated and active pacifist, Einstein 
left Germany when Hitler came to power in 1933.  He later joined the Center for Advanced Studies in Princeton, New 
Jersey.  He died in Princeton in 1955. 
§ Peter Debye (1884-1966) was born in Maastricht, Netherlands (as Petrus Debije), but spent much of his early career 
in Germany, eventually become director of the Kaiser-Wilhelm-Institut in Berlin.  While he was visiting Cornell Uni-
versity in 1940, Germany invaded Holland and Debye simply remained at Cornell, eventually becoming chairman of 
the Chemistry Department.  Debye made numerous contributions to physics and physical chemistry; we shall en-
counter his work again in the next chapter. 

 
Figure 2.10.  Vibrational contribution to heat 
capacity as a function of kT/hν. 
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2.6.5 Relationship of Entropy to Other State Variables 
 We can now use heat capacity to define the temperature dependency of entropy: 

  

� 

∂S
∂T
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
V

=
CV

T
 2.104 

� 

∂S
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
P

=
CP

T
 2.105 

 The dependencies on pressure and volume (at constant temperature) are: 

  
 

∂S
∂P

⎛
⎝⎜

⎞
⎠⎟ T

= −αV  2.106 
 

∂S
∂V

⎛
⎝⎜

⎞
⎠⎟ T

=
α
β

 2.107 

2.6.6 Additive Nature of Silicate Heat Capacities 
 For many oxides and silicates, heat capacities are approximately additive at room temperature.  Thus, 
for example, the heat capacity of enstatite, MgSiO3, may be approximated by adding the heat capacities 
of its oxide components, quartz (SiO2) and periclase (MgO).   In other words since: 
  SiO2 + MgO → MgSiO3 
then Cp-En ≈ Cp-Qz + Cp-Pe 
Substituting values: Cp-En ≈ 10.62 + 9.03 = 19.65 cal/mol-K 
The observed value for the heat capacity of enstatite at 300 K is 19.62 cal/mol-K, which differs from our 
estimate by only 0.1%.  For most silicates and oxides, this approach will yield estimates of heat capaci-
ties that are within 5% of the observed values.  However, this is not true at low temperature.  The same 
calculation for Cp-En carried out using heat capacities at 50 K differs from the observed value by 20%. 
 The explanation for the additive nature of oxide and silicate heat capacities has to do with the nature 
of bonding and atomic vibrations.  The vibrations that are not fully activated at room temperature are 
largely dependent on the nature of the individual cation-oxygen bonds and not on the atomic arrange-
ment in complex solids. 

2.7 THE THIRD LAW AND ABSOLUTE ENTROPY 
2.7.1 Statement of the Third Law 
 The entropies of substances tend toward zero as absolute zero temperature is approached.  Or as Le-
wis and Randall expressed it: 

 If the entropy of each element in some crystalline state may be taken as zero at the absolute zero of tem-
perature, every substance has a finite positive entropy, but at absolute zero, the entropy may become zero, 
and does so become in the case of perfectly crystalline substances. 

2.7.2 Absolute Entropy 
 We recall that entropy is proportional to the number of possible arrangements of a system: S = k ln Ω.  
At absolute zero, a perfectly crystalline substance has only one possible arrangement, namely the 
ground state.  Hence S = k ln 1 = 0.   
  The implication of this seemingly trivial statement is that we can determine the absolute entropy of 
substances.  We can write the complete differential for S in terms of T and P as: 

  

� 

dS =
∂S
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
P

dT +
∂S
∂P

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
T

dP  2.108 

Substituting equations 2.105 and 2.106, we have:  

  

� 

dS =
CP

T dT −αVdP  2.109 
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The coefficient of thermal expansion is 0 at absolute 0; the choice of 1 atm for the heat capacity inte-
gration is a matter of convenience because CP measurements are made at 1 atm. 
  Actually, the absolute entropies of real substances tend not to be zero at absolute zero, which is to 
say they are not ‘perfectly crystalline’ in the third law sense.  A residual entropy, S0, which reflects such 
things as mixing of two or more kinds of atoms (elements or even isotopes of the same element) at crys-
tallographically equivalent sites, must also be considered.  This configurational entropy is important for 
some geologically important substances such as feldspars and amphiboles. Configurational entropy can 
be calculated as 

  

� 

Sconf = −R mj Xij lnXij
i
∑

j
∑  2.110 

where mj is the total number of atoms in the jth crystallographic site (in atoms per formula unit) and Xi,j 
is the mole fraction of the ith atom (element) in the jth site.  We will return to this equation when we 
consider multicomponent systems. 

2.8 CALCULATING ENTHALPY AND ENTROPY CHANGES 
2.8.1 Enthalpy Changes due to Changes in Temperature and Pressure 
 From equation 2.68, we can see that the temperature de-
rivative of enthalpy is simply the isobaric heat capacity: 

  

� 

∂H
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
P

= CP  

and hence: dH = CP dT 2.111 
Thus the change in enthalpy over some temperature interval 
may be found as: 

   

� 

ΔH = CPdTT1

T2∫  2.112 
Cp is often a complex function of temperature, so the integra-
tion is essential.  Example 2.4 below illustrates how this is 
done. 
 Isothermal enthalpy changes refer are those occurring at 
constant temperature, for example, changes in enthalpy due 
to isothermal pressure changes.  Though pressure changes at 
constant temperature are relatively rare in nature, hypotheti-
cal isothermal paths are useful in calculating energy changes.  
Since enthalpy is a state property, the net change in the en-
thalpy of a system depends only on the starting and ending 

Example 2.03: Configurational Entropy  
 Olivine is an example of a solid solution, which we will discuss at length in Chapter 3.  Fe and Mg 
may substitute for each other in the octahedral site.  Assuming that the distribution of Fe and Mg 
within this site is purely random, what is the configurational entropy of olivine of the composition 
(Mg0.8,Fe0.2)2SiO4? 
 Answer: To solve this problem, we need to apply equation 2.110.  We need only consider the octahe-
dral site containing Fe and Mg, because O and Si are the only kinds of atoms occupying the tetrahedral 
and anion sites.  The values for X for these 2 sites will therefore be 1, and ln (1) = 0, so there is no con-
tribution to configurational entropy. 
 For the octahedral site, m = 2, X1 = XMg = 0.8 and X2 = XFe = 0.2.  Therefore, the configurational en-
tropy will be: 

 

 
Figure 2.11.  Transformations on a tem-
perature-pressure diagram.  Changes in 
state variables such as entropy and en-
thalpy are path independent. For such 
variables, the transformation paths shown 
by the solid line and dashed line are 
equivalent. 

Sconf = – 8.314!2 0.8ln(0.8) + 0.2ln(0.2)   = 8.32 J mol–1K-1
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state, i.e., the enthalpy change is path-independent.  Imagine a system consisting of a quartz crystal that 
undergoes a change in state from 25°C and 1 atm to 500° and 400 atm.  How will the enthalpy of this 
system change?  Though in actuality the pressure and temperature changes may have occurred simul-
taneously, because the enthalpy change is path-independent, we can treat the problem as an isobaric 
temperature change followed by an isothermal temperature change, as illustrated in Figure 2.11.  
Knowing how to calculate isothermal enthalpy changes is useful for this reason. 
 We want to know how enthalpy changes as a function of pressure at constant temperature.  We begin 
from equation 2.76, which expresses the enthalpy change as a function of volume and pressure: 
    dH = dU + VdP + PdV (2.63)   
By making appropriate substitutions for dU, we can derive the following of enthalpy on pressure: 
  dH = V(1 – αT)dP 2.112 
If changes are large, α, β, and V must be considered functions of T and P and integration performed 
over the pressure change.  The isothermal enthalpy change due to pressure change is thus given by: 

  ∆H = V (1−αT )dP
P1

P2∫  2.113 

Example 2.04: Calculating Isobaric Enthalpy Changes 
 How does the enthalpy of a 1 mol quartz crystal change if it is heated from 25° C to 300° C if the tem-
perature dependence of heat capacity can be expressed as Cp = a + bT – cT–2 J/K-mol, and a = 46.94, b = 
0.0343, and c = 1129680?  Assume pressure is constant. 
 The first step is to convert temperature to kelvins: all thermodynamic formulae assume temperature 
is in kelvins.  So T1 = 298 K and T2 = 573 K.  To solve this problem, we need to use equation 2.112.  Sub-
stituting the expression for heat capacity into Equ. 2.112, we have: 

� 

ΔH = a + bT − cT −2( )
298

573

∫ dT = a dT
298

573

∫ + b TdT
298

573

∫ − c T −2dT
298

573

∫  
Performing the integral, we have: 

� 

ΔH = aT + b
2
T 2 + c

T
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
298

573

= 46.94 ×T + 0.0343
2

T 2 + 1129680
T

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
298

573

 

Now that we have done the math, all that is left is arithmetic.  This is most easily done using a spread-
sheet.  Among other things, it is much easier to avoid arithmetical errors.  In addition, we have a per-
manent record of what we have done.  We might set up a spreadsheet to calculate this problem as fol-
lows: 

Values Formulae & Results
a 46.94 H (a*Temp)+(b*Temp^2/2)+(c_/Temp)
b 0.0343 H1 19301.98 J/mol
c 1129680 H2 34498.98 J/mol
Temp1 298 ∆H= 15 .20 k J / M o l
Temp2 573  

This example is from Microsoft Excel™.  One the left, we have written down the names for the various 
constants in one column, and their values in an adjacent one.  Using the Create Names command, we 
assigned the names in the first column to the values in the second (to avoid confusion with row names, 
we have named T1 and T2 Temp1 and Temp2 respectively; Excel automatically added an underline to 
‘c’, so this constant appears as c_ in our formula).  In the column on the right, we have written the for-
mula out in the second row, then evaluated it at T1 and T2 in the third and forth rows respectively.  The 
last row, in bold, contains our answer, 15.2 kJ/mole, determined simply by subtracting ‘H1’ from ‘H2’ 
(and dividing by 1000).  Hint: we need to keep track of units.  Excel won’t do this for us. 
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2.8.3 Changes in Enthalpy due to Reactions and Change of State 
 We cannot measure the absolute enthalpy of substances, but we can determine the enthalpy changes 
resulting from transformations of a system, and they are of great interest in thermodynamics.  For this 
purpose, a system of relative enthalpies of substances has been established.  Since enthalpy is a function 
of both temperature and pressure, the first problem is to establish standard conditions of temperature 
and pressure to which these enthalpies apply.  These conditions, by convention, are 298.15 K and 0.1 
MPa (25° C and 1 bar).  Under these conditions the elements are assigned enthalpies of 0.  Standard state 
enthalpy of formation, or heat of formation, from the elements, ∆H°, can then be determined for com-
pounds by measuring the heat evolved in the reactions that form them from the elements (e.g., Example 
2.2).  For example, the heat of formation of water is determined from the energy released at constant 
pressure in the reaction: H2 + 1/2 O2 → H2O, which yields a ∆H° of -285.83 kJ/mol, where water is in the 
liquid state.  The minus sign indicates heat is liberated in the reaction, i.e., the reaction is exothermic (a reac-
tion that consumes heat is said to be endothermic).   
 Having established such a system, the enthalpy associated with a chemical reaction is easily calcu-
lated using Hess’s Law, which is: 

  

� 

ΔHr = ν iΔH f ,i
0

i
∑  2.114 

where νi is the stoichiometric coefficient for the ith species.  In other words, the enthalpy of reaction is 
just the total enthalpy of the products less the total enthalpy of the reactants.  The use of Hess’s Law is 
illustrated in Example 2.5 below. 
 The heat of vaporization of a substance is the energy required to convert that substance from liquid to 
gas, i.e., to boil it.  If the reaction H2 + 1/2 O2 → H2O is run to produce water vapor, the ∆H° turns out to 
be -241.81 kJ/mol.  The difference between the enthalpy of formation of water and vapor, 44.02 kJ/mol, 
is the heat consumed in going from liquid water to water vapor, or This is exactly the amount of energy 
that would be required to boil 1 mole of water, i.e., convert it from liquid to gas.  Analogously, the heat 
of melting (or fusion) is the enthalpy change in the melting of a substance.  Because reaction rates are of-
ten very slow, and some compounds are not stable at 298 K and 1 MPa, it is not possible to measure the 
enthalpy for every compound.  However, the enthalpies of formation for these compounds can gen-
erally be calculated indirectly. 

Example 2.05: Enthalpies (or Heats) of Reaction and Hess’s Law 
 What is the energy consumed or evolved in the hydration of corundum (Al2O3) to form gibbsite 
(Al(OH)3)?  The reaction is: 

  
1
2 Al2O3 + 

3
2  H2O → Al(OH)3  

 Answer: We use Hess's Law. To use Hess’s Law we need the standard state enthalpies for water, corun-
dum, and gibbsite.  These are: Al2O3:  -1675.70 kJ/mol,  H2O: -285.83 and Al(OH)3: -1293.13.   The en-
thalpy of reaction is ∆Hr = -1293.13 – (0.5 × -1675.70) – (1.5 × -285.83) = -26.53 kJ 
 This is the enthalpy of reaction at 1 bar and 298° K.  Suppose you were interested in this reaction un-
der metamorphic conditions such as 300° C and 50 MPa.  How would you calculate the enthalpy of re-
action then? 

2.8.4 Entropies of Reaction 

 Since dH = dQp (2.62) and  dSrev = 
dQ
T   (2.57) 

then at constant pressure: dSrev = 
dH
T    2.115 

Thus at constant pressure, the entropy change in a reversible reaction is simply the ratio of enthalpy 
change to temperature. 



W. M. White  Geochemistry 
Chapter 2: Fundamental Concepts of Thermodynamics  
 

 52   

 Entropies are additive properties and entropies of reaction can be calculated in the same manner as 
for enthalpies, i.e., Hess's Law applies: 
  

� 

ΔSr = ν iΔS f ,i
0

i
∑  2.116 

The total entropy of a substance can be calculated as: 

  

� 

S298 = CPdT
T0

298∫ + S0 + ΔSφ  2.117 

Table 2.02: Standard State Thermodynamic Data for Some Important Minerals 
Phase/ 

Compound 
Formula ∆H f

o  
(kJ/mol) 

S° 
(J/K-mol) 

∆G f
o  

(kJ/mol) 
V  

(cc/mol)* 
 

a 
Cp 
b 

 
c 

H2Og H2O(gas) -241.81 188.74 -228.57 24789.00 30.54 0.01029 0 
H2Ol H2O(liquid) -285.84 69.92 -237.18 18.10 29.75 0.03448 0 
CO2 CO2 -393.51 213.64 -394.39 24465.10 44.22 0.00879 861904 
Calcite CaCO3 -1207.30 92.68 -1130.10 36.93 104.52 0.02192 2594080 
Graphite C 0 5.740  5.298    
Diamond C 1.86 2.37  3.417    
Aragonite CaCO3 -1207.21 90.21 -1129.16 34.15 84.22 0.04284 1397456 
α-Qz SiO2 -910.65 41.34 -856.24 22.69 46.94 0.03431 1129680 
β-Qz SiO2 -910.25 41.82 -856.24  60.29 0.00812 0 
Cristobal. SiO2 -853.10 43.40 -853.10 25.74 58.49 0.01397 1594104 
Coesite SiO2 -851.62 40.38 -851.62 20.64 46.02 0.00351 1129680 
Periclase MgO -601.66 26.94 -569.38 11.25 42.59 0.00728 619232 
Magnetite Fe3O4 -1118.17 145.73 -1014.93 44.52 91.55 0.20167 0 
Spinel MgAl2O4 -2288.01 80.63 -2163.15 39.71 153.86 0.02684 4062246 
Hem Fe2O3 -827.26 87.61 -745.40 30.27 98.28 0.07782 1485320 
Corundum Al2O3 -1661.65 50.96 -1568.26 25.58 11.80 0.03506 3506192 
Kyanite Al2SiO5 -2581.10 83.68 -2426.91 44.09 173.18 0.02853 5389871 
Andalusite Al2SiO5 -2576.78 92.88 -2429.18 51.53 172.84 0.02633 5184855 
Sillimanite Al2SiO5 -2573.57 96.78 -2427.10 49.90 167.46 0.03092 4884443 
Almandine Fe3Al2Si3O12 -5265.5 339.93 -4941.73 115.28 408.15 0.14075 7836623 
Grossular Ca3Al2Si3O12 -6624.93 254.68 -6263.31 125.30 435.21 0.07117 11429851 
Albite NaAlSi3O8 -3921.02 210.04 -3708.31 100.07 258.15 0.05816 6280184 
K-feldspar KAlSi3O8 -3971.04 213.93 -3971.4 108.87 320.57 0.01804 12528988 
Anorthite CaAl2Si2O8 -4215.60 205.43 -3991.86 100.79 264.89 0.06190 7112800 
Jadeite NaAlSi2O6 -3011.94 133.47 -2842.80 60.44 201.67 0.04770 4966408 
Diospide CaMgSi2O6 -3202.34 143.09 -3029.22 66.09 221.21 0.03280 6585616 
Enstatite MgSiO3 -1546.77 67.86 -1459.92 31.28 102.72 0.01983 2627552 
Forsterite Mg2SiO4 -2175.68 95.19 -2056.70 43.79 149.83 0.02736 3564768 
Clinozo Ca2Al3Si3O12(OH) -68798.42 295.56 -6482.02 136.2 787.52 0.10550 11357468 
Tremolite Ca2MgSi8O22(OH)2 -12319.70 548.90 -11590.71 272.92 188.22 0.05729 4482200 
Chlorite MgAl(AlSi3)O10(OH)8 -8857.38 465.26 -8207.77 207.11 696.64 0.17614 15677448 
Pargasite NaCa2Mg4Al3Si8O22(OH)2 -12623.40 669.44 -11950.58 273.5 861.07 0.17431 21007864 
Phlogopite KMg3AlSi3O10(OH)2 -6226.07 287.86 -5841.65 149.66 420.95 0.01204 8995600 
Muscovite KAl3Si3O10(OH)2 -5972.28 287.86 -5591.08 140.71 408.19 0.110374 10644096 
Gibbsite Al(OH)3 -1293.13 70.08 -1155.49 31.96 36.19 0.19079 0 
Boehmite AlO(OH) -983.57 48.45 -908.97 19.54 60.40 0.01757 0 
Brucite Mg(OH)2 -926.30 63.14 -835.32 24.63 101.03 0.01678 2556424  
Data for the standard state of 298.15 K and 0.1 MPa. ∆Ho

f   is the molar heat (enthalpy) of formation from the elements 
; S° is the standard state entropy; V is the molar volume; a, b and c are constants for the heat capacity (Cp) computed 
as: Cp = a + bT – cT–2 J/K-mol.  Modified from Helgeson et al. (1978).  
*cc/mol = J/MPa/mol. 
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where S0 is the entropy at 0 K  (configurational, or ‘third law’ entropy) and ∆SΦ is the entropy change 
associated with any phase change.   Compilations for S298 are available for many minerals.   Table 2.2 
lists some heat capacity constants for the power series formula as well as other thermodynamic data for 
a few geologically important minerals. 

2.9 FREE ENERGY 
 We can now introduce two free energy functions, the Helmholtz Free Energy and the Gibbs Free En-
ergy.  The Gibbs Free Energy is one of the most useful functions in thermodynamics. 

2.9.1 Helmholtz Free Energy 
 We can rearrange equation 2.58 to read dU - TdS = -PdV.  The -PdV term is the work term and the 

Example 2.6: Calculating Enthalpy and Entropy Changes 
 If the heat capacity of steam can be represented by a three-term power series: 
  Cp = a + bT + cT2 
with constants a = 36.37 J/K-mol, b = –7.84×10-3 J/K2-mol, and c = 9.08×10-6 J/K3-mol, and the enthaply 
of vaporization at 100°C is 40.6 kJ/mol, calculate the  S and H changes when 1 mol of liquid water at 
100° C and 1 atm is converted to steam and brought to 200° C and 3 atm.  Assume that with respect to 
volume, steam behaves as an ideal gas (which, in reality, it is certainly not). 
 Answer: We need to calculate entropy and enthalpy associated with three changes: the conversion of 
water to steam, raising the steam from 100° C to 200° C, and increasing the pressure from 1 atm to 3 
atm.  Since both S and H are state variables, we can treat these three processes separately; our answer 
will be the sum of the result for each of these processes and will be independent of the order in which 
we do these calculations. 
 1. Conversion of water to steam.  This process will result in ∆H of 40.6 kJ.  For entropy, ∆S = ∆H/T = 
40.6/373 = 109 J/K. We converted centigrade to Kelvin, or absolute, temperature. 
 2.  Raising the steam from 100°C to 200°C (from 373 K to 473 K) isobarically.  Since heat capacity is a 
function of temperature, we will have to integrate equation 2.81 over the temperature interval: 

� 

CPdTT1

T 2∫ = a + bT + cT 2( )
373

473

∫ dT = a dT
373

473

∫ + b TdT
373

473

∫ + c T 2dT
373

473

∫ = aT +
b
2T

2 +
c
3T

3⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
373

473

 

Evaluating this, we find that ∆H = (17.20 – 0.88 + 0.32) – (13.57 – 0.55 + 0.16) = 3.469 kJ.  The entropy 
change is given by: 

  

� 

ΔS =
CP

T dT
T1

T2∫ =
a
T dT

373

473

∫ + bdT
373

473

∫ + cTdT
373

473

∫ = a lnT + bT +
c
2 T

2⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
373

473

 

Evaluating this, we find that ∆S = (224.01-3.71+1.02)– (215.37-2.93+.63) = 8.24 J/K. 
 3. Increasing pressure from 1 atm to 3 atm (0.1 MPa to 0.3 MPa) isothermally.  We can use equation 
2.116 to determine the enthalpy change associated with the pressure change.  On the assumption of 
ideal gas behavior, we can substitute 1/T for α.  Doing so, we find the equation goes to 0; thus there is 
no enthalpy change associated with a pressure change for an ideal gas.  This is in accord with as-
sumption about an ideal gas: namely that there are no forces between molecules, hence no energy is 
stored as potential energy of attraction between molecules. 
 The isothermal pressure dependence of entropy is given by equation 2.106.  We substitute 1/T for α 
and RT/P for V and integrate from P1 to P2: 

  

� 

ΔS = −
1
T
RT
P dP

P1

P2∫ = −
R
P dPP1

P2∫ = −R lnP[ ]0.1
0.3

= −8.315 ln 0.30.1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ J / K = −9.13J / K  

The whole enthalpy and entropy changes are the sum the changes in these three steps: 
 ∆H = 40.6 + 3.5 + 0 = 44.1 kJ  ∆S = 108.8 + 8.2 – 9.1 = 107.9 J/K 
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TdS term is the heat function.  TdS is the energy unavailable for work.  Therefore dU - TdS is the amount 
of internal energy available for work, or the Free Energy. We define it as A, the Helmholtz Free Energy: 
  A ≡ U - TS 2.118 
 As usual, we are interested in the differential form (since we are more interested in changes than in 
absolutes): 
  dA = dU - d(TS) = dU - SdT - TdS 2.119 
or substituting 2.58 into 2.119: dA = – SdT – PdV 2.120 

2.9.2 Gibbs Free Energy 
2.9.2.1 Derivation  
 The Gibbs Free Energy is perhaps misnamed.  By analogy to the Helmholtz Free Energy, it should be 
called the Free Enthalpy (but enthalpy is an energy), because it is derived as follows: 
  G ≡ H − TS  2.121 
and dG = d(H – TS) = dH – d(TS) 2.122 
or dG = TdS + VdP – d(TS) = TdS + VdP –SdT -TdS  

which reduces to:  dG = VdP − SdT  2.123 
Notice the similarity to the Helmholtz Free Energy; in that case we subtracted the TS term from the in-
ternal energy; in this case we subtracted the TS term from the enthalpy.  The Gibbs Free Energy is the en-
ergy available for non-PV work (such as chemical work).  It has two other important properties: its inde-
pendent variables are T and P, generally the ones in which we are most interested in geochemistry, and 
it contains the entropy term (as does the Helmholtz free energy), and hence can be used as an indica-
tion of the direction in which spontaneous reactions will occur. 

2.9.2.2 Gibbs Free Energy Change in Reactions 
 For a finite change at constant temperature, the Gibbs Free Energy change is: 
  ∆G = ∆H − T ∆S  2.124 
The free energy change of formation, ∆Gf, is related to the enthalpy and entropy change of reaction: 
   

� 

ΔGf
o = ΔH f

o − TΔS f
o  2.125 

Like other properties of state, the Gibbs free energy is additive.  Therefore:  

  

� 

ΔGr = νiΔGf ,i
i
∑  2.126 

In other words, we can use Hess’s Law to calculate the free energy change of reaction.  Values for ∆Gf at 
the standard state are available in compilations.   

2.9.3 Criteria for Equilibrium and Spontaneity  
 The Gibbs Free Energy is perhaps the single most important thermodynamic variable in geochemis-
try because it provides this criterion for recognizing equilibrium.  This criterion is:  
Products and reactants are in equilibrium when their Gibbs free energies are equal.  
Another important quality of the Gibbs Free Energy is closely related:  
At fixed temperature and pressure, a chemical reaction will proceed in the direction 

of lower Gibbs free energy         (i.e., ∆Gr < 0). 
The reverse is also true: a reaction will not proceed if it produces an increase in the Gibbs Free Energy.  
 On an intuitive level, we can understand the Gibbs Free Energy as follows.  We know that transfor-
mations tend to go in the direction of the lowest energy state (e.g., a ball rolls down hill).  We also have 
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learned that transformations go in the direction of increased entropy (if you drop a glass it breaks into 
pieces; if you drop the pieces they don't re-assemble into a glass).  We must consider both the tendency 
for energy to decrease and the tendency for entropy to increase in order to predict the direction of a 
chemical reaction.  This is what the Gibbs Free Energy does. 

2.9.4 Temperature and Pressure Dependence of the Gibbs Free Energy 
 One reason the Gibbs Free Energy is useful is that its characteristic variables are temperature and 
pressure, which are the ‘external’ variables of greatest interest in geochemistry.  Since it is a state vari-
able, we can deduce its temperature and pressure dependencies from equation 2.123, which are: 

  

� 

∂ΔG
∂P

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
T

= ΔV  2.127 

� 

∂ΔG
∂T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
P

= −ΔS  2.128 

Equations 2.127 and 2.128 allow us to predict how the Gibbs Free Energy of reaction will change with 
changing temperature and pressure.  Thus we can predict how the direction of a reaction will change if we 
change temperature and pressure.  To obtain the ∆Gr at some temperature T´ and pressure P´, we integrate: 

  ΔGT ',P ' = ΔGTref ,Pref
+ ΔVr dPPref

P '

∫ − ΔSr dTTref

T '

∫  2.129 

For liquids and particularly gases, the effects of pressure and temperature on ∆V are significant and 
cannot be ignored.  The reference pressure is generally 0.1 MPa.  For solids, however, we can often ig-
nore the effects of temperature and pressure on ΔV so the first integral reduces to: ΔV(P’-Pref).  On the 
other hand, we cannot ignore the temperature dependence of entropy. Hence we need to express ΔSrr as 
a function of temperature.  The temperature dependence of entropy is given by equation 2.105.  Writing 
this in integral form, we have: 

  ΔS(T ) =
ΔCp

T
dT

Tref

T

∫  

This is the change in entropy due to increasing the temperature from the reference state to T.  The full 
change in entropy of reaction is then this plus the entropy change at the reference temperature: 

Example 2.7: Using Gibbs Free Energy to Predict Equilibrium 
 Using the thermodynamic data given in Table 2.2 calculate ∆Gr for the reaction: 
  CaAl2Si2O8 + 2Mg2SiO4 ® CaMgSi2O6 + MgAl2O4 + 2MgSiO3 
  (Anorthite  +  2 Forsterite   ® Diopside   +   Spinel   +   2 Enstatite) 
at 298K and 0.1 MPa.  Which mineral assemblage is more stable under these conditions (i.e., which side 
of the reaction is favored)?  Which assemblage will be favored by increasing pressure?  Why?  Which 
side will be favored by increasing temperature? Why? 
 Answer:  We can calculate∆Gr from ΔHf and ΔSf, values listed in Table 2.02: 
  ΔG = ΔH -TΔS 
∆H is calculated as: ΔHf,Di + ΔHf,Sp +  2×ΔHf,En – (ΔHf,An +  2×ΔHf,Fo). ΔS is calculated in a similar manner.  
Our result is –6.08 kJ/mol.  Because ΔGr is negative, the reaction will proceed to the right, so that the 
assemblage on the right is more stable under the conditions of 298 K and 1 atm. 
 To find out which side will be favored by increasing pressure and temperature, we use equations 
2.127 and 2.128 to see how ΔG will change.  For temperature, ∂∆G/∂T = –ΔS.  ΔSr is -36.37 J/K-mol, and 
∂∆G/∂T = 36.37.  The result is positive, so that ΔG will increase with increasing T, favoring the left side.  
Had we carried out the calculation at 1000˚ C and 0.1 MPa, a temperature appropriate for crystallization 
from magma, we would have found that the anorthite-forsterite assemblage is stable.  For pressure, 
∂∆G/∂P = ΔV.  ΔV for the reaction is -20.01 cc/mol (=J/MPa-mol), so will decrease with increasing pres-
sure, favoring the right side. Reassuringly, our thermodynamic result is consistent with geologic obser-
vation.  The assemblage on the left, which could be called ‘plagioclase peridotite’ transforms to the as-
semblage on the right, ‘spinel peridotite’ as pressure increases in the mantle. 
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  ΔSr = ΔSTref +
ΔCp

T
dT

Tref

T

∫   2.130 

Substituting this into 2.129, the second integral becomes: 

  ΔSr dTTref

T '

∫ = −ΔSref (T '− Tref ) −
ΔCp

T
dT

Tref

T

∫Tref

T '

∫ dT = ∆GT '  2.131 

Example 2.08. Predicting the Equilibrium Pressure of a Mineral Assemblage 
 Using the thermodynamic reaction and data as in Example 2.07: 
  CaAl2Si2O8 + 2Mg2SiO4 ® CaMgSi2O6 + MgAl2O4 + 2MgSiO3 
  (Anorthite  +   Forsterite   ® Diopside   +   Spinel   +   2 Enstatite) 
determine the pressure at which these two assemblages will be in equilibrium at 1000° C.  Assume that 
the volume change of the reaction is independent of pressure and temperature (i.e., α and β  = 0). 
 Answer:  These two assemblages will be in equilibrium if and only if the Gibbs Free Energy of reaction 
is 0.  Mathematically, our problem is to solve equation 2.129 for P such that ∆G1273,P = 0.   
 Our first step is to find ∆Gr for this reaction at 1000°C (1273 K) using equation 2.131. Heat capacity 
data in Table 2.2 is in the form: Cp  = a + bT - cT-2.  Substituting for ∆Cp, we have: 

  

� 

ΔGT = −ΔSTref (T '−Tref )−
Δa
T

+ Δb − Δc
T 3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ dT

Tref

T∫ dT
Tref

T '∫  2.132 

Performing the double integral and collecting terms, substituting ∆T for T´ – Tref, this simplifies to: 

  

� 

ΔGT ' = −ΔT ΔST ref
− Δa +

Δb
2 ΔT −

ΔcΔT
2T 'Tref

2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
− ΔaT ' ln T'

Tref
 2.133 

Equation 2.133 is a general solution to equation 2.131 when the Maier-Kelley heat capacity is used.  
 We found ∆STref to be –36.37 J/K-mol in Example 2.07.  Computing ∆a as (aDi +aSp + 2aEn) – (aAn + 2aFo), 
we find ∆a = 15.96 J/mol.  Computing ∆b and ∆c similarly, they are -0.01732 J/K-mol and 1.66 × 106 J-
K2/mol respectively.  Substituting values into equation 2.135, we find ∆GT = 36.74 kJ/mol.   
 Since we may assume the phases are incompressible, the solution to the pressure integral is: 

  

� 

ΔGP = ΔVrdPPref

P '

∫ = ΔVr (P '−Pref )  2.134 

Equation 2.129 may now be written as: 
  ∆GT’,P’ = 0 = ∆G° + ∆GT +∆Vr(P´-Pref)   
Let ∆G1273,0.1 =  ∆G° + ∆GT. ∆G° is -6.95 kJ/mol (calculated from values in Table 2.02), so ∆G1273,0.1 
=29.86kJ/mol. ∆G1273,0.1 is positive, meaning that the left side of the reaction is favored at 1000° C and at-
mospheric pressure, consistent with our prediction based on ∂G/∂T. 
 Solving for pressure, we have 

  

� 

P'=
−ΔGT 'Pref

ΔVr
+ Pref  2.135 

With ∆V = -20.01cc/mol, we obtain a value of 1.49 GPa (14.9 kbar).  Thus assemblages on the right and 
left will be in equilibrium at 1.49 GPa and 1000°C.  Below that pressure, the left is stable, above that 
pressure, the right side is the stable assemblage, according to our calculation. 
 The transformation from ‘plagioclase peridotite’ to ‘spinel peridotite’ actually occurs around 1.0 GPa 
in the mantle.  The difference between our result and the real world primarily reflects differences in 
mineral composition: mantle forsterite, enstatite and diopside are solids solutions containing Fe and 
other elements.  The difference does not reflect our assumption that the volume change is independent 
of pressure.  When available data for pressure and temperature dependence of the volume change is in-
cluded in the solution, the pressure obtained is only marginally different: 1.54 GPa. 
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∆GT’ as we define it here, is the change in free energy of reaction as a result of increasing temperature 
from the reference state to T’. 
 

EXAMPLE 2.9: VOLUME AND FREE ENERGY CHANGES FOR FINITE 
COMPRESSIBILITY 

 The compressibility (β) of forsterite (Mg2SiO4) is 8.33 x 10-6 MPa-1.  Using this and the data given in 
Table 2.2, what is the change in molar volume and Gibbs Free Energy of forsterite at 100 MPa and 298K? 
Answer: Let’s deal with volume first.  We want to know how the molar volume (43.79 cc/mol) changes 
as the pressure increases from the reference value (0.1 MPa) to 1GPa.  The compressibility is defined as: 

  

� 

β = − 1
V

∂V
∂P
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
T

 (2.12) 

So the change in volume for an incremental increase in pressure is given by: 
  

� 

dV = −VβdP  2.136 
To find the change in volume over a finite pressure interval, we rearrange and integrate: 

  

� 

dV
V

V o

V

∫ = − βdP
P o

P

∫  

  
Performing the integral, we have: 

  

� 

ln V
V o = −β(P − Po)  2.137 

where P is the pressure interval, P’-Po.  This may be rewritten as: 

  

� 

V = V oe−β (P −P o ) 2.138 
However, the value of β∆P is of the order of 10-2, and in this case, the approximation ex ≈ x +1 holds, so 
that 2.138 may be written as: 
  

� 

V ≅ V o(1− β(P − Po))  2.139 
Equation 2.139 is a general expression that expresses volume as a function of pressure when β  is known, 
small, and is independent of temperature and pressure.  Furthermore, in situations where P>>Po, this 
can be simplified to: 
  

� 

V ≅ V o(1− βP)  2.140 
Using equation 2.140, we calculate a molar volume of 43.54 cc/mol (identical to the value obtained us-
ing 2.138). The volume change, ΔV is 0.04 cc/mol.   
 The change in Free Energy with volume is given by: 
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∂G
∂P

⎛ 
⎝ 
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⎞ 
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⎟ 
T

=V  

so that the free energy change as a consequence of a finite change is pressure can be obtained by inte-
grating: 

  

� 

ΔG = VdP
P o

P

∫  
Into this we may substitute equation 2.140:  

  

� 

ΔG = V o(1− βP)dP = V o P − βP 2[ ]P o

P

V o

V '

∫  2.141 

Using 2.141 we calculate a value of ∆G of 4.37 kJ/ mol. 
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2.10 THE MAXWELL RELATIONS 
 The reciprocity relationship, which we discussed earlier, leads to a number of useful relationships.  
These relationships are known as the Maxwell Relations*.  Consider the equation: 
  dU = TdS – PdV (2.58) 
If we write the partial differential of U in terms of S and V we have: 

  dU =
∂U
∂S

⎛
⎝⎜

⎞
⎠⎟V
dS + ∂U

∂V
⎛
⎝⎜

⎞
⎠⎟ S
dV  2.142 

From a comparison of these two equations, we see that: 
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S
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And since the cross differentials are equal, it follows that: 
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The other Maxwell Relations can be derived in an exactly analogous way from other state functions.  
They are: 

 from dH (Equ. 2.65) 
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 from dA (Equ. 2.120)  ∂P
∂T

⎛
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⎛
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 from dG (Equ. 2.123) 
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∂V
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⎛ 
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⎞ 
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P

= −
∂S
∂P
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Problems 
1.   For a pure olivine mantle, calculate the adiabatic temperature gradient  (∂T/∂P)s at 0.1 MPa (1 atm) 
and 1000°C.  Use the thermodynamic data in Table 2.2 for forsterite (Mg-olivine, Mg2SiO4) and 
α = 44 x 10-6 K-1, and β = 8×10-6 MPa-1.  
Note that:  1 cc/mol =  1 J/MPa/mol. 
 
2. Complete the proof that V is a state variable by showing that for an ideal gas: 

� 

∂αV
∂P = −

∂βV
∂T  

3.  A quartz crystal has a volume of 7.5 ml at 298 K and 0.1 MPa. What is the volume of the crystal at 
840K and 12.3 MPa if 
  a.) α= 1.4654 × 10-5 K-1 and β= 2.276 × 10-11 Pa-1 and α and β are independent of T and P. 
 b.) α = 1.4310 × 10-5 K-1 + 1.1587 × 10-9 K-2T  
  β = 1.8553 × 10-11Pa-1 + 7.9453 × 10-8 P-1 
 
4. One mole of an ideal gas is allowed to expand against a piston at constant temperature of 0°C.  The 
initial pressure is 1 MPa and the final pressure is 0.04 MPa.  Assuming the reaction is reversible, 
 a. What is the work done by the gas during the expansion? 
 b. What is the change in the internal energy and enthalpy of the gas? 
 c. How much heat is gained/lost during the expansion? 
 
5.  A typical eruption temperature of basaltic lava is about 1200°C.  Assuming that basaltic magma 
travels from its source region in the mantle quickly enough so that negligible heat is lost to wall rocks, 
calculate the temperature of the magma at a depth of 40 km.  The density of basaltic magma at 1200°C 
is 2610 kg/m3; the coefficient of thermal expansion is about 1 x 10-4/K.  Assume a heat capacity of 850 
J/kg-K and that pressure is related to depth as 1km = 33MPa (surface pressure is 0.1 MPa.). 
(HINT: “negligible heat loss” means the system may be treated as adiabatic.) 
 
6  Show that the Cp of an ideal monatomic gas is 5/2 R. 

7.  Show that:  

� 

∂P
∂T
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
V

=
α
β

 

 

8.  Show that for a reversible process: 
∂U
∂V

⎛
⎝⎜

⎞
⎠⎟ T

= T α
β
− P  (equ. 2.73) 

(Hint: begin with the statement of the first law (equation 2.58), make use of the Maxwell relations, and your proof 
in problem 7.) 
9.  Imagine that there are 30 units of energy to distribute among 3 copper blocks.   
 a.) If the energy is distributed completely randomly, what is the probability of the first block having 
all the energy? 
 b.) If n1 is the number of units of energy of the first block, construct a graph (a histogram) showing 
the probability of a given value of n1 occurring as a function of n1.  (HINT: use equation 2.37, but modify it 
for the case where there are 3 blocks). 
 
9.  Consider a box partitioned into equal volumes, with the left half containing 1 mole of Ne and the 
right half containing 1 mole of He.  When the partition is removed, the gases mix.  Show, using a classi-
cal thermodynamic approach (i.e., macroscopic) that the entropy change of this process is ∆S = 2R ln 2.  
Assume that He and Ne are ideal gases and that temperature is constant. 



W. M. White  Geochemistry 
Chapter 2: Fundamental Concepts of Thermodynamics  
 

 60   

   
10.  Find expressions for Cp and Cv for a van der Waals gas. 
 
11. Show that β (the compressibility, defined in equation 2.12) of an ideal gas is equal to 1/P. 
 

12.  Show that  

� 

S =
U 
T + R lnQ  

 Hint: Start with equations 2.47 and 2.36a using the approximation that ln N! = N ln N – N. 
 

13.  Show that  ∆H = V (1−αT )dP
P1

P2∫  

 Hint: Begin with equation 2.63 and express dU as a function of temperature and volume change. 
 
14.  Helium at 298K and 1 atm has  S° = 30.13 cal/K-mole.  Assume He is an ideal gas. 
 a. Calculate V, H, G, α, ß, Cp, Cv, for He at 298K and 1 atm. 
 b. What are the values for these functions at 600K and 100 atm? 
 c.  What is the entropy at 600 K and 100 atm? 
 
15. Given the following standard data: 
  Mg + 3/2 O2 + Si → MgSiO3  ∆H = -1497.4 kJ/mol 
  Si + O2 → SiO2                ∆H = -859.4 kJ/mol 
  2Mg + 2O2 + Si → Mg2SiO4 ∆H = -2042.6 kJ/mol 
find ∆H in Joules for:  Mg2SiO4 + SiO2 → 2MgSiO3 
 
16.  Using the data in Table 2.02, calculate the enthalpy and entropy change of diopside as it is heated at 
constant pressure from 600 K to 1000 K. 
 
17.  Calculate the total enthalpy upon heating of 100g of quartz from 25° C to 900° C.  Quartz undergoes 
a phase transition from α-quartz to β-quartz at 575° C.  The enthalpy of this phase transition is ∆Htr = 
0.411 kJ/mol.  Use the Maier-Kelly heat capacity data in Table 2.02. 
 
18.  Calcite and aragonite are two forms of CaCO3 that differ only their crystal lattice structure.  The re-
action between them is thus simply: 
  Calcite ® Aragonite 
Using the data in Table 2.02,  
 a.) Determine which of these forms is stable at the surface of the earth (25° C and 0.1 MPa). 
 b.) Which form is favored by increasing temperature? 
 c.) Which form is favored by increasing pressure? 
 
19.  Use the data in Table 2.02 to determine the pressure at which calcite and aragonite are in equilib-
rium at 300°C. 
 
20.  Suppose you found kyanite and andalusite coexisting in the same rock, that you had reason to be-
lieve this was an equilibrium assemblage, and that you could independently determine the temperature 
of equilibrium to be 400°C.  Use the data in Table 2.02 to determine the pressure at which this rock 
equilibrated. 


