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HARMONIC

FUNCTIONS

This chapter is devoted to the Laplace equation. We introduce two of its
important properties, the maximum principle and the rotational invariance.
Then we solve the equation in series form in rectangles, circles, and related
shapes. The case of a circle leads to the beautiful Poisson formula.

6.1 LAPLACE’S EQUATION

If a diffusion or wave process is stationary (independent of time), then ut ≡ 0
and utt ≡ 0. Therefore, both the diffusion and the wave equations reduce to
the Laplace equation:

uxx = 0 in one dimension

∇ · ∇u = �u = uxx + u yy = 0 in two dimensions

∇ · ∇u = �u = uxx + u yy + uzz = 0 in three dimensions

A solution of the Laplace equation is called a harmonic function.
In one dimension, we have simply uxx = 0, so the only harmonic functions

in one dimension are u(x) = A + Bx . But this is so simple that it hardly gives
us a clue to what happens in higher dimensions.

The inhomogeneous version of Laplace’s equation

�u = f (1)

with f a given function, is called Poisson’s equation.
Besides stationary diffusions and waves, some other instances of

Laplace’s and Poisson’s equations include the following.
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1. Electrostatics. From Maxwell’s equations, one has curl E = 0 and div E =
4πρ, where ρ is the charge density. The first equation implies E = −grad
φ for a scalar function φ (called the electric potential). Therefore,

�φ = div(grad φ) = −div E = −4πρ,

which is Poisson’s equation (with f = −4πρ).

2. Steady fluid flow. Assume that the flow is irrotational (no eddies) so that
curl v = 0, where v = v(x, y, z) is the velocity at the position (x, y, z),
assumed independent of time. Assume that the fluid is incompressible
(e.g., water) and that there are no sources or sinks. Then div v = 0.
Hence v = −grad φ for some φ (called the velocity potential) and �φ =
−div v = 0, which is Laplace’s equation.

3. Analytic functions of a complex variable. Write z = x + iy and

f (z) = u(z) + iv(z) = u(x + iy) + iv(x + iy),

where u and v are real-valued functions. An analytic function is one that
is expressible as a power series in z. This means that the powers are not
xmyn but zn = (x + iy)n . Thus

f (z) =
∞

∑

n =0

anzn

(an complex constants). That is,

u(x + iy) + iv(x + iy) =
∞

∑

n =0

an(x + iy)n.

Formal differentiation of this series shows that

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −

∂v

∂x

(see Exercise 1). These are the Cauchy–Riemann equations. If we differ-
entiate them, we find that

uxx = vyx = vxy = −u yy,

so that ∆u = 0. Similarly ∆v = 0, where � is the two-dimensional
laplacian. Thus the real and imaginary parts of an analytic function are
harmonic.

4. Brownian motion. Imagine brownian motion in a container D. This means
that particles inside D move completely randomly until they hit the bound-
ary, when they stop. Divide the boundary arbitrarily into two pieces, C1

and C2 (see Figure 1). Let u(x, y, z) be the probability that a particle that
begins at the point (x, y, z) stops at some point of C1. Then it can be
deduced that

∆u = 0 in D

u = 1 on C1 u = 0 on C2.

Thus u is the solution of a Dirichlet problem.
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Figure 1

As we discussed in Section 1.4, the basic mathematical problem is to
solve Laplace’s or Poisson’s equation in a given domain D with a condition
on bdy D:

�u = f in D

u = h or
∂u

∂n
= h or

∂u

∂n
+ au = h on bdy D.

In one dimension the only connected domain is an interval {a ≤ x ≤ b}. We
will see that what is interesting about the two- and three-dimensional cases is
the geometry.

MAXIMUM PRINCIPLE

We begin our analysis with the maximum principle, which is easier for
Laplace’s equation than for the diffusion equation. By an open set we mean a
set that includes none of its boundary points (see Section A.1).

Maximum Principle. Let D be a connected bounded open set (in ei-
ther two- or three-dimensional space). Let either u(x, y) or u(x, y, z) be a

harmonic function in D that is continuous on D = D ∪ (bdy D). Then the
maximum and the minimum values of u are attained on bdy D and nowhere
inside (unless u ≡ constant).

In other words, a harmonic function is its biggest somewhere on the
boundary and its smallest somewhere else on the boundary.

To understand the maximum principle, let us use the vector shorthand
x = (x, y) in two dimensions or x = (x, y, z) in three dimensions. Also, the

radial coordinate is written as |x| = (x2 + y2)
1/2

or |x| = (x2 + y2 + z2)
1/2

.
The maximum principle asserts that there exist points xM and xm on bdy D
such that

u(xm) ≤ u(x) ≤ u(xM) (2)
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Figure 2

for all x ∈ D (see Figure 2). Also, there are no points inside D with this
property (unless u ≡ constant). There could be several such points on the
boundary.

The idea of the maximum principle is as follows, in two dimen-
sions, say. At a maximum point inside D, if there were one, we’d have
uxx ≤ 0 and u yy ≤ 0. (This is the second derivative test of calculus.) So
uxx + u yy ≤ 0. At most maximum points, uxx < 0 and u yy < 0. So we’d get
a contradiction to Laplace’s equation. However, since it is possible that
uxx = 0 = u yy at a maximum point, we have to work a little harder to get
a proof.

Here we go. Let ǫ > 0. Let v(x) = u(x) + ǫ|x|2. Then, still in two dimen-
sions, say,

�v = �u + ǫ�(x2 + y2) = 0 + 4ǫ > 0 in D.

But �v = vxx + vyy ≤ 0 at an interior maximum point, by the second deriva-
tive test in calculus! Therefore, v(x) has no interior maximum in D.

Now v(x), being a continuous function, has to have a maximum some-

where in the closure D = D ∪ bdy D. Say that the maximum of v(x) is
attained at x0 ∈ bdy D. Then, for all x ∈ D,

u(x) ≤ v(x) ≤ v(x0) = u(x0) + ǫ|x0|2 ≤ max
bdy D

u + ǫl2,

where l is the greatest distance from bdy D to the origin. Since this is true for
any ǫ > 0, we have

u(x) ≤ max
bdy D

u for all x ∈ D. (3)

Now this maximum is attained at some point xM ∈ bdy D. So u(x) ≤ u(xM)

for all x ∈ D, which is the desired conclusion.
The existence of a minimum point xm is similarly demonstrated. (The

absence of such points inside D will be proved by a different method in
Section 6.3.) �

UNIQUENESS OF THE DIRICHLET PROBLEM

To prove the uniqueness, suppose that

�u = f in D �v = f in D

u = h on bdy D v = h on bdy D.
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We want to show that u ≡ v in D. So we simply subtract equations and let
w = u − v. Then �w = 0 in D and w = 0 on bdy D. By the maximum principle

0 = w(xm) ≤ w(x) ≤ w(xM) = 0 for all x ∈ D.

Therefore, both the maximum and minimum of w(x) are zero. This means that
w ≡ 0 and u ≡ v.

INVARIANCE IN TWO DIMENSIONS

The Laplace equation is invariant under all rigid motions. A rigid motion in
the plane consists of translations and rotations. A translation in the plane is a
transformation

x ′ = x + a y′ = y + b.

Invariance under translations means simply that uxx + u yy = ux ′x ′ + u y′ y′ .
A rotation in the plane through the angle α is given by

x ′ = x cos α + y sin α

y′ = −x sin α + y cos α.
(4)

By the chain rule we calculate

ux = ux ′ cos α − u y′ sin α

u y = ux ′ sin α + u y′ cos α

uxx = (ux ′ cos α − u y′ sin α)x ′ cos α − (ux ′ cos α − u y′ sin α)y′ sin α

u yy = (ux ′ sin α + u y′ cos α)x ′ sin α + (ux ′ sin α + u y′ cos α)y′ cos α.

Adding, we have

uxx + u yy = (ux ′x ′ + u y′ y′)(cos2α + sin2α) + ux ′ y′ · (0)

= ux ′x ′ + u y′ y′ .

This proves the invariance of the Laplace operator. In engineering the laplacian
� is a model for isotropic physical situations, in which there is no preferred
direction.

The rotational invariance suggests that the two-dimensional laplacian

�2 =
∂2

∂x2
+

∂2

∂y2

should take a particularly simple form in polar coordinates. The transforma-
tion

x = r cos θ y = r sin θ
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has the jacobian matrix

j =









∂x

∂r

∂y

∂r

∂x

∂θ

∂y

∂θ









=

(

cos θ sin θ

−r sin θ r cos θ

)

with the inverse matrix

j
−1 =









∂r

∂x

∂θ

∂x

∂r

∂y

∂θ

∂y









=









cos θ
−sin θ

r

sin θ
cos θ

r









.

(Beware, however, that ∂r/∂x �= (∂x/∂r )−1.) So by the chain rule we have

∂

∂x
= cos θ

∂

∂r
−

sin θ

r

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.

These operators are squared to give

∂2

∂x2
=

[

cos θ
∂

∂r
−

sin θ

r

∂

∂θ

]2

= cos2 θ
∂2

∂r2
− 2

(

sin θ cos θ

r

)

∂2

∂r∂θ

+
sin2 θ

r2

∂2

∂θ2
+

2 sin θ cos θ

r2

∂

∂θ
+

sin2 θ

r

∂

∂r

∂2

∂y2
=

(

sin θ
∂

∂r
+

cos θ

r

∂

∂θ

)2

= sin2 θ
∂2

∂r2
+ 2

(

sin θ cos θ

r

)

∂2

∂r∂θ

+
cos2 θ

r2

∂2

∂θ2
−

2 sin θ cos θ

r2

∂

∂θ
+

cos2 θ

r

∂

∂r
.

(The last two terms come from differentiation of the coefficients.) Adding
these operators, we get (lo and behold!)

�2 =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
. (5)

It is also natural to look for special harmonic functions that themselves
are rotationally invariant. In two dimensions this means that we use polar
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coordinates (r, θ ) and look for solutions depending only on r. Thus by (5)

0 = uxx + u yy = urr +
1

r
ur

if u does not depend on θ . This ordinary differential equation is easy to solve:

(rur )r = 0, rur = c1, u = c1log r + c2.

The function log r will play a central role later.

INVARIANCE IN THREE DIMENSIONS

The three-dimensional laplacian is invariant under all rigid motions in space.
To demonstrate its rotational invariance we repeat the preceding proof using
vector-matrix notation. Any rotation in three dimensions is given by

x′ = Bx,

where B is an orthogonal matrix (tBB = B tB = I ). The laplacian is �u =
�3

i=1 ui i = �3
i, j=1 δijuij where the subscripts on u denote partial derivatives.

Therefore,

�u =
∑

k,l

(

∑

i, j

bkiδijblj

)

uk ′l ′ =
∑

k,l

δkl uk ′l ′

=
∑

k

uk ′k ′

because the new coefficient matrix is
∑

i, j

bkiδijblj =
∑

i

bki bli = (B tB)kl = δkl .

So in the primed coordinates �u takes the usual form

�u = ux ′x ′ + u y′ y′ + uz′z′ .

For the three-dimensional laplacian

�3 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

it is natural to use spherical coordinates (r, θ, φ) (see Figure 3). We’ll use the
notation

r =
√

x2 + y2 + z2 =
√

s2 + z2

s =
√

x2 + y2

x = s cos φ z = r cos θ

y = s sin φ s = r sin θ.

(Watch out: In some calculus books the letters φ and θ are switched.) The
calculation, which is a little tricky, is organized as follows. The chain of
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Figure 3

variables is (x, y, z) → (s, φ, z) → (r, θ, φ). By the two-dimensional Laplace
calculation, we have both

uzz + uss = urr +
1

r
ur +

1

r2
uθθ

and

uxx + u yy = uss +
1

s
us +

1

s2
uφφ.

We add these two equations, and cancel uss, to get

�3 = uxx + u yy + uzz

= urr +
1

r
ur +

1

r2
uθθ +

1

s
us +

1

s2
uφφ.

In the last term we substitute s2 = r2sin2θ and in the next-to-last term

us =
∂u

∂s
= ur

∂r

∂s
+ uθ

∂θ

∂s
+ uφ

∂φ

∂s

= ur ·
s

r
+ uθ ·

cos θ

r
+ uφ · 0.

This leaves us with

�3u = urr +
2

r
ur +

1

r2

[

uθθ + (cot θ )uθ +
1

sin2θ
uφφ

]

, (6)

which may also be written as

�3 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2sin2θ

∂2

∂φ2
. (7)

Finally, let’s look for the special harmonic functions in three dimensions
which don’t change under rotations, that is, which depend only on r. By (7)
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they satisfy the ODE

0 = �3u = urr +
2

r
ur .

So (r2ur )r = 0. It has the solutions r2ur = c1. That is, u = −c1r−1 + c2. This
important harmonic function

1

r
= (x2 + y2 + z2)

−1/2

is the analog of the special two-dimensional function log(x2 + y2)
1/2

found
before. Strictly speaking, neither function is finite at the origin. In electrostat-
ics the function u(x) = r−1 turns out to be the electrostatic potential when a
unit charge is placed at the origin. For further discussion, see Section 12.2.

EXERCISES

1. Show that a function which is a power series in the complex variable
x + iy must satisfy the Cauchy–Riemann equations and therefore
Laplace’s equation.

2. Find the solutions that depend only on r of the equation uxx + u yy +
uzz = k2u, where k is a positive constant. (Hint: Substitute u = v/r .)

3. Find the solutions that depend only on r of the equation uxx + u yy =
k2u, where k is a positive constant. (Hint: Look up Bessel’s differential
equation in [MF] or in Section 10.5.)

4. Solve uxx + u yy + uzz = 0 in the spherical shell 0 < a < r < b with the
boundary conditions u = A on r = a and u = B on r = b, where A and
B are constants. (Hint: Look for a solution depending only on r.)

5. Solve uxx + u yy = 1 in r < a with u(x, y) vanishing on r = a.

6. Solve uxx + u yy = 1 in the annulus a < r < b with u(x, y) vanishing on
both parts of the boundary r = a and r = b.

7. Solve uxx + u yy + uzz = 1 in the spherical shell a < r < b with
u(x, y, z) vanishing on both the inner and outer boundaries.

8. Solve uxx + u yy + uzz = 1 in the spherical shell a < r < b with u = 0
on r = a and ∂u/∂r = 0 on r = b. Then let a → 0 in your answer and
interpret the result.

9. A spherical shell with inner radius 1 and outer radius 2 has a steady-state
temperature distribution. Its inner boundary is held at 100◦C. Its outer
boundary satisfies ∂u/∂r = −γ < 0, where γ is a constant.
(a) Find the temperature. (Hint: The temperature depends only on the

radius.)
(b) What are the hottest and coldest temperatures?
(c) Can you choose γ so that the temperature on its outer boundary is

20◦C?
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10. Prove the uniqueness of the Dirichlet problem �u = f in D, u = g
on bdy D by the energy method. That is, after subtracting two solutions
w = u − v, multiply the Laplace equation for w by w itself and use the
divergence theorem.

11. Show that there is no solution of

�u = f in D,
∂u

∂n
= g on bdy D

in three dimensions, unless

∫∫∫

D

f dx dy dz =
∫∫

bdy(D)

g dS.

(Hint: Integrate the equation.) Also show the analogue in one and two
dimensions.

12. Check the validity of the maximum principle for the harmonic func-

tion (1 − x2 − y2)/(1 − 2x + x2 + y2) in the disk D = {x2 + y2 ≤ 1}.
Explain.

13. A function u(x) is subharmonic in D if �u ≥ 0 in D. Prove that its
maximum value is attained on bdy D. [Note that this is not true for the
minimum value.]

6.2 RECTANGLES AND CUBES

Special geometries can be solved by separating the variables. The general
procedure is the same as in Chapter 4.

(i) Look for separated solutions of the PDE.

(ii) Put in the homogeneous boundary conditions to get the eigenvalues.
This is the step that requires the special geometry.

(iii) Sum the series.

(iv) Put in the inhomogeneous initial or boundary conditions.

It is important to do it in this order: homogeneous BC first, inhomogeneous
BC last.

We begin with

�2u = uxx + u yy = 0 in D, (1)

where D is the rectangle {0 < x < a, 0 < y < b} on each of whose sides one
of the standard boundary conditions is prescribed (inhomogeneous Dirichlet,
Neumann, or Robin).
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Figure 1

Example 1.

Solve (1) with the boundary conditions indicated in Figure 1. If we call
the solution u with data (g, h, j, k), then u = u1 + u2 + u3 + u4 where
u1 has data (g, 0, 0, 0), u2 has data (0, h, 0, 0), and so on. For simplicity,
let’s assume that h = 0, j = 0, and k = 0, so that we have Figure 2. Now
we separate variables u(x, y) = X (x) · Y (y). We get

X ′′

X
+

Y ′′

Y
= 0.

Hence there is a constant λ such that X ′′ + λX = 0 for 0 ≤ x ≤ a
and Y ′′ − λY = 0 for 0 ≤ y ≤ b. Thus X (x) satisfies a homogeneous
one-dimensional problem which we well know how to solve: X (0) =
X ′(a) = 0. The solutions are

β2
n = λn =

(

n +
1

2

)2
π2

a2
(n = 0, 1, 2, 3, . . .) (2)

Xn(x) = sin
(n + 1

2
)πx

a
. (3)

Next we look at the y variable. We have

Y ′′ − λY = 0 with Y ′(0) + Y (0) = 0.

(We shall save the inhomogeneous BCs for the last step.) From the
previous part, we know that λ = λn > 0 for some n. The Y equation has
exponential solutions. As usual it is convenient to write them as

Y (y) = A cosh βn y + B sinh βn y.

Figure 2
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So 0 = Y ′(0) + Y (0) = Bβn + A. Without losing any information we
may pick B = −1, so that A = βn . Then

Y (y) = βn cosh βn y − sinh βn y. (4)

Because we’re in the rectangle, this function is bounded. Therefore, the
sum

u(x, y) =
∞

∑

n =0

An sin βnx (βn cosh βn y − sinhβn y) (5)

is a harmonic function in D that satisfies all three homogeneous BCs.
The remaining BC is u(x, b) = g(x). It requires that

g(x) =
∞

∑

n =0

An(βn cosh βnb − sinh βnb) · sin βnx

for 0 < x < a. This is simply a Fourier series in the eigenfunctions
sin βnx .

By Chapter 5, the coefficients are given by the formula

An =
2

a
(βn cosh βnb − sinh βnb)−1

∫ a

0

g(x) sin βnx dx . (6)

�

Example 2.

The same method works for a three-dimensional box {0 < x < a,
0 < y < b, 0 < z < c} with boundary conditions on the six sides. Take
Dirichlet conditions on a cube:

�3u = uxx + u yy + uzz = 0 in D

D = {0 < x < π, 0 < y < π, 0 < z < π}

u(π, y, z) = g(y, z)

u(0, y, z) = u(x, 0, z) = u(x, π, z) = u(x, y, 0) = u(x, y, π ) = 0.

To solve this problem we separate variables and use the five homoge-
neous boundary conditions:

u = X (x)Y (y)Z (z),
X ′′

X
+

Y ′′

Y
+

Z ′′

Z
= 0

X (0) = Y (0) = Z (0) = Y (π ) = Z (π ) = 0.
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Each quotient X ′′/X , Y ′′/Y , and Z ′′/Z must be a constant. In the familiar
way, we find

Y (y) = sin my (m = 1, 2, . . .)

and

Z (z) = sin nz (n = 1, 2, . . .),

so that

X ′′ = (m2 + n2)X, X (0) = 0.

Therefore,

X (x) = A sinh(
√

m2 + n2 x).

Summing up, our complete solution is

u(x, y, z) =
∞

∑

n=1

∞
∑

m=1

Amn sinh(
√

m2 + n2 x) sin my sin nz. (7)

Finally, we plug in our inhomogeneous condition at x = π:

g(y, z) =
∑ ∑

Amn sinh(
√

m2 + n2 π ) sin my sin nz.

This is a double Fourier sine series in the variables y and z! Its theory is
similar to that of the single series. In fact, the eigenfunctions {sin my ·
sin nz} are mutually orthogonal on the square {0 < y < π , 0 < z < π}
(see Exercise 2). Their normalizing constants are

∫ π

0

∫ π

0

(sin my sin nz)2 dy dz =
π2

4
.

Therefore,

Amn =
4

π2 sinh(
√

m2 + n2 π )

∫ π

0

∫ π

0

g(y, z) sin my sin nz dy dz. (8)

Hence the solutions can be expressed as the doubly infinite series (7)
with the coefficients Amn. The complete solution to Example 2 is (7) and
(8). With such a series, as with a double integral, one has to be careful
about the order of summation, although in most cases any order will
give the correct answer. �

EXERCISES

1. Solve uxx + uyy = 0 in the rectangle 0 < x < a, 0 < y < b with the
following boundary conditions:

ux = −a on x = 0 ux = 0 on x = a

u y = b on y = 0 u y = 0 on y = b.
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(Hint: Note that the necessary condition of Exercise 6.1.11 is satisfied. A
shortcut is to guess that the solution might be a quadratic polynomial in
x and y.)

2. Prove that the eigenfunctions {sin my sin nz} are orthogonal on the square
{0 < y < π , 0 < z < π}.

3. Find the harmonic function u(x, y) in the square D = {0 < x < π , 0 < y
< π} with the boundary conditions:

u y = 0 for y = 0 and for y = π, u = 0 for x = 0 and

u = cos2 y = 1
2
(1 + cos 2y) for x = π.

4. Find the harmonic function in the square {0 < x < 1, 0 < y < 1} with the
boundary conditions u(x, 0) = x, u(x, 1) = 0, ux(0, y) = 0, ux(1, y) = y2.

5. Solve Example 1 in the case b = 1, g(x) = h(x) = k(x) = 0 but j(x) an
arbitrary function.

6. Solve the following Neumann problem in the cube {0 < x < 1, 0 < y < 1,
0 < z < 1}: �u = 0 with uz(x, y, 1) = g(x, y) and homogeneous Neumann
conditions on the other five faces, where g(x, y) is an arbitrary function
with zero average.

7. (a) Find the harmonic function in the semi-infinite strip {0 ≤ x ≤ π ,
0 ≤ y < ∞} that satisfies the “boundary conditions”:

u(0, y) = u(π, y) = 0, u(x, 0) = h(x), lim
y→∞

u(x, y) = 0.

(b) What would go awry if we omitted the condition at infinity?

6.3 POISSON’S FORMULA

A much more interesting case is the Dirichlet problem for a circle. The ro-
tational invariance of � provides a hint that the circle is a natural shape for
harmonic functions.

Let’s consider the problem

uxx + u yy = 0 for x2 + y2 < a2 (1)

u = h(θ ) for x2 + y2 = a2 (2)

with radius a and any boundary data h(θ ).
Our method, naturally, is to separate variables in polar coordinates: u =

R(r) �(θ ) (see Figure 1). From (6.1.5) we can write

0 = uxx + u yy = urr +
1

r
ur +

1

r2
uθθ

= R′′� +
1

r
R′� +

1

r2
R�′′.
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Figure 1

Dividing by R� and multiplying by r2, we find that

�′′ + λ� = 0 (3)

r2R′′ + rR′ − λR = 0. (4)

These are ordinary differential equations, easily solved. What boundary con-
ditions do we associate with them?

For �(θ ) we naturally require periodic BCs:

�(θ + 2π ) = �(θ ) for −∞ < θ < ∞. (5)

Thus

λ = n2 and �(θ ) = A cos nθ + B sin nθ (n = 1, 2, . . .). (6)

There is also the solution λ = 0 with �(θ ) = A.
The equation for R is also easy to solve because it is of the Euler type

with solutions of the form R(r) = rα. Since λ = n2 it reduces to

α(α − 1)rα + αrα − n2rα = 0 (7)

whence α = ± n. Thus R(r) = Crn + Dr−n and we have the separated solutions

u =
(

Crn +
D

rn

)

(A cos nθ + B sin nθ ) (8)

for n = 1, 2, 3, . . . . In case n = 0, we need a second linearly independent
solution of (4) (besides R = constant). It is R = log r, as one learns in ODE
courses. So we also have the solutions

u = C + D log r. (9)

(They are the same ones we observed back at the beginning of the chapter.)
All of the solutions (8) and (9) we have found are harmonic functions in

the disk D, except that half of them are infinite at the origin (r = 0). But we
haven’t yet used any boundary condition at all in the r variable. The interval
is 0 < r < a. At r = 0 some of the solutions (r−n and log r) are infinite: We
reject them. The requirement that they are finite is the “boundary condition”
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at r = 0. Summing the remaining solutions, we have

u = 1
2

A0 +
∞

∑

n=1

rn(An cos nθ + Bn sin nθ ). (10)

Finally, we use the inhomogeneous BCs at r = a. Setting r = a in the
series above, we require that

h(θ ) = 1
2

A0 +
∞

∑

n=1

an(An cos nθ + Bn sin nθ ).

This is precisely the full Fourier series for h(θ ), so we know that

An =
1

πan

∫ 2π

0

h(φ) cos nφ dφ (11)

Bn =
1

πan

∫ 2π

0

h(φ) sin nφ dφ. (12)

Equations (10) to (12) constitute the full solution of our problem. �

Now comes an amazing fact. The series (10) can be summed explicitly!
In fact, let’s plug (11) and (12) directly into (10) to get

u(r, θ ) =
∫ 2π

0

h(φ)
dφ

2π

+
∞

∑

n=1

rn

πan

∫ 2π

0

h(φ){cos nφ cos nθ + sin nφ sin nθ} dφ

=
∫ 2π

0

h(φ)

{

1 + 2

∞
∑

n=1

( r

a

)n

cos n(θ − φ)

}

dφ

2π
.

The term in braces is exactly the series we summed before in Section 5.5 by
writing it as a geometric series of complex numbers; namely,

1 +
∞

∑

n=1

( r

a

)n

ein(θ−φ) +
∞

∑

n=1

( r

a

)n

e−in(θ−φ)

= 1 +
rei(θ−φ)

a − rei(θ−φ)
+

re−i(θ−φ)

a − re−i(θ−φ)

=
a2 − r2

a2 − 2ar cos(θ − φ) + r2
.



168 CHAPTER 6 HARMONIC FUNCTIONS

Figure 2

Therefore,

u(r, θ) = (a2 − r2)

∫ 2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2

dφ

2π
. (13)

This single formula (13), known as Poisson’s formula, replaces the triple of
formulas (10)−(12). It expresses any harmonic function inside a circle in
terms of its boundary values.

The Poisson formula can be written in a more geometric way as follows.
Write x = (x, y) as a point with polar coordinates (r, θ ) (see Figure 2). We
could also think of x as the vector from the origin 0 to the point (x, y). Let x′

be a point on the boundary.

x: polar coordinates (r, θ )

x′: polar coordinates (a, φ).

The origin and the points x and x′ form a triangle with sides r = |x|, a = |x′|,
and |x − x′|. By the law of cosines

|x − x′|2 = a2 + r2 − 2ar cos(θ − φ).

The arc length element on the circumference is ds′ = a dφ. Therefore, Pois-
son’s formula takes the alternative form

u(x) =
a2 − |x|2

2πa

∫

|x′|=a

u(x′)

|x − x′|2
ds′ (14)

for x ∈ D, where we write u(x′) = h(φ). This is a line integral with respect to
arc length ds′ = a dφ, since s′ = aφ for a circle. For instance, in electrostatics
this formula (14) expresses the value of the electric potential due to a given
distribution of charges on a cylinder that are uniform along the length of the
cylinder.
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A careful mathematical statement of Poisson’s formula is as follows. Its
proof is given below, just prior to the exercises.

Theorem 1. Let h(φ) = u(x′) be any continuous function on the circle
C = bdy D. Then the Poisson formula (13), or (14), provides the only harmonic
function in D for which

lim
x→x0

u(x) = h(x0) for all x0 ∈ C. (15)

This means that u(x) is a continuous function on D = D ∪ C . It is also dif-
ferentiable to all orders inside D.

The Poisson formula has several important consequences. The key one is
the following.

MEAN VALUE PROPERTY

Let u be a harmonic function in a disk D, continuous in its closure D. Then
the value of u at the center of D equals the average of u on its circumference.

Proof. Choose coordinates with the origin 0 at the center of the circle.
Put x = 0 in Poisson’s formula (14), or else put r = 0 in (13). Then

u(0) =
a2

2πa

∫

|x′|=a

u(x′)

a2
ds′.

This is the average of u on the circumference |x′| = a.

MAXIMUM PRINCIPLE

This was stated and partly proved in Section 6.1. Here is a complete proof of its
strong form. Let u(x) be harmonic in D. The maximum is attained somewhere

(by the continuity of u on D), say at xM ∈ D. We have to show that xM �∈ D
unless u ≡ constant. By definition of M, we know that

u(x) ≤ u(xM) = M for all x ∈ D.

We draw a circle around xM entirely contained in D (see Figure 3). By the
mean value property, u(xM) is equal to its average around the circumference.
Since the average is no greater than the maximum, we have the string of
inequalities

M = u(xM) = average on circle ≤ M.

Therefore, u(x) = M for all x on the circumference. This is true for any such
circle. So u(x) = M for all x in the diagonally shaded region (see Figure 3).
Now we repeat the argument with a different center. We can fill the whole
domain up with circles. In this way, using the assumption that D is connected,
we deduce that u(x) ≡ M throughout D. So u ≡ constant.
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DIFFERENTIABILITY

Let u be a harmonic function in any open set D of the plane. Then u(x) = u(x, y)
possesses all partial derivatives of all orders in D.

This means that ∂u/∂x, ∂u/∂y, ∂2u/∂x2, ∂2u/∂x∂y, ∂100u/∂x100, and so
on, exist automatically. Let’s show this first for the case where D is a disk with
its center at the origin. Look at Poisson’s formula in its second form (14). The
integrand is differentiable to all orders for x ∈ D. Note that x′ ∈ bdy D so that
x �= x′. By the theorem about differentiating integrals (Section A.3), we can
differentiate under the integral sign. So u(x) is differentiable to any order in
D.

Second, let D be any domain at all, and let x0 ∈ D. Let B be a disk contained
in D with center at x0. We just showed that u(x) is differentiable inside B, and
hence at x0. But x0 is an arbitrary point in D. So u is differentiable (to all
orders) at all points of D.

This differentiability property is similar to the one we saw in Section 3.5
for the one-dimensional diffusion equation, but of course it is not at all true
for the wave equation.

PROOF OF THE LIMIT (15)

We begin the proof by writing (13) in the form

u(r, θ ) =
∫ 2π

0

P(r, θ − φ) h(φ)
dφ

2π
(16)

for r < a, where

P(r, θ ) =
a2 − r2

a2 − 2ar cos θ + r2
= 1 + 2

∞
∑

n=1

( r

a

)n

cos nθ (17)

is the Poisson kernel. Note that P has the following three properties.

(i) P(r, θ) > 0 for r < a. This property follows from the observation
that a2 − 2ar cos θ + r2 ≥ a2 − 2ar + r2 = (a − r )2 > 0.
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(ii)

∫ 2π

0

P(r, θ )
dθ

2π
= 1.

This property follows from the second part of (17) because
∫ 2π

0
cos nθ dθ = 0 for n = 1, 2, . . . .

(iii) P(r, θ ) is a harmonic function inside the circle. This property follows
from the fact that each term (r/a)n cos nθ in the series is harmonic
and therefore so is the sum.

Now we can differentiate under the integral sign (as in Appendix A.3) to
get

urr +
1

r
ur +

1

r2
uθθ =

∫ 2π

0

(

Prr +
1

r
Pr +

1

r2
Pθθ

)

(r, θ − φ) h(φ)
dφ

2π

=
∫ 2π

0

0 · h(φ) dφ = 0

for r < a. So u is harmonic in D.
So it remains to prove (15). To do that, fix an angle θ0 and consider a

radius r near a. Then we will estimate the difference

u(r, θ0) − h(θ0) =
∫ 2π

0

P(r, θ0 − φ)[h(φ) − h(θ0)]
dφ

2π
(18)

by Property (ii) of P. But P(r, θ ) is concentrated near θ = 0. This is true in
the precise sense that, for δ ≤ θ ≤ 2π − δ,

|P(r, θ )| =
a2 − r2

a2 − 2ar cos θ + r2
=

a2 − r2

(a − r )2 + 4ar sin2(θ/2)
< ǫ (19)

for r sufficiently close to a. Precisely, for each (small) δ > 0 and each (small)
ǫ > 0, (19) is true for r sufficiently close to a. Now from Property (i), (18),
and (19), we have

|u(r, θ0) − h(θ0)| ≤
∫ θ0+δ

θ0−δ

P(r, θ0 − φ) ǫ
dφ

2π
+ ǫ

∫

|φ−θ0|>δ

|h(φ) − h(θ0)|
dφ

2π

(20)

for r sufficiently close to a. The ǫ in the first integral came from the continuity
of h. In fact, there is some δ > 0 such that |h(φ) − h(θ0)| < ǫ for |φ − θ0| < δ.
Since the function |h| ≤ H for some constant H, and in view of Property (ii),
we deduce from (20) that

|u(r, θ0) − h(θ0)| ≤ (1 + 2H )ǫ

provided r is sufficiently close to a. This is relation (15).
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EXERCISES

1. Suppose that u is a harmonic function in the disk D = {r < 2} and that u =
3 sin 2θ + 1 for r = 2. Without finding the solution, answer the following
questions.

(a) Find the maximum value of u in D.
(b) Calculate the value of u at the origin.

2. Solve uxx + u yy = 0 in the disk {r < a} with the boundary condition

u = 1 + 3 sin θ on r = a.

3. Same for the boundary condition u = sin3 θ . (Hint: Use the identity
sin 3θ = 3 sin θ − 4 sin3θ .)

4. Show that P(r, θ ) is a harmonic function in D by using polar coordinates.
That is, use (6.1.5) on the first expression in (17).

6.4 CIRCLES, WEDGES, AND ANNULI

The technique of separating variables in polar coordinates works for domains
whose boundaries are made up of concentric circles and rays. The purpose of
this section is to present several examples of this type. In each case we get the
expansion as an infinite series. (But summing the series to get a Poisson-type
formula is more difficult and works only in special cases.) The geometries we
treat here are

A wedge: {0 < θ < θ0, 0 < r < a}
An annulus: {0 < a < r < b}
The exterior of a circle: {a < r < ∞}

We could do Dirichlet, Neumann, or Robin boundary conditions. This leaves
us with a lot of possible examples!

Example 1. The Wedge

Let us take the wedge with three sides θ = 0, θ = β, and r = a and solve
the Laplace equation with the homogeneous Dirichlet condition on the
straight sides and the inhomogeneous Neumann condition on the curved
side (see Figure 1). That is, using the notation u = u(r, θ ), the BCs are

u(r, 0) = 0 = u(r, β),
∂u

∂r
(a, θ ) = h(θ ). (1)

The separation-of-variables technique works just as for the circle,
namely,

�′′ + λ� = 0, r2R′′ + rR′ − λR = 0.
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So the homogeneous conditions lead to

�′′ + λ� = 0, �(0) = �(β) = 0. (2)

This is our standard eigenvalue problem, which has the solutions

λ =
(

nπ

β

)2

, �(θ ) = sin
nπθ

β
(3)

As in Section 6.3, the radial equation

r2R′′ + rR′ − λR = 0 (4)

is an ODE with the solutions R(r ) = rα, where α2 − λ = 0 or α =
±

√
λ = ±nπ/β. The negative exponent is rejected again because we

are looking for a solution u(r, θ ) that is continuous in the wedge as well
as its boundary: the function r−nπ/β is infinite at the origin (which is a
boundary point of the wedge). Thus we end up with the series

u(r, θ ) =
∞

∑

n=1

An rnπ/β sin
nπθ

β
. (5)

Finally, the inhomogeneous boundary condition requires that

h(θ ) =
∞

∑

n=1

An

nπ

β
a−1+nπ/β sin

nπθ

β
.

This is just a Fourier sine series in the interval [0, β], so its coefficients
are given by the formula

An = a1−nπ/β 2

nπ

∫ β

0

h(θ ) sin
nπθ

β
dθ. (6)

The complete solution is given by (5) and (6). �
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Example 2. The Annulus

The Dirichlet problem for an annulus (see Figure 2) is

uxx + u yy = 0 in 0 < a2 < x2 + y2 < b2

u = g(θ ) for x2 + y2 = a2

u = h(θ ) for x2 + y2 = b2

The separated solutions are just the same as for a circle except that
we don’t throw out the functions r−n and log r, as these functions are
perfectly finite within the annulus. So the solution is

u(r, θ ) = 1
2
(C0 + D0 log r ) +

∞
∑

n=1

(Cnrn + Dnr−n) cos nθ

+ (Anrn + Bnr−n) sin nθ.

(7)

The coefficients are determined by setting r = a and r = b (see Exercise
3). �

Example 3. The Exterior of a Circle

The Dirichlet problem for the exterior of a circle (see Figure 3) is

uxx + u yy = 0 for x2 + y2 > a2

u = h(θ ) for x2 + y2 = a2

u bounded as x2 + y2 → ∞.

We follow the same reasoning as in the interior case. But now, instead
of finiteness at the origin, we have imposed boundedness at infinity.
Therefore, r+n is excluded and r−n is retained. So we have

u(r, θ ) = 1
2

A0 +
∞

∑

n=1

r−n(An cos nθ + Bn sin nθ ). (8)
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The boundary condition means

h(θ ) = 1
2

A0 +
∑

a−n(An cos nθ + Bn sin nθ ),

so that

An =
an

π

∫ π

−π

h(θ ) cos nθ dθ

and

Bn =
an

π

∫ π

−π

h(θ ) sin nθ dθ.

This is the complete solution but it is one of the rare cases when the
series can actually be summed. Comparing it with the interior case, we
see that the only difference between the two sets of formulas is that r
and a are replaced by r−1 and a−1. Therefore, we get Poisson’s formula
with only this alteration. The result can be written as

u(r, θ ) = (r2 − a2)

∫ 2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2

dφ

2π
(9)

for r > a. �

These three examples illustrate the technique of separating variables in
polar coordinates. A number of other examples are given in the exercises.
What is the most general domain that can be treated by this method?

EXERCISES

1. Solve uxx + u yy = 0 in the exterior {r > a} of a disk, with the boundary
condition u = 1 + 3 sin θ on r = a, and the condition at infinity that u
be bounded as r → ∞.
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2. Solve uxx + u yy = 0 in the disk r < a with the boundary condition

∂u

∂r
− hu = f (θ ),

where f (θ ) is an arbitrary function. Write the answer in terms of the
Fourier coefficients of f (θ ).

3. Determine the coefficients in the annulus problem of the text.

4. Derive Poisson’s formula (9) for the exterior of a circle.

5. (a) Find the steady-state temperature distribution inside an annular
plate {1 < r < 2}, whose outer edge (r = 2) is insulated, and on
whose inner edge (r = 1) the temperature is maintained as sin2 θ .
(Find explicitly all the coefficients, etc.)

(b) Same, except u = 0 on the outer edge.

6. Find the harmonic function u in the semidisk {r < 1, 0 < θ < π} with
u vanishing on the diameter (θ = 0, π ) and

u = π sin θ − sin 2θ on r = 1.

7. Solve the problem uxx + u yy = 0 in D, with u = 0 on the two straight
sides, and u = h(θ ) on the arc, where D is the wedge of Figure 1, that
is, a sector of angle β cut out of a disk of radius a. Write the solution as
a series, but don’t attempt to sum it.

8. An annular plate with inner radius a and outer radius b is held at tem-
perature B at its outer boundary and satisfies the boundary condition
∂u/∂r = A at its inner boundary, where A and B are constants. Find the
temperature if it is at a steady state. (Hint: It satisfies the two-dimensional
Laplace equation and depends only on r.)

9. Solve uxx + u yy = 0 in the wedge r < a, 0 < θ < β with the BCs

u = θ on r = a, u = 0 on θ = 0, and u = β on θ = β.

(Hint: Look for a function independent of r.)

10. Solve uxx + u yy = 0 in the quarter-disk {x2 + y2 < a2, x > 0, y > 0}
with the following BCs:

u = 0 on x = 0 and on y = 0 and
∂u

∂r
= 1 on r = a.

Write the answer as an infinite series and write the first two nonzero
terms explicitly.

11. Prove the uniqueness of the Robin problem

�u = f in D,
∂u

∂n
+ au = h on bdy D,

where D is any domain in three dimensions and where a is a positive
constant.



6.4 CIRCLES, WEDGES, AND ANNULI 177

12. (a) Prove the following still stronger form of the maximum principle,
called the Hopf form of the maximum principle. If u(x) is a non-
constant harmonic function in a connected plane domain D with
a smooth boundary that has a maximum at x0 (necessarily on the
boundary by the strong maximum principle), then ∂u/∂n > 0 at x0

where n is the unit outward normal vector. (This is difficult: see
[PW] or [Ev].)

(b) Use part (a) to deduce the uniqueness of the Neumann problem in
a connected domain, up to constants.

13. Solve uxx + u yy = 0 in the region {α < θ < β, a < r < b} with the
boundary conditions u = 0 on the two sides θ = α and θ = β, u = g(θ )
on the arc r = a, and u = h(θ ) on the arc r = b.

14. Answer the last question in the text.


