

Congruent Figures

- Same shape AND same size
 All corresponding angles congruent
 - All corresponding sides congruent
- 5 shortcuts for congruent triangles...

Proofs fill-in-the-word-bank (these are some of the "reasons" used in proofs)

Segments and Angles (textbook 1-5, 1-6, 1-7, 2-5):

Segment Addition Postulate		Defin midp	ition of oint	
Angle Addition Postulate		Defin bisec	ition of tor	
Definition of supplementary angles			nition of Diementary PS	
Congruent Supplements Theorem	If two angles are of the same angle (or of congruent angles), then the two angles are congruent.		ruent plements rem	If two angles are complements of the same angle (or of congruent angles), then the two angles are
Definition of perpendicular lines		?		All right angles are congruent
Definition of linear pair		?		Linear pair → supplementary
Definition of vertical angles		Vertio Theo	cal Angles rem	Vertical angles are

Baby Proofs / Reasoning in Algebra (textbook 2-4):

Properties of <u>EQUALITY</u> : Addition Prop. Subtraction Prop. Multiplication Prop Division Prop. Reflective Prop. Symmetric Prop. Substitution Prop. Distributive Prop.			Properties of <u>CONGRUENCE</u> : Reflective Prop. Symmetric Prop. Transitive Prop.	$\angle A \cong$ If $\angle A \cong \angle B$, then $\angle B \cong$ If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong$
			Simplify	
Parallel Lines and A	ngle Relationships (textbook 3-1,	3-2,	3-3):	
	lf a latence at a	1		

	rigie Relationships (textbook 3-1,	J-Z,	J=J).	
Corresponding Angles Postulate	If a intersects two parallel lines, then corresponding angles are 		Converse of the Corresponding Angles Postulate	If two lines and a transversal form angles that are congruent, then the two lines are parallel.
Alternate Interior Angles Theorem	If a transversal intersects two lines, then angles are congruent.		Converse of the Alternate Interior Angles Theorem	If two and a transversal form alternate interior angles that are, then the two lines are parallel.
Same-Side Interior Angles Theorem	If a transversal intersects two parallel lines, then same-side interior angles are		Converse of the Same-Side Interior Angles Theorem	If two lines and a transversal form same-side interior angles that are supplementary, then the two lines are

Alternate Exterior Angles Theorem	If a transversal intersects two parallel lines, then exterior angles are congruent.
Same-Side	If a transversal
Exterior Angles	two parallel lines, then
Theorem	angles are supplementary.

Theorem 3-9	If two lines are parallel to the same, then they are to each other.	
Theorem 3-10	In a plane, if two lines are perpendicular to the line, then they are to each other.	

Converse of the Alternate Exterior Angles Theorem	If two lines and a form angles that are congruent, then the two lines are parallel.
Converse of the Same-Side Exterior Angles Theorem	If two lines and a transversal form same-side exterior angles that are, then the two lines are parallel.

Theorem 3-11	In a plane, if a line is	
	perpendicular to one of two	
	lines, then it is also	
	to the other.	

Triangles and Polygons (textbook 3-4, 3-5, 4-5):

Triangle Angle- Sum Theorem	The sum of the measures of the angles of a is	Triangle Exterior- Angle Theorem	The measure of each angle of a triangle equals the of the measures of its two remote interior angles.
Definition of isosceles triangle		?	Equilateral triangle ↔ equiangular triangle
Isosceles triangle theorem		Converse of the isosceles triangle theorem	
Polygon Angle- Sum Theorem		Polygon Exterior- Angle Theorem	

Congruent Triangles (textbook 4-1, 4-2, 4-3, 4-4, 4-6, 4-7):

SSS ≅		SAS ≅
ASA ≅		AAS ≅
HL ≅		CPCTC

SAS ≅	
AAS ≅	
CPCTC	

Similar Triangles (textbook 7-3):

SSS ~	
AA ~	

SAS ~	
-------	--

Geometry

Solving Congruent Triangles and CPCTC

B) $AC \cong DF$, $BC \cong EF$, $BA \cong DE$

C) $AB \cong DF$, $AC \cong DE$, $\angle C \cong \angle E$

D) $\overline{AB} \cong \overline{DE}$, $\overline{AC} \cong \overline{DF}$, $\angle A \cong \angle D$

Name:		
Period:	Date:	

C) \overline{WZ} and \overline{ZY}

is∠

What is the included side between $\angle W$ and $\angle Y$?

Pg 201 #29-31. Pg 208 #2,6-7,26-27,38. Pg
222 #2-10 evens. Pg 238 #10, 13-14, 21.

<u>Pg 201</u> :	Pg 222:
29. B	2.
30. x = 15, t = 2	4. a) SSS. b) CPCTC.
31. 5	6.
<u>Pg 208</u> :	8.
2.	10.
 No, either PQ ≅ QS is needed for SSS, or ∠T ≅ ∠R for SAS. Yes, since AC ≅ AC by the Reflexive Prop. Of Congr., the ∆s are ≅ by SAS. 26. 27. 38. 	Pg 238: 10. x = 3, y = 2 13. 14. 21. * If blank, see next slide for the proof.

Pg 216 #12-15, 20-22. **Pg 243** #4, 5, 8, 10, 22.

<u>Pg 216</u> :	<u>Pg 244</u> :
12.	4. Segment PQ
13. $\triangle PMO \cong \triangle NMO$; ASA	5. ∠B
14. $\Delta UTS \cong \Delta RST$; AAS	8.
15. $\Delta ZVY \cong \Delta WVY$; AAS	10.
20.	22.
21.	
22.	* If blank, see next slide the for proof.

Pg 216 and 243 continued... Your answers should be two-column proofs or flowchart proofs. To save space, below are the **reasons** only (not the statements). Pg 216: Pa 244: 12. Given (x3). Def of 8. Given. Given. Reflexive perpendicular lines (x2). Prop of \cong . SSS. All right angles are \cong (x2). 10. Given. Given. Reflexive Vertical angles are \cong . Prop of \cong . ASA. CPCTC. AAS. Reflexive Prop of \cong . SAS. 20. Given, Given, Vertical 22. Given. Given. Given. angles are \cong . AAS. Reflexive Prop of \cong . HL. 21. Given. Given. CPCTC. CPCTC. Vertical Alternative Interior Angles angles are \cong . AAS. Theorem. Reflexive Prop CPCTC. of \simeq . AAS. 22. Given (x3). Corresponding Angles Postulate. ASĂ.

1

Student Name: _____

Date:

What's the Same?

For each triangle below, determine its congruent triangle from the above triangles. Circle the correct triangle congruence postulate that justifies your choice.

Communicating About Mathematics

Could you use a different postulate to prove triangle congruence in problem 1? Justify your reponse.

Triangles: Congruent or Not Congruent?

Special Segments in Triangles

Equations	of Lines	
Lquations	of Lines	

Name_____ Date_____Period ____

There are *four* special segments that we can draw and use in any type of triangle. We can write the equation for three of them. Here are examples for each of the *three*:

Given: A(-4, 1), B(2, 5), and C (4, -3)			
Special Segment	Description	<u>Given Information</u>	Equation
Median	Goes through the <i>midpoint</i> of a side and connects to the opposite <i>vertex</i>	Point C (4, -3) Midpoint of side AB (,)	Write the equation of the median to side AB. (Use the two points to find the slope, then plug into point-slope form.)
Altitude	Must be perpendicular to a side, and go through the opposite vertex	Point C (4, -3) Slope Slope of side AB = Slope of Altitude =	Write the equation of the altitude to side AB. (Use the point-slope form of the equation of the line.)
Perpendicular Bisector	Goes through the <i>midpoint</i> of a side, and is <i>perpendicular</i> to the side. (does <i>not</i> have to go through the opposite vertex)	Point (midpoint of side AB) (,) Slope Slope of side AB = Slope of perpendicular bisector =	Write the equation of the perpendicular bisector of side AB. (Use point-slope form of the equation.)

Name	
Date	Period

Draw the special segments on the triangles below. Include all necessary markings!

Congruent Triangles on the Coordinate Plane

Name: ______ Date: ______ Period: _____

We know that triangles are congruent if corresponding parts are congruent (CPCTC). We have also learned that triangles can be determined to be congruent with less information, namely using SSS, SAS, ASA, AAS, and HL theorems. Determining if two triangles on the coordinate plane are congruent becomes more difficult, because, at this point in our studies, the only angle that we can truly prove its measure is the right, or 90°, angle. Thus we are limited to using only SSS and SAS theorems to test for congruency. Remember this as you complete the following.

In your group, discuss the following questions. Come to an agreement on each question and then record your answers independently.

1. How can you determine if two sides of a triangle form a right angle?		
2. What is the slope formula?		
3. Describe another method for finding slope of a line or segment on the coordinate plane.		
4. What is the distance formula?		
5. Is there another method for finding distance? If so, describe it		

Use the above answers to complete the questions below. Show your work below or on a separate sheet of paper.

Ι.	Given: △ABC with A(0,5) B(-3,7) C(-5, 4) △XYZ with X(4,0) Y(7,2) Z(6,-3)	
a.	$AB = _$ $BC = _ \sqrt{13}$ $CA = _$	6
b.	$XY = \sqrt{13}$ $YZ = $ $ZX = $	3
d.	Are the triangles congruent? yes/no If so, write the congruency statement By which theorem?	-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -2 -3 -4
f.	$Slope_{AB} = $ $Slope_{BC} = $ $Slope_{CA} = $	-5
g.	Slope _{XY} = Slope _{YZ} = Slope _{ZX} =	8
h.	Is ∆ABC a right triangle? ∆XYZ? Justify your answer	_
i.	By what other theorem are the two triangles congruent?	

II.	Given: △ABC with A(1,1) B(2, 5) C(6,5) △XYZ with X(-8,-1) Y(-4,-2) Z(-4,-6)	+9 +9 +8 -7
	a. Are the two triangles congruent? yes/n	D
	b. If so, by what theorem?	
	c. Justify your answer.	• -9 -8 -7 -6 -5 -4 -3 -2 -1 <u>1 2 3 4 5 6 7 8 9</u> x
		-5 -5 -6 -7 -7 -8
	d. If so, write the congruency statement.	
III.	Given: $\triangle ABC$ with A(-1,6) B(3, 5) C(10,8) $\triangle XYZ$ with X(-5,-7) Y(2,-4) Z(6, -5)	
	a. Are the two triangles congruent? yes/n	D
	b. If so, by what theorem?	
	c. Justify your answer.	Y - 9 - 9 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 1 - 2 - 3 4 - 5 6 7 8 9 X - 2
	d. If so, write the congruency statement.	
IV.	Given: $\triangle ABC$ with A(-8,1) B(-3,6) C(-7,8) $\triangle XYZ$ with X(3,3) Y(7,-2) Z(6,5)	9 9 8 7 6
	a. Are the two triangles congruent? yes/n	} ∳∲∲∲∲∲∲∲
	b. If so, by what theorem?	
	c. Justify your answer.	-9-8-7-6-5-4-3-2-1 -2 -3 -3 -5 -5 -5 -6 -5-4-3-2-1 -1 -2 -2 -3 -3 -3 -3 -3 -4 -5 -5 -6 -7 -8 -9 -8 -7 -8 -9 -8 -7 -8 -9 -8 -7 -8 -9 -8 -7 -8 -9 -8 -7 -8 -9 -8 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3
	d. If so, write the congruency statement.	
V.	For the following, find the missing coordinates to make ΔTE If there is more than one answer, give all possibilities.	$X \cong \Delta LHN$
	a. T(0,2) E(0,8) X(6,4) A(-1,1) G(-1,-5) S(? ?)	
	b. T(? ?) E(-7,-3) X(-5, -5) A(-3, 5) G(-9,7) S(-7,9)	-9-8-7-6-5-4-3-2-1 -2 -3 -4
	c. T(5,5) E(8,3) X(10,-2) A(1,-9) G(? ?) S(6,-2)	

12. Is there enough information to conclude that the two triangles are congruent? If so, what is a correct congruence statement?

- a. Yes; $\triangle CAB \cong \triangle DAC$.
- b. Yes; $\triangle ACB \cong \triangle ACD$.
- c. Yes; $\triangle ABC \cong \triangle ACD$.
- d. No, the triangles cannot be proven congruent.
- 13. **Given:** *P* is the midpoint of \overline{TQ} and \overline{RS} .

Prove: $\triangle TPR \cong \triangle QPS$

Complete the proof.

Statements	Reasons
1. <i>P</i> is the midpoint of \overline{TQ} and \overline{RS} .	1. Given
2. $\overline{TP} \cong \overline{QP}, \overline{RP} \cong \overline{SP}$	2. [1]
3. [2]	3. Vertical Angles Theorem
$4. \Delta TPR \cong \Delta QPS$	4. [3]

- a. [1]. Definition of midpoint
 [2] ∠TPR ≅ ∠QPS
 [3] SAS
 b. [1] Definition of midpoint
- [2] $\overline{RT} \cong \overline{SQ}$ [3] SSS
- c. [1] Definition of midpoint
 [2] ∠PRT ≅ ∠PSQ
 [3] SAS
 d. [1] Definition of midpoint
- $[2] \angle TPR \cong \angle QPS$ [3] SSS
- 14. Based on the given information, what can you conclude, and why?

a. $\triangle HIJ \cong \triangle LKJ$ by ASA b. $\triangle HIJ \cong \triangle JLK$ by SAS

- c. $\triangle HIJ \cong \triangle JLK$ by ASA
- d. $\Delta HIJ \cong \Delta LKJ$ by SAS

- a. $\overline{AC} \cong \overline{DC}$ is given. $\angle CAB \cong \angle CDE$ because both are right angles. No other congruence relationships can be determined, so ASA cannot be applied.
 - b. $\overline{AC} \cong \overline{DC}$ is given. $\angle CAB \cong \angle CDE$ because both are right angles. By the Adjacent Angles Theorem, $\angle ACB \cong \angle DCE$. Therefore, $\triangle CBA \cong \triangle CED$ by ASA.
 - c. $\overline{AC} \cong \overline{DC}$ is given. $\angle CAB \cong \angle CDE$ because both are right angles. By the Vertical Angles Theorem, $\angle ACB \cong \angle DCE$. Therefore, $\triangle CBA \cong \triangle CED$ by ASA.
 - d. $AC \cong DC$ is given. $\angle CAB \cong \angle CDE$ because both are right angles. By the Vertical Angles Theorem, $\angle ACB \cong \angle DCE$. Therefore, $\triangle CBA \cong \triangle CED$ by SAS.

