

Congruent Figures

- Same shape AND same size
- All corresponding angles congruent
- All corresponding sides congruent
- 5 shortcuts for congruent triangles...

Use the given diagram and statement to prove that $\triangle \mathrm{ADB} \cong \Delta$ \qquad -.

$\overline{\mathrm{BD}}$ is the perpendicular bisector of $\overline{\mathrm{AC}}$

Use the given diagram and statement to prove that $\triangle \mathrm{EFG} \cong \Delta$ \qquad .

G is the midpoint of $\overline{\mathrm{El}}$
$\overline{\mathrm{EF}} \| \overline{\mathrm{H}}$
\qquad
\qquad
Proofs fill-in-the-word-bank (these are some of the "reasons" used in proofs)
Segments and Angles (textbook 1-5, 1-6, 1-7, 2-5):

Segment Addition Postulate	
Angle Addition Postulate	
Definition of supplementary angles	
Congruent Supplements Theorem	If two angles are ------_--- of the same angle (or of congruent angles), then the two angles are congruent.
Definition of perpendicular lines	
Definition of linear pair	
Definition of vertical angles	

Definition of midpoint	
Definition of bisector	
Definition of complementary angles	All right angles are congruent
Congruent Complements Theorem	If two angles are complements of the same angle (or of congruent angles), then the two angles are _-a_-
?	Linear pair \rightarrow supplementary
?	Vertical angles are _----------
Vertical Angles Theorem	

Baby Proofs / Reasoning in Algebra (textbook 2-4):

Properties of	
EQUALITY:	
Addition Prop.	
Subtraction Prop.	
Multiplication Prop	
Division Prop.	
Reflective Prop.	
Symmetric Prop.	
Transitive Prop.	
Substitution Prop.	
Distributive Prop.	

Properties of CONGRUENCE:	
Reflective Prop.	$\angle A \cong \ldots$
Symmetric Prop.	If $\angle A \cong \angle B$, then $\angle B \cong$ _-_-_.
Transitive Prop.	If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \ldots .$.
Simplify	

Parallel Lines and Angle Relationships (textbook 3-1, 3-2, 3-3):

Corresponding Angles Postulate	If a \qquad intersects two parallel lines, then corresponding angles are
Alternate Interior Angles Theorem	If a transversal intersects two \qquad lines, then \qquad angles are congruent.
Same-Side Interior Angles Theorem	If a transversal intersects two parallel lines, then same-side interior angles are

Converse of the Corresponding Angles Postulate	If two lines and a transversal form angles that are congruent, then the two lines are parallel.
Converse of the	
Alternate Interior Angles Theorem	If two and a transversal form alternate interior angles that are two lines are parallel.
Converse of the Same-Side Interior Angles Theorem	If two lines and a transversal form same-side interior angles that are supplementary, then the two lines are

Alternate Exterior Angles Theorem	If a transversal intersects two parallel lines, then are congruent.			
axior angles		$	$	Same-Side
:---				
Exterior Angles				
Theorem	\quad	two parallel lines, then		
:---				
angles are supplementary.				

Theorem 3-9	If two lines are parallel to the same _-___-_ then they are -_-_-_-_ to each other.
Theorem 3-10	In a plane, if two lines are perpendicular to the -___ line, then they are to each other.

Triangles and Polygons (textbook 3-4, 3-5, 4-5):

Triangle Angle- Sum Theorem	The sum of the measures of the angles of a -__-_-_
Definition of isosceles triangle	
Isosceles triangle theorem	
Polygon Angle- Sum Theorem	

Converse of the Alternate Exterior Angles Theorem	If two lines and a form angles that are congruent, then the two lines are parallel.
Converse of the Same-Side Exterior	If two lines and a transversal form same-side exterior angles that are Angles Theorem
two lines are parallel.	

Theorem 3-11	In a plane, if a line is perpendicular to one of two $-\quad$ lo_-_-_ to the other.

Triangle Exterior- Angle Theorem	The measure of each _angle of a triangle equals the__ of the measures of its two remote interior angles.
$?$	Equilateral triangle \leftrightarrow equiangular triangle
Converse of the isosceles triangle theorem	
Polygon Exterior- Angle Theorem	

Congruent Triangles (textbook 4-1, 4-2, 4-3, 4-4, 4-6, 4-7):

$\mathrm{SSS} \cong$	
$\mathrm{ASA} \cong$	
$\mathrm{HL} \cong$	

$S A S \cong$	
$A A S \cong$	
CPCTC	

Similar Triangles (textbook 7-3):

SSS ~	
AA ~	

SAS \sim	

Geometry
Solving Congruent Triangles and CPCTC

Name:
Period: \qquad Date: \qquad

For each of the triangles, state how the two triangles are congruent. Then solve for the missing variable.
1.

$\triangle A B C \cong \Delta$ \qquad by \qquad .

Given: $\overline{A C}=3 x, \overline{A B}=-3 y+20, \overline{D F}=x+6$, $\overline{F E}=2 y-10$
$x=$ \qquad $y=$ \qquad

$\Delta K D R \cong \Delta$ \qquad by \qquad .
Then, $\overline{K R} \cong$ \qquad by \qquad .

Given: $\overline{K D}=2 x+3 y, \overline{K R}=-2 x+5 y, \overline{M P}=11$,

$$
\overline{M O}=13
$$

$$
x=
$$

\qquad
\qquad
2.

$\Delta M N P \cong \Delta$ \qquad by \qquad .

Given: $\overline{M N}=2 x+10, \overline{O P}=40, \overline{M P}=50$,

$$
\overline{N O}=7 y-20
$$

$x=$ \qquad $y=$ \qquad
4.
$\Delta R B M \cong \Delta$ \qquad by \qquad
Then, $\overline{R B} \cong$ \qquad by and $\overline{R M} \cong$ \qquad by \qquad
Given: $\overline{R B}=y, \overline{B W}=3 x+2$,

$$
\begin{aligned}
& \overline{R M}=x+2 y, \\
& \overline{M W}=11
\end{aligned}
$$

$$
x=
$$

\qquad $y=$ \qquad

\qquad
5. Which of the following sets of information does not allow you to conclude that $\triangle A B C \cong \triangle D E F$?
A) $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}, \angle B \cong \angle E$
B) $\overline{A C} \cong \overline{D F}, \overline{B C} \cong \overline{E F}, \overline{B A} \cong \overline{D E}$
C) $\overline{A B} \cong \overline{D F}, \overline{A C} \cong \overline{D E}, \angle C \cong \angle E$
D) $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}, \angle A \cong \angle D$
6. Use the diagram to name the included angle between the given pair of sides.
A) $\overline{X Y}$ and $\overline{Y W}$ is \angle \qquad
B) $\overline{Z W}$ and $\overline{Y W}$ is \angle \qquad
C) $\overline{W Z}$ and $\overline{Z Y} \quad$ is \angle \qquad
What is the included side between $\angle \mathrm{W}$ and $\angle \mathrm{Y}$?

$\Delta K D R \cong \Delta$ \qquad by \qquad .
Then, $\overline{K R} \cong$ \qquad by \qquad .

Given: $\overline{K D}=x+y, \overline{K R}=-2 x+y, \overline{M P}=1$,

$$
\overline{M O}=4
$$

$$
x=
$$

$$
y=
$$

$$
=
$$

9. Decide whether enough information is given to prove that the triangles are congruent using SAS Congruence Postulate. If not, state the missing information.

10. Are the triangles congruent? If so, give the congruence statement and postulate.
If not, what other information is needed to prove the triangles congruent by SSS?

ASA?
SAS?
HL?

12. Which triangle congruence can you prove, then use to prove that $\angle F E D \cong \angle A B F$?
a.) $\triangle A B E \cong \triangle A B F$
b.) $\triangle A E D \cong \triangle A B D$
c.) $\triangle A C D \cong \triangle A D F$
d.) $\triangle A E C \cong \triangle A B D$
by \qquad .
$\Delta R B W \cong \Delta$ \qquad

Then, $\overline{R B} \cong$ \qquad by \qquad .

Given: $\overline{R B}=3 x-y, \overline{R W}=6, \overline{M P}=30$,

$$
\overline{M O}=-3 x+7 y
$$

$x=$ $y=$
10. Suppose $\triangle A B C \cong \triangle E F D, \triangle E F D \cong \triangle G I H$, $m \angle A=90^{\circ}$, and $m \angle F=20^{\circ}$. What is $m \angle H$?
13. Use the graph at the right.
a.) Show that $\angle C A D \cong \angle A C B$. Explain your reasoning.
b.) Show that $\angle A C D \cong \angle C A B$. Explain your reasoning.
c.) Show that $\triangle A B C \cong \triangle C D A$. Explain your reasoning.

Pg 201 \#29-31. Pg 208 \#2,6-7,26-27,38. Pg 222 \#2-10 evens. Pg 238 \#10, 13-14, 21.

```
Pg 201:
29. B
30. }x=15,t=
31. 5
Pg 208:
2.
6. No, either PQ\congQS is needed
    for SSS, or }\angle\textrm{T}\cong\angleR\mathrm{ for SAS.
7. Yes, since AC\congAC by the
    Reflexive Prop. Of Congr., the
    s are \cong by SAS
26.
27.
38. * If blank, see next slide for the proof.
```

Pg 201, 208, 222, 238 continued...
Your answers should be two-column proofs or flowchart proofs. To save space below are the reasons only (not the statements). The reasons don't need to be in the same order, except that "CPCTC" should be last and the congruence theorem should be next-to-last. Be careful when writing statements though, especially with the order of vertices in the congruence statements and with vertical angles.

208

2. Given. Given. Given. Def of midpoint. SSS
3. Given. Given. Def of angle
bisector. Reflexive Prop of \cong. SAS
4. Given. Def of bisector. Def of SAS.
5. Given. Given. Alternate Interior Angles Theorem. Reflexive Prop Angles The
of \cong. SAS.

Pg 222:
2. Given. Given. Reflexive Prop of \cong.

ASA. CPCTC.
6. Given. Given. Reflexive Prop of \cong. SAS. CPCTC.

Pg 222:
8. Given. Given. Def of angle bisector Reflexive Prop of \cong. SAS. CPCTC
10. Given. Given. Def of perpendicular lines. All right angles are \cong. Def of angle СРСТС.

Pg 238:
13. Given (x4). Def of perpendicular lines (x2). Def of midpoint. HL
14. Given (x3). Def of perpendicular lines. Def of right angle. Alternate Interior Angles Theorem. Def of right angle
Reflexive Prop of \cong. HL
21. Given ($\times 3$). Def of angle bisector. Def of perpendicular lines (x2). All right angles are $\cong(x 2)$. Reflexive Prop of \cong. AAS

Pg 216 \#12-15, 20-22.
Pg 243 \#4, 5, 8, 10, 22.

Pg 216:	Pg 244:
12.	4. Segment PQ
13. $\triangle \mathrm{PMO} \cong \triangle \mathrm{NMO} ; \mathrm{ASA}$	5. $\angle B$
14. \triangle UTS $\cong \triangle \mathrm{RST}$; AAS	8.
15. $\triangle \mathrm{ZVY} \cong \triangle \mathrm{WVY}$; AAS	10.
20.	22.
21.	
22.	* If blank, see next slide the for proof.

Pg 216:
12. for proof

Pg 216 and 243 continued..
Your answers should be two-column proofs or flowchart proofs. To save space, below are the reasons only (not the statements).

Pg 216:
12. Given ($x 3$). Def of perpendicular lines (x2). All right angles are $\cong(x 2)$. Vertical angles are \cong.
AAS.
20. Given. Given. Vertical angles are \cong. AAS.
21. Given. Given.

Alternative Interior Angles Theorem. Reflexive Prop of \cong. AAS.
2. Given ($\times 3$

Corresponding Angles
Postulate. ASA.

Pg 244:
8. Given. Given. Reflexive Prop of \cong. SSS.
10. Given. Given. Reflexive Prop of \cong. ASA. CPCTC. Reflexive Prop of \cong. SAS.
22. Given. Given. Given.

Reflexive Prop of $\cong=. \mathrm{HL}$. СРСТС. СРСТС. Vertical angles are \cong. AAS. СРСТС.

Student Name: \qquad Date: \qquad
What's the Same?

For each triangle below, determine its congruent triangle from the above triangles. Circle the correct triangle congruence postulate that justifies your choice.

3.

Is congruent to \qquad
SSS SAS AAS ASA

Communicating About Mathematics

Could you use a different postulate to prove triangle congruence in problem 1? Justify your reponse.

\qquad
\qquad
\qquad
\qquad
\qquad
A.

	$\triangle \mathrm{ABC}$ with $\mathrm{A}(1,2), \mathrm{B}(1,-1), \mathrm{C}(6,2)$		$\triangle \mathrm{MNP}$ with $\mathrm{M}(-2,2), \mathrm{N}(-5,2)$, and $\mathrm{P}(-2,7)$						
	Congruent or not congruent?								
Explain:						W		\square	\square
						-			\square
									-
						-			$\longrightarrow x$
									\cdots
									-
									\cdots
									\square

B.
$\triangle \mathrm{ABC}$ with and $\mathrm{RT}=5, \mathrm{~m} \angle \mathrm{~V}=35$, and $\mathrm{m} \angle \mathrm{R}=63$
$\mathrm{AB}=5, \mathrm{~m} \angle \mathrm{~B}=35$, and $\mathrm{m} \angle \mathrm{C}=63$
Congruent or not congruent?

Explain:
C.

Congruent or not congruent?
Explain:
\qquad
\qquad Period \qquad
There are four special segments that we can draw and use in any type of triangle. We can write the equation for three of them. Here are examples for each of the three:

Given: $A(-4,1), B(2,5)$, and $C(4,-3)$			
Special Segment	Description	Given Information	Equation
Median	Goes through the midpoint of a side and connects to the opposite vertex	Point C (4, -3) Midpoint of side AB	Write the equation of the median to side AB. (Use the two points to find the slope, then plug into point-slope form.)
Altitude	Must be perpendicular to a side, and go through the opposite vertex	Point C (4, -3) Slope Slope of side $\mathrm{AB}=$ \qquad Slope of Altitude = \qquad	Write the equation of the altitude to side AB. (Use the point-slope form of the equation of the line.)
Perpendicular Bisector	Goes through the midpoint of a side, and is perpendicular to the side. (does not have to go through the opposite vertex)	Point (midpoint of side AB) \qquad Slope Slope of side $\mathrm{AB}=$ \qquad Slope of perpendicular bisector $=$ \qquad	Write the equation of the perpendicular bisector of side AB. (Use point-slope form of the equation.)

\qquad
\qquad Period \qquad

Draw the special segments on the triangles below. Include all necessary markings!

1. Draw the median to side $B C$ and the altitude to side $B C$. (put a " m " by the median and an " a " by the altitude)

2. Draw the angle bisector of $\angle S$ and the altitude to side HA. (put a "b" by the bisector of $\angle \mathrm{S}$ and an " a " by the altitude)
s
3. Draw the perpendicular bisector of side RU and the median to side RU. (put " p " by the perpendicular bisector and a " m " by the median)

4. Draw the altitude to side $B R$ and the perpendicular bisector of side $B R$. (put an " a " by the altitude and a " p " by the perpendicular bisector)

Solve for \mathbf{x} and find the indicated measure. Beware of extra information!
5)

7) $x=$
$\mathrm{m} \angle \mathrm{RST}=$ \qquad

$\overline{R S}$ is an angle bisector.
6) $\quad \mathrm{x}=$ ______-_ $\mathrm{A}=$

$\overline{B D}$ is a median.
8) $x=\ldots \ldots \ldots$

$\overline{A C}$ is an altitude.

Name:
Date:
\qquad
\qquad Period: \qquad

We know that triangles are congruent if corresponding parts are congruent (CPCTC). We have also learned that triangles can be determined to be congruent with less information, namely using SSS, SAS, ASA, AAS, and HL theorems. Determining if two triangles on the coordinate plane are congruent becomes more difficult, because, at this point in our studies, the only angle that we can truly prove its measure is the right, or 90°, angle. Thus we are limited to using only SSS and SAS theorems to test for congruency. Remember this as you complete the following.

In your group, discuss the following questions. Come to an agreement on each question and then record your answers independently.

1. How can you determine if two sides of a triangle form a right angle? \qquad
\square
2. What is the slope formula? \qquad
3. Describe another method for finding slope of a line or segment on the coordinate plane.
4. What is the distance formula? \qquad
5. Is there another method for finding distance? If so, describe it. \qquad

Use the above answers to complete the questions below. Show your work below or on a separate sheet of paper.
I. Given: $\triangle A B C$ with $A(0,5) \quad B(-3,7) \quad C(-5,4)$ $\Delta X Y Z$ with $X(4,0) \quad Y(7,2) \quad Z(6,-3)$
a. $\mathrm{AB}=$ \qquad $B C=$ \qquad $C A=$ \qquad
b. $\mathrm{XY}=\ldots, \sqrt{13} \quad \mathrm{YZ}=\ldots, \ldots$
c. Are the triangles congruent? \qquad yes/no
d. If so, write the congruency statement. \qquad
e. By which theorem? \qquad
f. Slope $_{\text {AB }}=$ \qquad Slope $_{B C}=$ \qquad Slope $_{C A}=$ \qquad
g. Slope $_{\mathrm{XY}}=$ \qquad Slope $_{\mathrm{yz}}=$ \qquad Slope $_{\text {zx }}=$ \qquad

h. Is $\triangle \mathrm{ABC}$ a right triangle? \qquad $\Delta X Y Z ?$ \qquad Justify your answer. \qquad

By what other theorem are the two triangles congruent? \qquad Justify your answer. \qquad
II. Given: $\triangle A B C$ with $A(1,1) \quad B(2,5) \quad C(6,5)$ $\Delta X Y Z$ with $X(-8,-1) \quad Y(-4,-2) \quad Z(-4,-6)$
a. Are the two triangles congruent? \qquad yes/no
b. If so, by what theorem? \qquad
c. Justify your answer.
d. If so, write the congruency statement. \qquad

III. Given: $\triangle A B C$ with $A(-1,6) \quad B(3,5) C(10,8)$ $\Delta X Y Z$ with $X(-5,-7) \quad Y(2,-4) \quad Z(6,-5)$
a. Are the two triangles congruent? \qquad yes/no
b. If so, by what theorem? \qquad
c. Justify your answer.

d. If so, write the congruency statement. \qquad
IV. Given: $\triangle A B C$ with $A(-8,1) \quad B(-3,6) \quad C(-7,8)$ $\Delta X Y Z$ with $X(3,3) \quad Y(7,-2) \quad Z(6,5)$
a. Are the two triangles congruent? \qquad yes/no
b. If so, by what theorem? \qquad

d. If so, write the congruency statement. \qquad

7. Name a median for $\triangle A B C$.

a. $\overline{A D}$
b. $\overline{C E}$
c. $\overline{A F}$
d. $\overline{B D}$
12. Is there enough information to conclude that the two triangles are congruent? If so, what is a correct congruence statement?

a. Yes; $\triangle C A B \cong \triangle D A C$.
b. Yes; $\triangle A C B \cong \triangle A C D$.
c. Yes; $\triangle A B C \cong \triangle A C D$.
d. No, the triangles cannot be proven congruent.
13. Given: P is the midpoint of $\overline{T Q}$ and $\overline{R S}$.

Prove: $\triangle T P R \cong \triangle Q P S$
Complete the proof.

Statements	Reasons
1. P is the midpoint of $\overline{T Q}$ and $\overline{R S}$.	1. Given
2. $\overline{T P} \cong \overline{Q P}, \overline{R P} \cong \overline{S P}$	2. [1]
3. $[2]$	3. Vertical Angles Theorem
4. $\triangle T P R \cong \triangle Q P S$	4. [3]

a. [1]. Definition of midpoint
c. [1] Definition of midpoint
[2] $\angle T P R \cong \angle Q P S$
[2] $\angle P R T \cong \angle P S Q$
[3] SAS
[3] SAS
b. [1] Definition of midpoint
[2] $\overline{R T} \cong \overline{S Q}$
d. [1] Definition of midpoint
[2] $\angle T P R \cong \angle Q P S$
[3] SSS
[3] SSS
14. Based on the given information, what can you conclude, and why?

Given: $\angle H \cong \angle L, \overline{H J} \cong \overline{J L}$

a. $\triangle H L J \cong \triangle L K J$ by ASA
b. $\triangle H I J \cong \triangle J L K$ by SAS
c. $\triangle H L J \cong \triangle J L K$ by ASA
d. $\triangle H I J \cong \triangle L K J$ by SAS
15. Determine if you can use $A S A$ to prove $\triangle C B A \cong \triangle C E D$. Explain.

a. $\overline{A C} \cong \overline{D C}$ is given. $\angle C A B \cong \angle C D E$ because both are right angles. No other congruence relationships can be determined, so ASA cannot be applied.
b. $\overline{A C} \cong \overline{D C}$ is given. $\angle C A B \cong \angle C D E$ because both are right angles. By the Adjacent Angles Theorem, $\angle A C B \cong \angle D C B$. Therefore, $\triangle C B A \cong \triangle C D D$ by ASA.
c. $\overline{A C} \cong \overline{D C}$ is given. $\angle C A B \cong \angle C D E$ because both are right angles. By the Vertical Angles Theorem, $\angle A C B \cong \angle D C E$. Therefore, $\triangle C B A \cong \triangle C E D$ by ASA.
d. $\overline{A C} \cong \overline{D C}$ is given. $\angle C A B \cong \angle C D E$ because both are right angles. By the Vertical Angles Theorem, $\angle A C B \cong \angle D C E$. Therefore, $\triangle C B A \cong \triangle C E D$ by SAS.
16. Justify the last two steps of the proof.

Given: $\overline{\overline{D S}} \cong \overline{U T}$ and $\overline{R T} \cong \overline{U S}$
Prove: $\triangle R W T \cong \triangle U T S$
Proof:

1. $\overline{R S} \cong \overline{U T}$
2. Given
3. $\overline{R T} \cong \overline{U S}$
4. Given
5. $\overline{S T} \cong \overline{T S}$
6. ?
7. $\triangle P S T \cong \triangle U T S$
4.?

a. 3. Symmetric Property of \cong
c. 3. Reflexive Property of \cong
8. SSS
b. 3. Reflexive Property of \cong 4. SAS
d. 3. Symmetric Property of \cong
9. SAS

Exercises for Unit 2.3 (chapters 4 \& 5): Congruence and Special Segments in Triangles

Give the reason (SSS, SAS, ASA, AAS, or HL) that would be used to prove the triangles congruent.
68.

69.

70.

71.

74. Tell which line contains each special segment for $\triangle A B C$.
a) \qquad perpendicular bisector
b) altitude
c) ___ median
d) ___ angle bisector
75. \qquad Find an equation in slope-intercept form for the perpendicular bisector of the segment with endpoints $H(-3,2)$ and $K(7,-5)$.

