## Lesson <br> Question

 What is matter?

## Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

| atom | the smallestunit <br> of matter <br> displacement <br> mass <br> themovement <br> of something from its original position <br> matter <br> the amount ofmatter an object <br> the stuff thateverything <br> is made of |
| :--- | :--- |

## Warm-Up Introduction to Matter

## Words to Know

| volume | the amount ofspace <br> an object takes up <br> weight |
| :--- | :--- |
| the downward pull on an object due togravity |  |

## Scientific Inquiry

Scientists study the world around them by:

- asking $\square$
- performing investigations
- collecting data.
- providing

- communicating results


## Instruction Introduction to Matter



## Instruction <br> Introduction to Matter

## Mass: Comparing the Mass of Objects

The mass of two objects is compared using a pan balance.

- The pan that drops down has the object with greater mass. The pointer points toward this object.
- The pan that
 up has the object with less mass. The pointer points away from this object.
- If the pans are at the same height and the pointer is straight up, the masses of the two objects are about the same.

Circle the image that shows objects that have different masses.


## Weight

Weight is the downward pull on an object due to $\square$

- Measured with a spring

- Measured in $\square$ (N) or pounds
(lb)


## Instruction <br> Introduction to Matter

## Mass vs. Weight

Mass and weight are not the same.

- Mass is the amount of $\square$ matter in an object.
- Weight is the downward pull on an object due to gravity

The moon's gravity is $\frac{1}{6}$ of the gravity of Earth.

- On Earth, 1 kg has a weight of 2.2 lb
- On the Moon, 1 kg has a weight of 0.36 lb

A person has a greater weight on Earth than on the Moon.
A person has the same mass on Earth and on the Moon.

## The Volume of Regular Solids: Rectangular Prisms

Volume is the amount of $\square$ an object takes up.

The formula for the volume a rectangular prism is $\square$ $V=1 w h$

Volume $=$ length $\times$ width $\times$ height


If we are using centimeters, the answer will be in


## Instruction <br> Introduction to Matter

Another way to write the formula for the volume of a rectangular prism
is
$V=B h$

- $V=$ volume
- $B=$ base , or $l \times w$


## The Volume of Rectangular Prism

Example: What is the volume of a box with a length of 9 cm , a width of 6 cm , and a height of 3 cm ?

Step 1: Write the formula for finding the volume of a rectangular prism.


Step 2: Fill the values into the formula and solve.

$$
\begin{gathered}
V=\boxed{9} \mathrm{~cm} \times \boxed{6} \mathrm{~cm} \times \boxed{3} \\
V=162 \mathrm{~cm}^{3}
\end{gathered}
$$

## Instruction <br> Introduction to Matter

## The Volume of Regular Solids: Cylinders

The formula for the volume of a cylinder is $V=B h$.

- $V=$ $\square$
- $B=$ base
- $h=$ height


The base of a cylinder is a circle

To find the area of a circular base, multiply $\pi \times$ radius $^{2}$, or $\pi r^{2}$. $\pi=3.14$

Putting it all together, the formula for the volume a cylinder is $V=\left(3.14 r^{2}\right) h$, or $V=\mathrm{B} h$.

## The Volume of Regular Solids: Cones

The formula for the volume of a cone is $V=\frac{1}{3} \mathrm{Bh} \quad$ or $V=\frac{B h}{3}$.
$V=$ volume
$B=$ base , or $B=\pi r^{2}$
$h=$ height
The height ( $h$ ) of a cone is measured from the
 point of the base to the tip of the cone.

## Instruction <br> Introduction to Matter

Example: What is the volume of a cone with a height of 20 cm and a radius of 6 cm ? Round your answer to the nearest tenth.

Step 1: Write the formula for finding the volume of a cone.

$$
V=\frac{1}{3} B h \text { or } V=\frac{B h}{3}
$$

Step 2: Fill the values into the formula and solve.


$$
\begin{aligned}
V=\frac{\pi \boxed{6}^{2} \times \boxed{20}}{\boxed{3}} & =753.98 \\
& =775 \mathrm{~cm}^{3}
\end{aligned}
$$

## The Volume of Regular Solids: Spheres

The formula for the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$ or $\frac{4 \pi r^{3}}{3}$.
Example: What is the volume of a sphere with a radius of 9 cm ?
Round your answer to the nearest tenth.
Step 1: Write the formula for finding the volume of a sphere.

$$
V=\frac{4}{3} \pi r^{3} \text { or } \frac{4 \pi r^{3}}{3}
$$

Step 2: Fill the values into the formula and solve.

$$
V=\frac{4}{3} \pi(9)^{3}=3053.6=3053 \mathrm{~cm}^{3}
$$



## Instruction <br> Introduction to Matter

## The Volume of Irregular Solids

There is no formula for determining the volume of $\square$ irregular solids

The volume of an irregular solid is calculated using the displacement of water.

A graduated cylinder is used to measure the volume of an irregular
solid.
Initial volume is the volume of water only.

Final volume is the volume of water and object.

> final volume - initial volume $=$ displacement
> displacement $=$ the volume of the irregular solid

Example: Find the volume of a jack.

Step 1: Find the initial volume.
The volume of water only is 30 mL .
Step 2: Place the object into the cylinder and find the final volume.

The volume of the water and object is $\square$ mL .


Step 3: Find the displacement, or the final volume minus the initial volume.
The volume of the jack is $35 \mathrm{~mL}-30 \mathrm{~mL}=55 \mathrm{~mL}$.
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$, so the final volume of the jack is $5 \mathrm{~cm}^{3}$.

## Summary <br> Introduction to Matter

## Lesson <br> Question <br> What is matter?

## Answer

(Sample answer) Matter makes up all objects and organisms and is made of very small particles called atoms.

## Review: Key Concepts

Matter can be measured by:
-
 , or the amount of matter in an object.
 , or the downward pull on an object due to gravity.

- volume , or the amount of space that an object takes up.


## Summary

Introduction to Matter

Use this space to write any questions or thoughts about this lesson.

