Edgenuity®

Warm-Up

Methods of Classification

Lesson Objectives

By the end of this lesson, you should be able to:

- Explain the purpose of biological taxonomy
- Explain reasons why **Systems** of classification may change.

Science Practice: Organize data using specific

grouping

methods.

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

taxonomy	the science of naming and classifying organisms based on structural comparisons and genetic evidence	
phylogenetic tree	a chart that depicts an evolutionary relationship among organisms	
binomial nomenclature	a two-word system designed by Linnaeus for naming organisms using the genus name followed by the species name	

Instruction

Methods of Classification

Lesson Question

How are organisms classified?

2

Classification

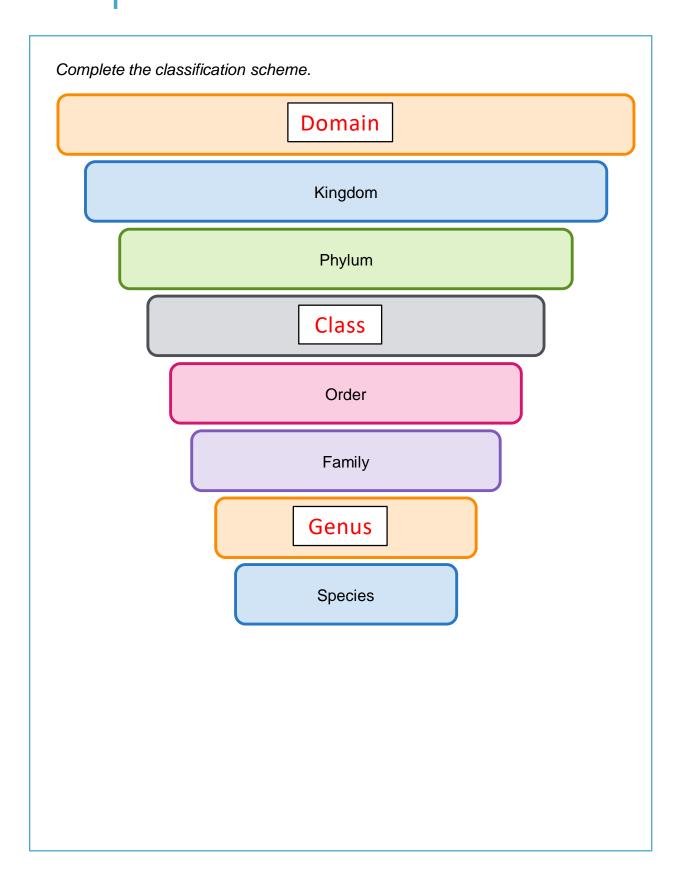
Taxonomy

is the science of naming and classifying organisms

based on:

structural comparisons.

genetic evidence.


Use this sentence to help you remember the levels of classification:

Dashing King Phillip Came Over For Great Spaghetti

Instruction

Methods of Classification

2

Instruction

Methods of Classification

Slide 4

Common Names

- Not always physically accurate
- Can be applied to multiple organisms
- Differ among various locations
- Do not always translate accurately

Naming Organisms: The Honeybee

Apis pubescens, thorace subgriseo, abdominae fusco, pedibus posteuis, glabris, untrinque margine ciliatis				
Apis pubescens	bee with soft short hairs			
thorace subgriseo	gray chest			
abdominae fusco	dark brown abdomen			
pedibus posteuis	Legs with no hair			
glabris, utrinque margine ciliatis	small sacs with hairlike outgrowths			
	along the edge			

Edgenuity®

Instruction

Methods of Classification

Slide

Linnaeus's Naming Method

Binomial nomenclature is Linnaeus's two-word system for naming

organisms using the genus name followed by the species name.

• Latin provides a common language:

Apis pubescens, thorace subgriso, abdomine fusco, pedibus posticis glabis, untrinque margine ciliatus

Circle the genus and underline the species in the Linnaean name for the bee above.

7

Physical Classification: Comparing Structures

The platypus has characteristics similar to birds and mammals.

Birds

have bills

or beaks and lay eggs.

Mammals

have hairy

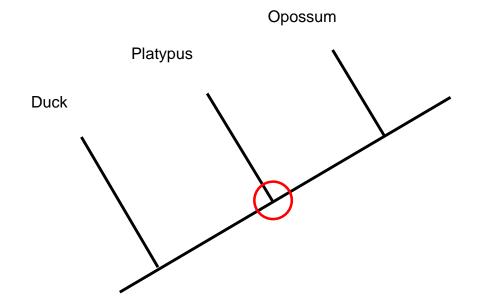
bodies and produce milk

for offspring.

Instruction

Methods of Classification

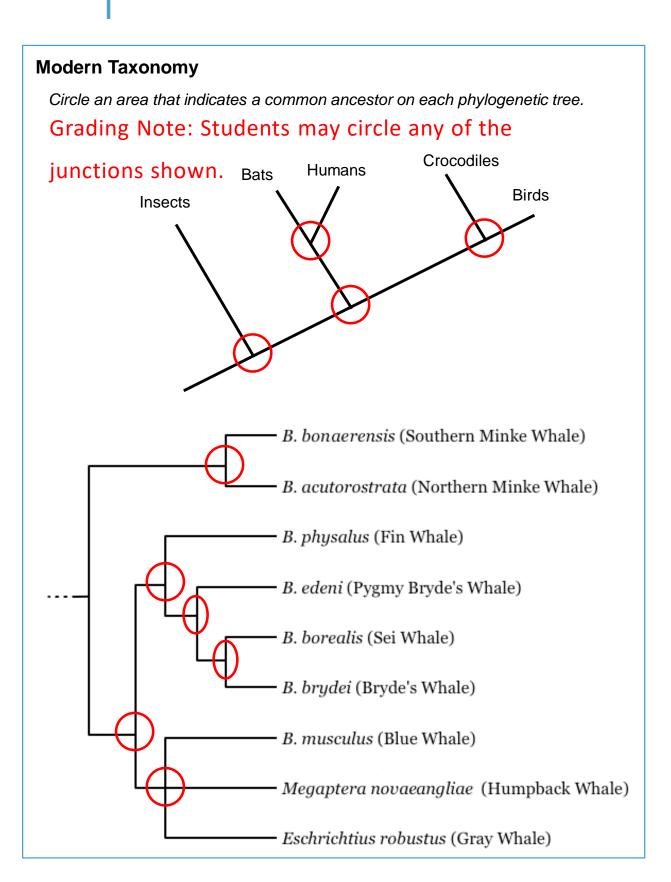
Slide 7


Physical Classification: Platypus Relationships

A phylogenetic tree is a chart that depicts an evolutionary relationship

among organisms.

- Linnaeus's method did not account for evolution
- Modern taxonomy uses **evolutionary** relationships and **genetic** evidence to classify organisms.


Circle the part of the chart that indicates that the platypus falls in between the duck and the opossum.

Instruction

Methods of Classification

Instruction

Methods of Classification

Methods of Classification

Let us return to the phylogenetic tree we think Linnaeus would have come up with.

- The platypus has a bill like a duck and lays eggs like a duck, so it must be related to a duck.
- But, the platypus is also a mammal like the opossum. It has hair and feeds its young milk.

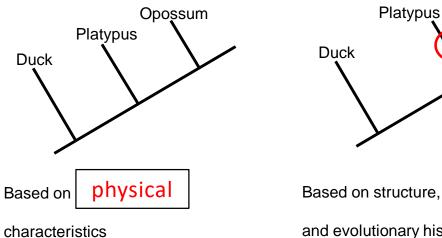
To whom is the platypus most closely related? The secret can be found out in the names of these organisms.

Relatedness Among Organisms

Circle the first row in which the platypus, duck, and opossum diverge in their classification.

	PLATYPUS	DUCK	OPOSSUM
Domain	Eukarya	Eukarya	Eukarya
Kingdom	Animalia	Animalia	Animalia
Phylum	Chordata	Chordata	Chordata
Class	Mammalia	Aves	Mammalia
Order	Monotremata	Anseriformes	Marsupialia
Family	Ornithorhynchidae	Anatidae	Didelphidae
Genus	Ornithorhynchus	Anas	Didelphis
Species	anitinus	platyrhynchos	virginiana

Edgenuity


Instruction

Methods of Classification

Relatedness Among Organisms

Circle the junction that indicates that the platypus and opossum are more closely related than the platypus and the duck.

and evolutionary history

Platypus

Opossum

genetics

Xenotransplantation

REAL-WORLD CONNECTION

Xenotransplantation is the transplantation of an organ, tissue, or

cells between two different species.

Need to know how closely these creatures are related.

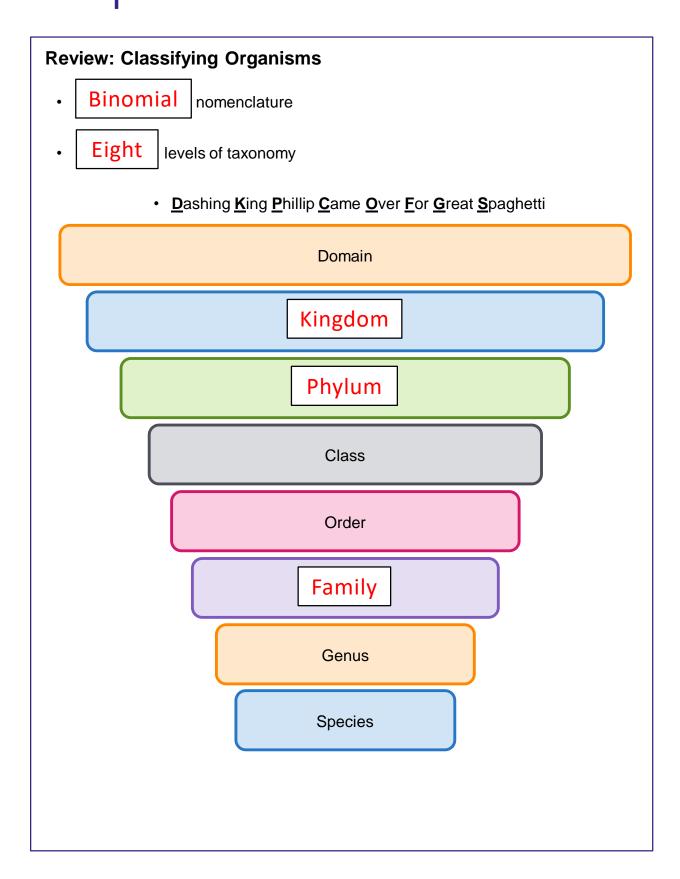
Methods of Classification

Lesson Question

How are organisms classified?

Answer

(Sample answer) Organisms are classified based on structure, genetics, and evolutionary history.


Slide

Review: Naming Organisms

- Common names should not be used for scientific classification.
- Binomial nomenclature
 - Carl Linnaeus
 - Two-word **system**
 - Latin
 - Genus and species

Methods of Classification

2

Methods of Classification

2

Review: Classifying Organisms

- Phylogenetic trees can be used to depict the evolutionary relationship among organisms.
 - history • Based on structure, genetics, and evolutionary
 - style Vary in size and
 - change • Subject to

Review: Changes to Classification Methods

- record Fossil
- Discovery of new species
- sequencing

Methods of Classification

Use this space to write any questions or thoughts about this lesson.			