### **Edgenuity**<sup>®</sup>

## Warm-Up

### Potential and Kinetic Energy



Lesson Question What is the relationship between potential and kinetic energy?







#### **Words to Know**

Write the letter of the definition next to the matching word as you work through the lesson. You may use the glossary to help you.

B system

- A. the energy an object has due to its motion
- D transformation
- B. a group of related objects that interact and form a complex whole
- A kinetic energy
- C. the stored energy an object has due to its position
- <u>C</u> potential energy
- D. a change in form, appearance, nature, or characteristic

## **Edgenuity**

# Warm-Up

## Potential and Kinetic Energy



#### **Energy**

- Energy is the ability to do work
- Work involves the transfer of energy from one object to another.
- Energy exists in several forms
  - Chemical
  - Electrical
  - Mechanical
  - Thermal
  - Potential
  - Kinetic

## Instruction

### Potential and Kinetic Energy

2

### Potential Energy and Kinetic Energy

- Objects can have more than one form of energy at the same time.
  - Potential energy is the energy an object has due its position.
  - Kinetic energy is the energy an object has due to its motion.
- The amount of each form of energy depends on the motion and position of an object.

#### **Total Energy**



A system is the group of objects that interact with each other.

- The total energy in a system stays the same.
  - If potential energy increases, then kinetic energy decreases .
  - If potential energy decreases, then kinetic energy increases .

## Instruction

### Potential and Kinetic Energy

5

#### **Gravitational Potential Energy**

- stored Potential energy is energy.
- Potential energy related to the height of an object is known as gravitational potential energy.
  - gravity · Gravitational potential energy comes from the presence of
  - · The greater the height of an object, the greater its gravitational potential energy.

#### **The Potential Energy Equation**

- Gravitational potential energy is directly related to:
  - · an object's mass , *m*.

- PE = mgh
- gravity · the acceleration due to g.
- height · an object's , h.

#### An Application of the Potential Energy Equation

What is the potential energy of a 150 kg rock resting on top of a hill that is 25 m high?

9.8 Gravity on Earth is a constant of m/s/s.

PE = 
$$(150 \text{ kg})(9.8 \text{ m/s}^2)(25 \text{ m}) = 36,750 \text{ J}$$

### **Edgenuity**®

## Instruction

### Potential and Kinetic Energy



#### The Potential Energy Equation

When potential energy is known, mass or height can be found.

$$PE = mgh$$

To find mass, rearrange equation: m = PE/gh

To find height, rearrange equation: h = PE/gm

**Example:** Jeremiah, who has a mass of 60 kg, starts skating down a hill with a potential energy of 1,200 J. What is the height of the hill? Round your answer to the nearest whole number.

Step 1: Identify what is known.

• 
$$m = | 60 \text{ kg} |$$

• 
$$g = 9.8 \,\mathrm{m/s/s}$$

Step 2: Multiply mass x gravity.

$$60 \text{ kg} \times 9.8 \text{ m/s/s} = \boxed{588} \text{ kg m/s/s}$$

Step 3: Solve the equation.

$$h = (1,200 \text{ J})/588 \text{ kg m/s/s} = 2.04 \text{ m}$$

Step 4: Round the answer to the nearest whole number.

$$h = 2.04 \,\mathrm{m} = \boxed{2} \,\mathrm{m}$$

## **Edgenuity**®

## Instruction

### Potential and Kinetic Energy



#### **Kinetic Energy**

Kinetic energy:

- is the energy of motion
- · depends on the mass and velocity of an object.
  - Increases when mass increases
  - Increases when velocity increases

#### **The Kinetic Energy Equation**

• Kinetic energy is directly related to one-half an object's mass, m, times an object's velocity, v, squared .

$$KE = \frac{1}{2}mv^2$$

Mass (m) is measured in kg

Velocity squared ( $v^2$ ) is measured in  $\frac{m^2/s^2}{}$ .

Multiplied together give us joules , J

### **Edgenuity**®

## Instruction

### Potential and Kinetic Energy



#### An Application of the Kinetic Energy Equation

**Example:** What is the kinetic energy of a 55 kg girl walking at a velocity of 2 m/s?

Step 1: Identify what is known.

• 
$$m = \begin{bmatrix} 55 \text{ kg} \end{bmatrix}$$

• 
$$v = w m/s$$

Step 2: Find half of 55 kg.

$$55 \text{ kg/2} = 27.50 \text{ kg}$$

Step 3: Square the velocity

Step 4: Solve the equation.

$$KE = 27.5 \text{ kg} \times 4 \text{ m}^2/\text{s}^2 = 110 \text{ J}$$

Imagine that the girl's velocity increases to 4 m/s. Her kinetic energy increases

## **Edgenuity**<sup>®</sup>

## Instruction

### Potential and Kinetic Energy



#### **Potential and Kinetic Energy Transformations**

- PE and KE goes through transformations, or changes
  - Top of the hill = all potential energy
  - Downhill = potential becomes kinetic
  - On the ground = | all | kinetic energy
  - Uphill = kinetic becomes potential



## **Summary**

### Potential and Kinetic Energy

3

Lesson Question

What is the relationship between potential and kinetic energy?



#### **Answer**

(Sample answer) A falling object's potential energy decreases as its height decreases. At the same time, the object is speeding up, so its kinetic energy increases.

Slide 2

#### **Review: Key Concepts**

- Gravitational potential energy decreases as an object gets closer to the ground.
- At the same time, kinetic energy increases because the object is speeding up.

| Term      | Definition             | Affected<br>by | Equation               |
|-----------|------------------------|----------------|------------------------|
| Kinetic   | Energy of motion       | Velocity       | $KE = \frac{1}{2}mv^2$ |
| Potential | Energy due to position | Height         | PE = mgh               |

# Summary

## Potential and Kinetic Energy

| Use this space to write any questions or thoughts about this lesson. |
|----------------------------------------------------------------------|
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |
|                                                                      |