

Warm-Up

Solving Systems of Linear Equations: Linear Combinations

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

eliminate	to ; to omit
additive inverse	the of a number
equivalent equation	equations that have the same and can be formed from one another using the

Warm-Up

Solving Systems of Linear Equations: Linear Combinations

The Linear Combination Method

To solve the **system of linear equations** using the linear combination method, one of the variables must have opposite coefficients.

 $\begin{aligned} x + 4y &= 7\\ 3x - 2y &= -1 \end{aligned}$

How could you create an **equivalent equation** to **eliminate** x? Multiply the top equation by 3.

The resulting system is:

How could you create an equivalent equation to eliminate *y*?

Multiply the bottom equation by 2.

The resulting system is:

$$1x + 4y = 7$$

$$-4y =$$

C

Instruction

Instruction

Instruction

Slide

Solving Systems of Linear Equations: Linear Combinations

Modeling a Situation with a System of Linear Equations

Mario's family goes to the movies and spends \$38 on 2 child tickets and 3 adult

tickets. Lou's family goes to the movies and spends \$34.50 on 3 child tickets and 2

adult tickets. What is the cost of each type of ticket?

Solving a System of Linear Equations

Mario's family goes to the movies and spends \$38 on 2 child tickets and 3 adult tickets. Lou's family goes to the movies and spends \$34.50 on 3 child tickets and 2 adult tickets. What is the cost of each type of ticket?

- 1. Multiply the first equation by 3 and the second equation by -2.
- 2. Add to the *x*-terms.
- 3. Solve the new equation for y.
- 4. Substitute back into either original equation to find the *x*-value.
- 5. Check and interpret the solution.

$$3(2x + 3y = 38) \rightarrow 6x + 9y = 114$$

$$-2(3x + 2y = 34.5) \rightarrow -6x - 4y = -69$$

$$-5 = \frac{45}{5}$$

$$y =$$

Instruction

Instruction

Slide

10

Solving Systems of Linear Equations: Linear Combinations

Modeling a Situation with a System of Linear Equations

A bag of baby carrots and a container of hummus dip contain a total of 470 calories. For a snack, Rosarita ate $\frac{3}{4}$ of the bag of carrots and $\frac{4}{7}$ of the container of hummus. Her snack contained a total of 290 calories. If *x* represents the total number of calories in the bag of carrots and *y* represents the total number of calories in the container of hummus, how many calories were in each?

Write a system.

$$x + y = 470$$
$$\frac{3}{4}x + \frac{4}{7}y = 290$$

Multiply each equation through by a number to eliminate fractions and to eliminate x.

$$x + y = 470 \xrightarrow{\bullet (-21)} -21y = -9870$$

$$\frac{3}{4}x + \frac{4}{7}y = 290 \xrightarrow{\bullet (28)} +16y = 8120$$

$$\frac{-5y}{-5} = \frac{-1750}{-5}$$

$$y = \begin{bmatrix} y = 120 \\ y = 120 \end{bmatrix}$$

Find x.

There are 120 calories in a bag of chips and 350 calories in a container of hummus.

Summary

Question	Why are equivalent equations important when solving a system using linear combinations?
Answer	
Review: K	Key Concepts
Multiply th	he equations in a system by constants to create
equations	s so the coefficients of one variable are additive inverses.
Add the e	equations together to a variable and solve for the
other varia	able.
	e the value of the variable back into
 Substitute 	

Solving Systems of Linear Equations: Linear Combinations

Use this space to write any questions or thoughts about this lesson.