Warm-Up

Solving Systems of Linear Equations: Linear Combinations

Lesson
 Question

Lesson Goals

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

eliminate	to \square; to omit
additive inverse	the \square of a number
equivalent equation	equations that have the same \square and can be formed from one another using the \square

Warm-Up

Solving Systems of Linear Equations: Linear

 Combinations
Words to Know

	a set of linear equations that have the same
system of linear	
equations	are the \square

The Linear Combination Method

To solve the system of linear equations using the linear combination method, one of the variables must have opposite coefficients.

$$
\begin{gathered}
x+4 y=7 \\
3 x-2 y=-1
\end{gathered}
$$

How could you create an equivalent equation to eliminate x ?
Multiply the top equation by 3.
The resulting system is:

How could you create an equivalent equation to eliminate y ?
Multiply the bottom equation by 2 .
The resulting system is:

$$
1 x+4 y=7
$$

Instruction

Solving Systems of Linear Equations: Linear Combinations

How to Solve a System Using the Linear Combination Method

To solve a system of equations using linear combinations:

1. Create coefficients that are \square inverses on one of the variables, if needed.
2. Add the equations to \square one of the variable terms.
3. Solve the new equation for the remaining variable.
4. \square back into either original equation to find the value of the other variable.
5. Check the solution.

Multiplying before Using the Linear Combination Method

$$
\text { Solve: } \begin{aligned}
3 x-7 y & =5 \\
5 x-9 y & =-5
\end{aligned}
$$

1. Create coefficients that are additive inverses on one of the variables.
2. Add the equations to eliminate the x-terms.
3. Solve the new equation for y.
4. Substitute back into either original equation to find the value of x.
5. Check the solution.
$3 x-7 y=5 \rightarrow$ multiply by \square
$5 x-9 y=-5 \rightarrow$ multiply by \square

$$
\frac{-8 y}{-8}=\frac{40}{-8}
$$

$$
y=\square
$$

Instruction

Solving Systems of Linear Equations: Linear Combinations

The Number of Solutions of a System of Linear Equations

$-6 x+4 y=2 x+y=-2$ $5 x+2 y=2$ $2.5 x+y=1$
$-6 x+4 y=2$
$6 x+6 y=-12$
$\begin{aligned} \frac{10 y}{10} & =\frac{-10}{10} \\ y & =\square\end{aligned}$

No solution

Infinitely many solutions

$-3 x+y=4-6 x+2 y=-4$
$-6 x+2 y=-4$

False

True

$$
\begin{aligned}
& \text { Solve: } 3 x-7 y=5 \\
& 5 x-9 y=-5 \\
& y=-5
\end{aligned}
$$

1. Create coefficients that are additive inverses on one of the variables.
2. Add the equations to eliminate the x-terms.
3. Solve the new equation for y.
4. Substitute back into either original equation to find the value of x.
5.

\square the solution.

$$
x=
$$

Solution: (

$3 x-7(-5)=5$

$$
\begin{array}{ll}
-35 & -35
\end{array}
$$

$$
\frac{3 x}{3}=\frac{-30}{3}
$$

Instruction

Solving Systems of Linear Equations: Linear Combinations

Modeling a Situation with a System of Linear Equations

Mario's family goes to the movies and spends $\$ 38$ on 2 child tickets and 3 adult tickets. Lou's family goes to the movies and spends $\$ 34.50$ on 3 child tickets and 2 adult tickets. What is the cost of each type of ticket?
$x=$ cost of a \square ticket
$y=$ cost of an \square ticket

Solving a System of Linear Equations

Mario's family goes to the movies and spends $\$ 38$ on 2 child tickets and 3 adult tickets. Lou's family goes to the movies and spends $\$ 34.50$ on 3 child tickets and 2 adult tickets. What is the cost of each type of ticket?

1. Multiply the first equation by 3 and the second equation by -2 .
2. Add to \square the x-terms.
3. Solve the new equation for y.
4. Substitute back into either original equation to find the x-value.
5. Check and interpret the solution.

$$
\begin{aligned}
3(2 x+3 y=38) \rightarrow \quad 6 x+9 y & =114 \\
-2(3 x+2 y=34.5) \rightarrow \frac{-6 x-4 y}{} & =-69 \\
\frac{\square}{5} & =\frac{45}{5} \\
y & =\square
\end{aligned}
$$

Instruction

Solving Systems of Linear Equations: Linear

 Combinations
Solving a System of Linear Equations

Mario's family goes to the movies and spends $\$ 38$ on 2 child tickets and 3 adult tickets. Lou's family goes to the movies and spends $\$ 34.50$ on 3 child tickets and 2 adult tickets. What is the cost of each type of ticket?

1. Multiply the first equation by 3 and the second equation by -2 .

$$
\begin{aligned}
2 x+3 y & =38 \\
3 x+2 y & =34.50 \\
y & =9
\end{aligned}
$$

2. Add to eliminate the x-terms.
3. Solve the new equation for y.
4.

 back into either original
equation to find the x-value.
5. Check and \square the solution.

$$
2 x+3(9)=38
$$

$$
\begin{aligned}
2 x+27 & =3 \\
-27 & -27 \\
\frac{2 x}{2} & =\frac{11}{2}
\end{aligned}
$$

Child tickets: \$
 $x=\square$ Adult tickets: \$ \square

Check: $2(5.5)+3(9)=38$

Instruction

Solving Systems of Linear Equations: Linear Combinations

Modeling a Situation with a System of Linear Equations

A bag of baby carrots and a container of hummus dip contain a total of 470 calories.
For a snack, Rosarita ate $\frac{3}{4}$ of the bag of carrots and $\frac{4}{7}$ of the container of hummus.
Her snack contained a total of 290 calories. If x represents the total number of calories in the bag of carrots and y represents the total number of calories in the container of hummus, how many calories were in each?

Write a system.

$$
\begin{aligned}
& x+y=470 \\
& \frac{3}{4} x+\frac{4}{7} y=290
\end{aligned}
$$

Multiply each equation through by a number to eliminate fractions and to eliminate x.
$x+y=470 \xrightarrow{\bullet(-21)} \square 21 y=-9870$

$$
\begin{aligned}
\frac{3}{4} x+\frac{4}{7} y=290 \xrightarrow{\bullet(28)} \square 16 y & =8120 \\
\frac{-5 y}{-5} & =\frac{-1750}{-5} \\
y & =\square
\end{aligned}
$$

Find x.

There are 120 calories in a bag of chips and 350 calories in a container of hummus.

Summary

Solving Systems of Linear Equations: Linear

 CombinationsLesson
Question

Why are equivalent equations important when solving a system using linear combinations?

Answer

Review: Key Concepts

- Multiply the equations in a system by constants to create \square equations so the coefficients of one variable are additive inverses.
- Add the equations together to a variable and solve for the other variable.
- Substitute the value of the variable back into \square original equation to find the other variable.

Summary

Solving Systems of Linear Equations: Linear

 CombinationsUse this space to write any questions or thoughts about this lesson.

