Warm up

# generate some nonsense data for an example 1 ﬂoatin»bﬁlHiPY'::S bytes
X = np.random.randn(n,d) 106 ~~ 220 bytes =1 MB
y = np.random.randn(n) 109 R1230 bytes:: 1 GB
|
# generate the random features
G = np.random.randn(p, d)*np.sqrt(.1l)
b = np.random.rand(p)*2*np.pi H = np.dot (X, G.T) + b.T

.
1r,¢f”’)’ HTH = np.dot(H.T, H)
# construct HTH HTy = np.dot(H.T, y)

HTH = np.zeros((p,p)) /,
HTY = np.zeros(P) # construct HTH
for i in range(n): HTH = np.zeros((p,p))
hi = np.dot(X[i,:], G.T)+b HTy = np.zeros(p)
HTH += np.outer(hi, hi) block = p
HTy += y[i]*hi for i in range(int(np.ceil(n/block))+1):
if i % 1000==0: print(i) Hi = np.dot(X[i*block:min(n, (i+1)*block),:], G.T)+b
HTH += np.dot(Hi.T, Hi)

:k-------~=r HTy += np.dot(Hi.T, y[i*block:min(n, (i+1l)*block)])

w = np.linalg.solve(HTH + lam*np.eye(p), HTy)

For each block compute the memory required in terms of n, p, d.
If d << p << n, what is the most memory efficient program (blue, green, red)?
If you have unlimited memory, what do you think is the fastest program?



Gradient Descent

UNIVERSITY of WASHINGTON



Standard Machine Learning Problem Setup

= Have a bunch of iid data:
{(xiy) ey x; €RY y; € R
= Want to learn a model’s parametersr:b
Each /;(w) is convex. > li(w)
1=1



Machine Learning Problems

= Have a bunch of iid data:
(T, yi) fim1 x4 € R y; € R

= Want to learn a model’s parameters:

Each ¢;(w) is convex. > li(w)
i=1
Yy
g is a subgradient at x if
v 7 fly) > f(z) +g" (y — =)
f convex:
fz+(1=Ny) <Af(x)+ (1= Nf(y) Va,y, A € [0,1]

fy) > f(x) + Vf(2)" (y - =) v,y



Taylor Series Approximation, 1-d

fa+0) = fx)+ f(@)d+ 31" (2)0" + ...

= Gradient descent:



Taylor Series Approximation, d dimensions

flx4+v)=flx)+ V() v+ 0" Vif(z)v+...

» Gradient descent:



Gradient Descent, LS f(w) = 3||Xw —y| E

Viw)= XT'(Xw—-y) = X"Xw - X"y
Wi41 = Wg — va(wt)
= (I — X" X)w; +nX"y

If, in round t, we ended up at wx: W, = (XTX)_lXTy

(Wi —wi) = (I = X X)(wp — wi) = X" Xw, + 09Xy



Gradient Descent, LS f(w) = 3||Xw —y| E

w1 = wy — NV f(wg)
(Wer1 — wy) = (I — X" X) (wy — wy)
= (I — nXTX)" (wg — wy)



Gradient Descent for Logistic Regression

Loss function: Conditional Likelihood

{(%,yz) ?:1 Ti € Rd, y; € {—1,1}

1
1 + exp(—yw'x)

mn
WA LE :argmt?XHP(yi\xi,w) P(Y =ylz,w) =
i=1

f(w) = argmin ) log(1 + exp(—y; z] w))
1=1

VI (w) =



Convexity

UNIVERSITY of WASHINGTON



What is a convex set?

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

Examples of convex sets

Examples of non-convex functions: anything else

v | $O




What is a convex function?

A function f: R — R is convex if f((1 — XNz + Ay) < (1 = N)f(x) + Af(y)
for all z,y € K and \ € [0, 1]

Examples of convex functions: “look like bowls”

N

Examples of non-convex functions: anything else




Convex functions and convex sets?

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

A function f: RY — R is convex if f((1 — XNz + Ay) < (1 = N)f(2) + Af(y)
for all z,y € K and \ € [0, 1]

A function f : R? — R is convex if the set {(z,t) € R4l : f(x) <t} is convex




More definitions of convexity

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

A function f:R? — R is convex if the set {(z,t) € R : f(x) <t} is convex

A function f : R? — R that is differentiable everywhere is convex if
fly) > f(x) +Vf(z)" (y—z) for all z,y € dom(f)

~_ -




More definitions of convexity

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

A function f:R? — R is convex if the set {(z,t) € R : f(x) <t} is convex

A function f : R? — R that is differentiable everywhere is convex if
fly) > f(x) +Vf(z)" (y—z) for all z,y € dom(f)

A function f : R? — R that is twice-differentiable everywhere is convex if
V2f(z) = 0 for all x € dom(f)

~_ -




Why do we care about convexity?

Convex functions
- All local minima are global minima
- Efficient to optimize (e.g., gradient descent)

Convex Function Non-convex Function

N L




Gradient Descent

Initialize: wg =0
fort=1,2,...
w1 = wy — NV f(wy)

Convex Function Non-convex Function

NV




Sub-Gradient Descent

Initialize: wg = 0
fort=1,2,...
Find any ¢ such that f(y) > f(w:) + ¢, (y — wy)

Wiy1 = W — NGt
g is a subgradient at z if f(y) > f(z) + 9" (y — x)

Convex Function Non-convex Function

N




Coordinate descent

Initialize: wg = 0

fort=1,2,...
Let i, =t % n
it it 0 f(w)
w£+%:w£ )—77

' (‘9w(@t) W=Wt

Special case:



Machine Learning Problems

= Given data:
{(zi,yi) }ieq T; € R? y; € R

= Learning a model’s parameters: Z i(w)
1=1

Logistic Loss: ¢;(w) = log(1 + exp(—y; z} w))
Squared error Loss: £;(w) = (y; — z w)?

Gradient Descent:

1 n
= w3 iw) )|
wir1 = wg —nV <n 2 (w)) o



Optimization summary

= You can always run gradient descent whether f is
convex or not. But you only have guarantees if f is
convex

= Many bells and whistles can be added onto gradient
descent such as momentum and dimension-specific
step-sizes (Nesterov, Adagrad, ADAM, etc.)



Stochastic Gradient
Descent

UNIVERSITY of WASHINGTON



Machine Learning Problems

= Given data:
{(zs,y)Hiew € RY y; € R

= Learning a model’s parameters: Z i(w)
1=1

W41 — Wt — an

Gradient Descent: ( n ) |

U3 biw)

=1



Machine Learning Problems

= Given data:
(i, yi) biza Ti € R y; € R

n
= Learning a model’s parameters: Z i(w)
1=1

Gradient Descent:

1 n
— — w | ez |
wir1 = wg — NV (n ;:1 (w)) s

Stochastic Gradient Descent:
I; drawn uniform at

W1 = W — NVwlr, (w)‘w:w random from {1,...,n}

E[VEr, (w)] =



Machine Learning Problems

n
= Learning a model’s parameters: Z i (w)
1=1

Stochastic Gradient Descent:
I; drawn uniform at

W41 = Wy — NVl (’w)|w:wt random from {1,...,n}

E[V{r, (w)] = VI(w)



Stochastic Gradient Descent

Theorem
Let  wii1 = wy — NVl (w)‘w:w f;fésznf;g?ﬁ at SO that
E[Ver, (w Z Vi (w)

it Jlwr —wol|2 <R and supmax|Vi(w)a <G then

R nG RG
< + 2y =2
=9rp 2 VT

5=

o

(In practice use Iast |terate)

ﬂ |



Stochastic Gradient Descent

Proof

Efl|wesr — will3] = Elllwe — nVer, (we) — w|[3]



Stochastic Gradient Descent

Proof

Efl|wesr — will3] = Elllwe — nVer, (we) — w|[3]

= E[|lwy — w.|[3] — 20E[V 41, (wy) T (we — w,)] + n°E[| |V, (we)]|3]

< E[|we — w.[3] — 20E[¢(w,) — £(w.)] + G

E[V/{, (we) ! (wy — wy)] = E[E[Vﬁjt (we) (wy — wi)| L1, w1, ..., Ti—1, wt_lﬂ

=E [Vl (w)" (0 — w,)]
> E[{(w;) — L(w,)]

T

1
> E[l(w) — H(w.)] < P (Elllwr = wl[3] = Eflfwrs1 — wil3] + Tn*G)
= R TnG
<
27 2



Stochastic Gradient Descent

Proof

Jensen’s inequality:
For any random Z € R? and convex function ¢ : R — R, ¢(E[Z]) < E[p(Z)]

t=1

T
= 1
B{H(@) — f(w)] < 7 OBltw) —fws)] 0=
t=1



Stochastic Gradient Descent

Proof

Jensen’s inequality:
For any random Z € R? and convex function ¢ : R — R, ¢(E[Z]) < E[p(Z)]

T
] e 1
B{e() ~ ()] < 7 3 Eft(we) - €] W= ; w
_ R nG RG R
Ew(w) - E(w*)] < ﬁ -+ 7 < T n = aT




Mini-batch SGD

Instead of one iterate, average B stochastic gradient together

Advantages:

- de-noises gradient
- Matrix computations
- Parallelization



Stochastic Gradient
Descent: A Learning
perspective




Learning Problems as Expectations

> Minimizing loss in training data:
Given dataset:
> Sampled iid from some distribution p(x,y) on features:
Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

1 N
{p(w) = N Zé(w,xj)
J=1
> However, we should really minimize expected loss on all data:

l(w) = Ex [l(w,x)] = | p(x)l(w,x)dx

> S0, we are approximating the integral by the average on the training data



Gradient descent in Terms of Expectations

> “True” objective function:
0(w) = Bx [t(w,)] = [ p(x)e(w, x)dx
> Taking the gradient:

> “True” gradient descent rule:

> How do we estimate expected gradient?



Warm up - Revisited

# generate some nonsense data for an example 1 ﬂoatin»bﬁlHiPY'::S bytes
X = np.random.randn(n,d) 106 ~~ 220 bytes =1 MB
y = np.random.randn(n) 109 szso bytes:: 1 GB
|
# generate the random features
G = np.random.randn(p, d)*np.sqrt(.1l)
b = np.random.rand(p)*2*np.pi H = np.dot (X, G.T) + b.T

.
1{44””)’ HTH = np.dot(H.T, H)
# construct HTH HTy = np.dot(H.T, y)

HTH = np.zeros((p,p)) /,
HTY = np.zeros(P) # construct HTH
for i in range(n): HTH = np.zeros((p,pP))
hi = np.dot(X[i,:], G.T)+b HTy = np.zeros(p)
HTH += np.outer(hi, hi) block = p
HTy += y[i]*hi for i in range(int(np.ceil(n/block))+1):
if i % 1000==0: print(i) Hi = np.dot(X[i*block:min(n,(i+l)*block),:], G.T)+b
HTH += np.dot(Hi.T, Hi)

:k-------~=r HTy += np.dot(Hi.T, y[i*block:min(n, (i+1l)*block)])

w = np.linalg.solve(HTH + lam*np.eye(p), HTy)

For each block compute the memory required in terms of n, p, d.
If d << p << n, what is the most memory efficient program (blue, green, red)?
If you have unlimited memory, what do you think is the fastest program?



