Warm up

# generate some nonsense data for an example 1 ﬂoatin»bﬁlHiPY'::S bytes
X = np.random.randn(n,d) 106 ~~ 220 bytes =1 MB
y = np.random.randn(n) 109 R1230 bytes:: 1 GB
|
# generate the random features
G = np.random.randn(p, d)*np.sqrt(.1l)
b = np.random.rand(p)*2*np.pi H = np.dot (X, G.T) + b.T

.
1r,¢f”’)’ HTH = np.dot(H.T, H)
# construct HTH HTy = np.dot(H.T, y)

HTH = np.zeros((p,p)) /,
HTY = np.zeros(P) # construct HTH
for i in range(n): HTH = np.zeros((p,p))
hi = np.dot(X[i,:], G.T)+b HTy = np.zeros(p)
HTH += np.outer(hi, hi) block = p
HTy += y[i]*hi for i in range(int(np.ceil(n/block))+1):
if i % 1000==0: print(i) Hi = np.dot(X[i*block:min(n, (i+1)*block),:], G.T)+b
HTH += np.dot(Hi.T, Hi)

:k-------~=r HTy += np.dot(Hi.T, y[i*block:min(n, (i+1l)*block)])

w = np.linalg.solve(HTH + lam*np.eye(p), HTy)

For each block compute the memory required in terms of n, p, d.
If d << p << n, what is the most memory efficient program (blue, green, red)?
If you have unlimited memory, what do you think is the fastest program?
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Standard Machine Learning Problem Setup

= Have a bunch of iid data:
{(xiy) ey x; €RY y; € R
= Want to learn a model’s parametersr:b
Each /;(w) is convex. > li(w)
1=1



Machine Learning Problems

= Have a bunch of iid data:
(T, yi) fim1 x4 € R y; € R

= Want to learn a model’s parameters:

Each ¢;(w) is convex. > li(w)
i=1
Yy
g is a subgradient at x if
v 7 fly) > f(z) +g" (y — =)
f convex:
fz+(1=Ny) <Af(x)+ (1= Nf(y) Va,y, A € [0,1]

fy) > f(x) + Vf(2)" (y - =) v,y



Taylor Series Approximation, 1-d

fa+0) = fx)+ f(@)d+ 31" (2)0" + ...

= Gradient descent:



Taylor Series Approximation, d dimensions

flx4+v)=flx)+ V() v+ 0" Vif(z)v+...

» Gradient descent:



Gradient Descent, LS f(w) = 3||Xw —y| E

Viw)= XT'(Xw—-y) = X"Xw - X"y
Wi41 = Wg — va(wt)
= (I — X" X)w; +nX"y

If, in round t, we ended up at wx: W, = (XTX)_lXTy

(Wi —wi) = (I = X X)(wp — wi) = X" Xw, + 09Xy



Gradient Descent, LS f(w) = 3||Xw —y| E

w1 = wy — NV f(wg)
(Wer1 — wy) = (I — X" X) (wy — wy)
= (I — nXTX)" (wg — wy)



Gradient Descent for Logistic Regression

Loss function: Conditional Likelihood

{(%,yz) ?:1 Ti € Rd, y; € {—1,1}

1
1 + exp(—yw'x)

mn
WA LE :argmt?XHP(yi\xi,w) P(Y =ylz,w) =
i=1

f(w) = argmin ) log(1 + exp(—y; z] w))
1=1

VI (w) =
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What is a convex set?

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

Examples of convex sets

Examples of non-convex functions: anything else

v | $O




What is a convex function?

A function f: R — R is convex if f((1 — XNz + Ay) < (1 = N)f(x) + Af(y)
for all z,y € K and \ € [0, 1]

Examples of convex functions: “look like bowls”

N

Examples of non-convex functions: anything else




Convex functions and convex sets?

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

A function f: RY — R is convex if f((1 — XNz + Ay) < (1 = N)f(2) + Af(y)
for all z,y € K and \ € [0, 1]

A function f : R? — R is convex if the set {(z,t) € R4l : f(x) <t} is convex




More definitions of convexity

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

A function f:R? — R is convex if the set {(z,t) € R : f(x) <t} is convex

A function f : R? — R that is differentiable everywhere is convex if
fly) > f(x) +Vf(z)" (y—z) for all z,y € dom(f)

~_ -




More definitions of convexity

A set K C RY is convex if (1 — Az + Ay € K for all 2,y € K and ) € [0, 1]

A function f:R? — R is convex if the set {(z,t) € R : f(x) <t} is convex

A function f : R? — R that is differentiable everywhere is convex if
fly) > f(x) +Vf(z)" (y—z) for all z,y € dom(f)

A function f : R? — R that is twice-differentiable everywhere is convex if
V2f(z) = 0 for all x € dom(f)

~_ -




Why do we care about convexity?

Convex functions
- All local minima are global minima
- Efficient to optimize (e.g., gradient descent)

Convex Function Non-convex Function

N L




Gradient Descent

Initialize: wg =0
fort=1,2,...
w1 = wy — NV f(wy)

Convex Function Non-convex Function

NV




Sub-Gradient Descent

Initialize: wg = 0
fort=1,2,...
Find any ¢ such that f(y) > f(w:) + ¢, (y — wy)

Wiy1 = W — NGt
g is a subgradient at z if f(y) > f(z) + 9" (y — x)

Convex Function Non-convex Function

N




Coordinate descent

Initialize: wg = 0

fort=1,2,...
Let i, =t % n
it it 0 f(w)
w£+%:w£ )—77

' (‘9w(@t) W=Wt

Special case:



Machine Learning Problems

= Given data:
{(zi,yi) }ieq T; € R? y; € R

= Learning a model’s parameters: Z i(w)
1=1

Logistic Loss: ¢;(w) = log(1 + exp(—y; z} w))
Squared error Loss: £;(w) = (y; — z w)?

Gradient Descent:

1 n
= w3 iw) )|
wir1 = wg —nV <n 2 (w)) o



Optimization summary

= You can always run gradient descent whether f is
convex or not. But you only have guarantees if f is
convex

= Many bells and whistles can be added onto gradient
descent such as momentum and dimension-specific
step-sizes (Nesterov, Adagrad, ADAM, etc.)



Stochastic Gradient
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Machine Learning Problems

= Given data:
{(zs,y)Hiew € RY y; € R

= Learning a model’s parameters: Z i(w)
1=1

W41 — Wt — an

Gradient Descent: ( n ) |

U3 biw)

=1



Machine Learning Problems

= Given data:
(i, yi) biza Ti € R y; € R

n
= Learning a model’s parameters: Z i(w)
1=1

Gradient Descent:

1 n
— — w | ez |
wir1 = wg — NV (n ;:1 (w)) s

Stochastic Gradient Descent:
I; drawn uniform at

W1 = W — NVwlr, (w)‘w:w random from {1,...,n}

E[VEr, (w)] =



Machine Learning Problems

n
= Learning a model’s parameters: Z i (w)
1=1

Stochastic Gradient Descent:
I; drawn uniform at

W41 = Wy — NVl (’w)|w:wt random from {1,...,n}

E[V{r, (w)] = VI(w)



Stochastic Gradient Descent

Theorem
Let  wii1 = wy — NVl (w)‘w:w f;fésznf;g?ﬁ at SO that
E[Ver, (w Z Vi (w)

it Jlwr —wol|2 <R and supmax|Vi(w)a <G then

R nG RG
< + 2y =2
=9rp 2 VT

5=

o

(In practice use Iast |terate)

ﬂ |



Stochastic Gradient Descent

Proof

Efl|wesr — will3] = Elllwe — nVer, (we) — w|[3]



Stochastic Gradient Descent

Proof

Efl|wesr — will3] = Elllwe — nVer, (we) — w|[3]

= E[|lwy — w.|[3] — 20E[V 41, (wy) T (we — w,)] + n°E[| |V, (we)]|3]

< E[|we — w.[3] — 20E[¢(w,) — £(w.)] + G

E[V/{, (we) ! (wy — wy)] = E[E[Vﬁjt (we) (wy — wi)| L1, w1, ..., Ti—1, wt_lﬂ

=E [Vl (w)" (0 — w,)]
> E[{(w;) — L(w,)]

T

1
> E[l(w) — H(w.)] < P (Elllwr = wl[3] = Eflfwrs1 — wil3] + Tn*G)
= R TnG
<
27 2



Stochastic Gradient Descent

Proof

Jensen’s inequality:
For any random Z € R? and convex function ¢ : R — R, ¢(E[Z]) < E[p(Z)]

t=1

T
= 1
B{H(@) — f(w)] < 7 OBltw) —fws)] 0=
t=1



Stochastic Gradient Descent

Proof

Jensen’s inequality:
For any random Z € R? and convex function ¢ : R — R, ¢(E[Z]) < E[p(Z)]

T
] e 1
B{e() ~ ()] < 7 3 Eft(we) - €] W= ; w
_ R nG RG R
Ew(w) - E(w*)] < ﬁ -+ 7 < T n = aT




Mini-batch SGD

Instead of one iterate, average B stochastic gradient together

Advantages:

- de-noises gradient
- Matrix computations
- Parallelization



Stochastic Gradient
Descent: A Learning
perspective




Learning Problems as Expectations

> Minimizing loss in training data:
Given dataset:
> Sampled iid from some distribution p(x,y) on features:
Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

1 N
{p(w) = N Zé(w,xj)
J=1
> However, we should really minimize expected loss on all data:

l(w) = Ex [l(w,x)] = | p(x)l(w,x)dx

> S0, we are approximating the integral by the average on the training data



Gradient descent in Terms of Expectations

> “True” objective function:
0(w) = Bx [t(w,)] = [ p(x)e(w, x)dx
> Taking the gradient:

> “True” gradient descent rule:

> How do we estimate expected gradient?



Warm up - Revisited

# generate some nonsense data for an example 1 ﬂoatin»bﬁlHiPY'::S bytes
X = np.random.randn(n,d) 106 ~~ 220 bytes =1 MB
y = np.random.randn(n) 109 szso bytes:: 1 GB
|
# generate the random features
G = np.random.randn(p, d)*np.sqrt(.1l)
b = np.random.rand(p)*2*np.pi H = np.dot (X, G.T) + b.T

.
1{44””)’ HTH = np.dot(H.T, H)
# construct HTH HTy = np.dot(H.T, y)

HTH = np.zeros((p,p)) /,
HTY = np.zeros(P) # construct HTH
for i in range(n): HTH = np.zeros((p,pP))
hi = np.dot(X[i,:], G.T)+b HTy = np.zeros(p)
HTH += np.outer(hi, hi) block = p
HTy += y[i]*hi for i in range(int(np.ceil(n/block))+1):
if i % 1000==0: print(i) Hi = np.dot(X[i*block:min(n,(i+l)*block),:], G.T)+b
HTH += np.dot(Hi.T, Hi)

:k-------~=r HTy += np.dot(Hi.T, y[i*block:min(n, (i+1l)*block)])

w = np.linalg.solve(HTH + lam*np.eye(p), HTy)

For each block compute the memory required in terms of n, p, d.
If d << p << n, what is the most memory efficient program (blue, green, red)?
If you have unlimited memory, what do you think is the fastest program?



