Warm up

```
1 float in NumPy = 8 bytes
      # generate some nonsense data for an example
                                                                          10^6 \approx 2^{20} bytes = 1 MB
      X = np.random.randn(n,d)
      y = np.random.randn(n)
                                                                          10^9 \approx 2^{30} bytes = 1 GB
        # generate the random features
        G = np.random.randn(p, d)*np.sqrt(.1)
        b = np.random.rand(p)*2*np.pi
                                                          H = np.dot(X, G.T) + b.T
                                                          HTH = np.dot(H.T, H)
                                                           HTy = np.dot(H.T, y)
# construct HTH
HTH = np.zeros((p,p))
                                     # construct HTH
HTy = np.zeros(p)
                                     HTH = np.zeros((p,p))
for i in range(n):
                                     HTy = np.zeros(p)
   hi = np.dot(X[i,:], G.T)+b
                                     block = p
   HTH += np.outer(hi, hi)
                                     for i in range(int(np.ceil(n/block))+1):
   HTy += y[i]*hi
                                         Hi = np.dot(X[i*block:min(n,(i+1)*block),:], G.T)+b
    if i % 1000==0: print(i)
                                         HTH += np.dot(Hi.T, Hi)
                                         HTy += np.dot(Hi.T, y[i*block:min(n,(i+1)*block)])
                  w = np.linalg.solve(HTH + lam*np.eye(p), HTy)
```

For each block compute the memory required in terms of n, p, d.

If d << p << n, what is the most memory efficient program (blue, green, red)? If you have unlimited memory, what do you think is the fastest program?

Gradient Descent

Standard Machine Learning Problem Setup

Have a bunch of iid data:

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d \qquad y_i \in \mathbb{R}$$

Want to learn a model's parameters:

Each
$$\ell_i(w)$$
 is convex.
$$\sum_{i=1}^{\infty} \ell_i(w)$$

Have a bunch of iid data:

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R}$$

Want to learn a model's parameters:

Each
$$\ell_i(w)$$
 is convex.

$$\sum_{i=1}^{n} \ell_i(w)$$

g is a subgradient at x if $f(y) \ge f(x) + g^{T}(y - x)$

f convex:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \qquad \forall x, y, \lambda \in [0, 1]$$

$$f(y) \ge f(x) + \nabla f(x)^{T}(y - x) \qquad \forall x, y$$

Taylor Series Approximation, 1-d

$$f(x + \delta) = f(x) + f'(x)\delta + \frac{1}{2}f''(x)\delta^2 + \dots$$

Gradient descent:

Taylor Series Approximation, d dimensions

$$f(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v + \dots$$

Gradient descent:

Gradient Descent, LS

$$f(w) = \frac{1}{2}||Xw - y||_2^2$$

$$\nabla f(w) = \mathbf{X}^T (\mathbf{X}w - \mathbf{y}) = \mathbf{X}^T \mathbf{X}w - \mathbf{X}^T \mathbf{y}$$

$$w_{t+1} = w_t - \eta \nabla f(w_t)$$

$$= (I - \eta \mathbf{X}^T \mathbf{X})w_t + \eta \mathbf{X}^T \mathbf{y}$$

If, in round t, we ended up at w*:

$$w_* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$(w_{t+1} - w_*) = (I - \eta \mathbf{X}^T \mathbf{X})(w_t - w_*) - \eta \mathbf{X}^T \mathbf{X} w_* + \eta \mathbf{X}^T \mathbf{y}$$

Gradient Descent, LS

$$f(w) = \frac{1}{2}||Xw - y||_2^2$$

$$w_{t+1} = w_t - \eta \nabla f(w_t)$$

$$(w_{t+1} - w_*) = (I - \eta X^T X)(w_t - w_*)$$

$$= (I - \eta X^T X)^{t+1}(w_0 - w_*)$$

Gradient Descent for Logistic Regression

Loss function: Conditional Likelihood

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, \ y_i \in \{-1, 1\}$$

$$\widehat{w}_{MLE} = \arg \max_{w} \prod_{i=1}^n P(y_i | x_i, w) \qquad P(Y = y | x, w) = \frac{1}{1 + \exp(-y w^T x)}$$

$$f(w) = \arg \min_{w} \sum_{i=1}^n \log(1 + \exp(-y_i x_i^T w))$$

$$\nabla f(w) =$$

Convexity

What is a convex set?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

Examples of convex sets

Examples of non-convex functions: anything else

What is a convex function?

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in K$ and $\lambda \in [0, 1]$

Examples of convex functions: "look like bowls"

Examples of non-convex functions: anything else

Convex functions and convex sets?

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if $f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y)$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x,t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex

More definitions of convexity

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x,t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is differentiable everywhere is convex if $f(y) \geq f(x) + \nabla f(x)^\top (y-x)$ for all $x, y \in dom(f)$

More definitions of convexity

A set $K \subset \mathbb{R}^d$ is convex if $(1 - \lambda)x + \lambda y \in K$ for all $x, y \in K$ and $\lambda \in [0, 1]$

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if the set $\{(x,t) \in \mathbb{R}^{d+1} : f(x) \leq t\}$ is convex

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is differentiable everywhere is convex if $f(y) \geq f(x) + \nabla f(x)^{\top} (y - x)$ for all $x, y \in dom(f)$

A function $f: \mathbb{R}^d \to \mathbb{R}$ that is twice-differentiable everywhere is convex if $\nabla^2 f(x) \succeq 0$ for all $x \in dom(f)$

Why do we care about convexity?

Convex functions

- All local minima are global minima
- Efficient to optimize (e.g., gradient descent)

Gradient Descent

Initialize:
$$w_0 = 0$$

for
$$t = 1, 2, ...$$

$$w_{t+1} = w_t - \eta \nabla f(w_t)$$

Convex Function

Non-convex Function

Sub-Gradient Descent

Initialize: $w_0 = 0$

for
$$t = 1, 2, ...$$

Find any g_t such that $f(y) \ge f(w_t) + g_t^{\top}(y - w_t)$ $w_{t+1} = w_t - \eta g_t$

g is a subgradient at x if $f(y) \ge f(x) + g^T(y - x)$

Convex Function

Non-convex Function

Coordinate descent

Initialize:
$$w_0 = 0$$

for $t = 1, 2, ...$
Let $i_t = t \% n$

$$w_{t+1}^{(i_t)} = w_t^{(i_t)} - \eta_t \frac{\partial f(w)}{\partial w^{(i_t)}} \Big|_{w = w_t}$$

Special case:

Given data:

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R}$$

- Learning a model's parameters: $\sum_{i=1}^{n} \ell_i(w)$

Logistic Loss:
$$\ell_i(w) = \log(1 + \exp(-y_i x_i^T w))$$

Squared error Loss:
$$\ell_i(w) = (y_i - x_i^T w)^2$$

Gradient Descent: $w_{t+1} = w_t - \eta \nabla_w \left(\frac{1}{n} \sum_{i=1}^n \ell_i(w) \right) \Big|_{w=w_t}$

Optimization summary

- You can always run gradient descent whether f is convex or not. But you only have guarantees if f is convex
- Many bells and whistles can be added onto gradient descent such as momentum and dimension-specific step-sizes (Nesterov, Adagrad, ADAM, etc.)

Given data:

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R}$$

- Learning a model's parameters: $\sum_{i=1}^n \ell_i(w)$

Gradient Descent:
$$w_{t+1} = w_t - \eta \nabla_w \left(\frac{1}{n} \sum_{i=1}^n \ell_i(w) \right) \Big|_{w=w_t}$$

Given data:

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d \quad y_i \in \mathbb{R}$$

• Learning a model's parameters: $\sum_{i=1}^{n} \ell_i(w)$

$$w_{t+1} = w_t - \eta \nabla_w \left(\frac{1}{n} \sum_{i=1}^n \ell_i(w) \right) \Big|_{w=w_t}$$

Stochastic Gradient Descent:

$$w_{t+1} = w_t - \eta \nabla_w \ell_{I_t}(w) \Big|_{w=w_t}$$
 I_t drawn uniform at random from $\{1, \dots, n\}$

$$\mathbb{E}[\nabla \ell_{I_t}(w)] =$$

Learning a model's parameters:

$$\sum_{i=1}^{n} \ell_i(w)$$

Stochastic Gradient Descent:

$$w_{t+1} = w_t - \eta \nabla_w \ell_{I_t}(w) \Big|_{w = w_t}$$

$$I_t$$
 drawn uniform at random from $\{1, \ldots, n\}$

$$\mathbb{E}[\nabla \ell_{I_t}(w)] = \nabla \ell(w)$$

Theorem

Let
$$w_{t+1} = w_t - \eta \nabla_w \ell_{I_t}(w) \Big|_{w=w_t}$$
 I_t drawn uniform at random from $\{1,\ldots,n\}$ so that

$$\mathbb{E}\big[\nabla \ell_{I_t}(w)\big] = \frac{1}{n} \sum_{i=1}^n \nabla \ell_i(w) =: \nabla \ell(w)$$

If
$$\|w_1-w_0\|_2^2 \leq R$$
 and $\sup_{w} \max_{i} \|\nabla \ell_i(w)\|_2 \leq G$ then

$$\mathbb{E}[\ell(\bar{w}) - \ell(w_*)] \le \frac{R}{2T\eta} + \frac{\eta G}{2} \le \sqrt{\frac{RG}{T}} \qquad \eta = \sqrt{\frac{R}{GT}}$$

$$\bar{w} = \frac{1}{T} \sum_{t=1}^{T} w_t$$

(In practice use last iterate)

Proof

$$\mathbb{E}[||w_{t+1} - w_*||_2^2] = \mathbb{E}[||w_t - \eta \nabla \ell_{I_t}(w_t) - w_*||_2^2]$$

Proof

$$\mathbb{E}[||w_{t+1} - w_*||_2^2] = \mathbb{E}[||w_t - \eta \nabla \ell_{I_t}(w_t) - w_*||_2^2] \\
= \mathbb{E}[||w_t - w_*||_2^2] - 2\eta \mathbb{E}[\nabla \ell_{I_t}(w_t)^T(w_t - w_*)] + \eta^2 \mathbb{E}[||\nabla \ell_{I_t}(w_t)||_2^2] \\
\leq \mathbb{E}[||w_t - w_*||_2^2] - 2\eta \mathbb{E}[\ell(w_t) - \ell(w_*)] + \eta^2 G \\
\mathbb{E}[\nabla \ell_{I_t}(w_t)^T(w_t - w_*)] = \mathbb{E}[\mathbb{E}[\nabla \ell_{I_t}(w_t)^T(w_t - w_*)|I_1, w_1, \dots, I_{t-1}, w_{t-1}]] \\
= \mathbb{E}[\nabla \ell(w_t)^T(w_t - w_*)] \\
\geq \mathbb{E}[\ell(w_t) - \ell(w_*)] \\
\geq \mathbb{E}[\ell(w_t) - \ell(w_*)] \\
\leq \frac{R}{2\eta} + \frac{T\eta G}{2}$$

Proof

Jensen's inequality:

For any random $Z \in \mathbb{R}^d$ and convex function $\phi : \mathbb{R}^d \to \mathbb{R}$, $\phi(\mathbb{E}[Z]) \leq \mathbb{E}[\phi(Z)]$

$$\mathbb{E}[\ell(\bar{w}) - \ell(w_*)] \le \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\ell(w_t) - \ell(w_*)] \qquad \bar{w} = \frac{1}{T} \sum_{t=1}^{T} w_t$$

Proof

Jensen's inequality:

For any random $Z \in \mathbb{R}^d$ and convex function $\phi : \mathbb{R}^d \to \mathbb{R}$, $\phi(\mathbb{E}[Z]) \leq \mathbb{E}[\phi(Z)]$

$$\mathbb{E}[\ell(\bar{w}) - \ell(w_*)] \le \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\ell(w_t) - \ell(w_*)] \qquad \bar{w} = \frac{1}{T} \sum_{t=1}^{T} w_t$$

$$\mathbb{E}[\ell(\bar{w}) - \ell(w_*)] \le \frac{R}{2T\eta} + \frac{\eta G}{2} \le \sqrt{\frac{RG}{T}} \qquad \eta = \sqrt{\frac{R}{GT}}$$

$$\eta = \sqrt{\frac{R}{GT}}$$

Mini-batch SGD

Instead of one iterate, average B stochastic gradient together

Advantages:

- de-noises gradient
- Matrix computations
- Parallelization

Stochastic Gradient Descent: A Learning perspective

Learning Problems as Expectations

- > Minimizing loss in training data:
 - Given dataset:
 - > Sampled iid from some distribution p(\mathbf{x} , \mathbf{y}) on features:
 - Loss function, e.g., hinge loss, logistic loss,...
 - We often minimize loss in training data:

$$\ell_{\mathcal{D}}(\mathbf{w}) = \frac{1}{N} \sum_{j=1}^{N} \ell(\mathbf{w}, \mathbf{x}^j)$$

> However, we should really minimize expected loss on all data:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

> So, we are approximating the integral by the average on the training data

Gradient descent in Terms of Expectations

> "True" objective function:

$$\ell(\mathbf{w}) = E_{\mathbf{x}} \left[\ell(\mathbf{w}, \mathbf{x}) \right] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x}$$

> Taking the gradient:

> "True" gradient descent rule:

> How do we estimate expected gradient?

Warm up - Revisited

```
1 float in NumPv = 8 bytes
      # generate some nonsense data for an example
                                                                          10^6 \approx 2^{20} bytes = 1 MB
      X = np.random.randn(n,d)
      y = np.random.randn(n)
                                                                          10^9 \approx 2^{30} bytes = 1 GB
        # generate the random features
        G = np.random.randn(p, d)*np.sqrt(.1)
        b = np.random.rand(p)*2*np.pi
                                                          H = np.dot(X, G.T) + b.T
                                                          HTH = np.dot(H.T, H)
                                                           HTy = np.dot(H.T, y)
# construct HTH
HTH = np.zeros((p,p))
                                     # construct HTH
HTy = np.zeros(p)
                                     HTH = np.zeros((p,p))
for i in range(n):
                                     HTy = np.zeros(p)
   hi = np.dot(X[i,:], G.T)+b
                                     block = p
   HTH += np.outer(hi, hi)
                                     for i in range(int(np.ceil(n/block))+1):
   HTy += y[i]*hi
                                         Hi = np.dot(X[i*block:min(n,(i+1)*block),:], G.T)+b
    if i % 1000==0: print(i)
                                         HTH += np.dot(Hi.T, Hi)
                                         HTy += np.dot(Hi.T, y[i*block:min(n,(i+1)*block)])
                  w = np.linalg.solve(HTH + lam*np.eye(p), HTy)
```

For each block compute the memory required in terms of n, p, d.

If d << p << n, what is the most memory efficient program (blue, green, red)? If you have unlimited memory, what do you think is the fastest program?