

15th Annual OSC Readiness Training Program

Waste Fires Landfillology

Paul Ruesch, EPA Region 5 Michelle Rogow, Region 9 Dan Shane, Region 9 Todd Thalhamer, State of California

> Version OSC 2012

Todd Thalhamer, P.E.

- Environmental Engineer with 19 years experience in waste issues
 - 17 years of firefighting experience
 - Currently a volunteer Lieutenant for El Dorado Hills Fire, California
 - Developed a new firefighting concept called environmental suppression, which balances the impact of firefighting with the environment
 - Consulted on over 45 waste fire projects in the US and Internationally
- IC for the Longest Burning Tire Fire in the US
 - President of Hammer Consulting

Projects

- 2008 Instructor/Presenter for Landfill Fire Seminar, B.C., Canada
- 2008 Instructor/Presenter for International Tire Conference, San Diego California
- 2008 to 2007 Waimanalo Gulch Landfill Heating Event, Hawaii
- 2008 to 2007 Kailua-Kona Landfill Fire Suppression Project, Hawaii
- 2008 to 2007 Lawson Illegal Disposal Site Subsurface Debris Fire, Riverside County, CA
- 2007 City of Kingston Landfill Fire, Jamaica
- 2007 Helotes Debris Fire, San Antonio, Texas
- 2006 Landfill Fire Conference, Ohio
- 2006 Landfill Fires Guidance Document Final, CIWMB
- 2006 Candlestick Point Subsurface Fire, San Francisco, California
- 2006 Minimize Landfill Fire and Losses, Panel Member, Washington D.C.
- 2006-2003 Tracy Tire Fire Remediation Project, San Joaquin County, California.
- 2006 Landfill Fire Conference, Instructor/Presenter, Ohio EPA
- 2006 Landfill fire, Australia, Pollution Response Agency
- 2004 Chalan Pago Kajiyama Hardfill Facility Fire, Guam
- 2003 Archie GOH Debris Fire, Fresno, California
- 2003 Woodlake Sanitary Landfill, Loretto, Minnesota
- 2003 Idaho Tire Recovery Pile Evaluation, Lincoln County, Idaho
- 2002 Greenhill Road Illegal Landfill/Debris Fire, Johnston, Rhode Island
- 2002 Superior Greentree Landfill Fire, Kersey, Pennsylvania
- 2002 Instructor/Presenter for Tire Fire Response, US EPA
- 2002 Naco Landfill Fire, Naco, Mexico
- 2001 Hunter's Point Landfill, US Navy, San Francisco, California
- 2001 Shredded Tire Facility in Ohlsdorf, Austria
- 2000 Tracy Tire Fire Suppression Project, San Joaquin County, CA
- 2000 Instructor/Presenter for Environmental Suppression Workshop, Sacramento County, CA
- 2000 Andersen Air Force Base Landfill Cap Evaluation, Guam, USA
- 1999 Illegal Green Waste Pile, Guam USA
- 1999 Cajon Illegal Landfill Fire, San Bernardino County, California
- 1998-1999 Hawaiian Island Landfill Fires, Hawaii
- 1998 Ordot Tire and Landfill Fire, Guam, USA
- 1998 Tracy Tire Fire, San Joaquin County, California
- 1997 Westley Tire Fire, Stanislaus County, California
- 1997 Lone Pine Landfill Fire, Inyo County, California
- 1996 Panoche Tire Fire, Fresno County, California
- **1994** Gillespie Landfill Fire, San Diego County, California
- 1992 Berry Street Mall Landfill Fire, Sacramento County, CA

Objective

To be aware of the risks and hazards of waste fires whether you are an operator, responder, regulator, or consultant

Landfillology for 1st Responders

What are the risks and safety concerns from a fire at a waste facility

Risk Community Containments Cancer Safety Protection Prevention PPE

Hazards?

Waste LF Engineering Controls Equipment Working Face MOVES – New Roads LF Gasses Confined Spaces Collapses Rescues

Safe Operations

Safe Operations?

Frequency of Waste Fires

1. Landfills (Closed/Operating LF and Transfer Stations)

- 2. Wood/Sawdust Storage
- 3. C&D Facilities
- 4. Tire Facilities
- **5.** Recycling Facilities

Toxicity of Waste Fires

Source: Opinion of Mr. Thalhamer, P.E.

Landfill (LF) 101

A specially engineered site for disposing of waste on land, constructed so that it will reduce hazard to <u>public</u> health and safety

All landfills will have specific hazards to employees and responders

Types of Landfills (LF)

Inert/Construction and Demolition Class IV Municipal Solid Waste Class III Industrial Class II Hazardous Class I

Other Storage Waste Sites

Transfer Stations
Waste Incinerators
Plasma Converters
Recycling Centers
Tire Storage

Types of Waste

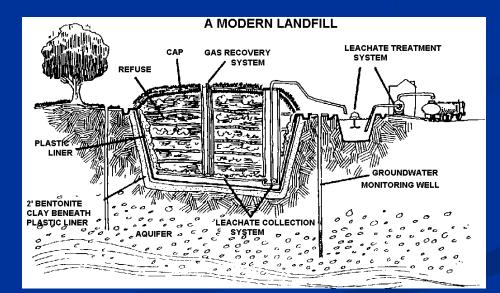
- Household Trash
- Yard Waste
- Construction and Demo
- Contaminated Soil
- Hazardous Waste
- Industrial Waste
- Tires
- Ag Waste
- Bio Solids
- Asbestos

- Liquid Waste
- E-Waste
- Medical Waste
- Auto Shedder Fluff
- Metal Waste
- Animal Waste
- Chemically Treated Lumber
- Appliances
- Radioactive
- Etc

How Much Trash Per Year

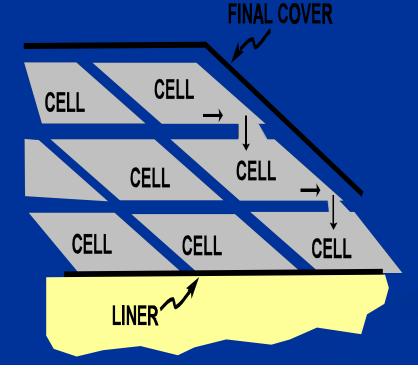
In the US

251 million Tons/year (CA 36% waste stream)
 Per Truck @ 20 Tons = 12.5 million loads


Source: www.usepa.gov

Energy of Waste

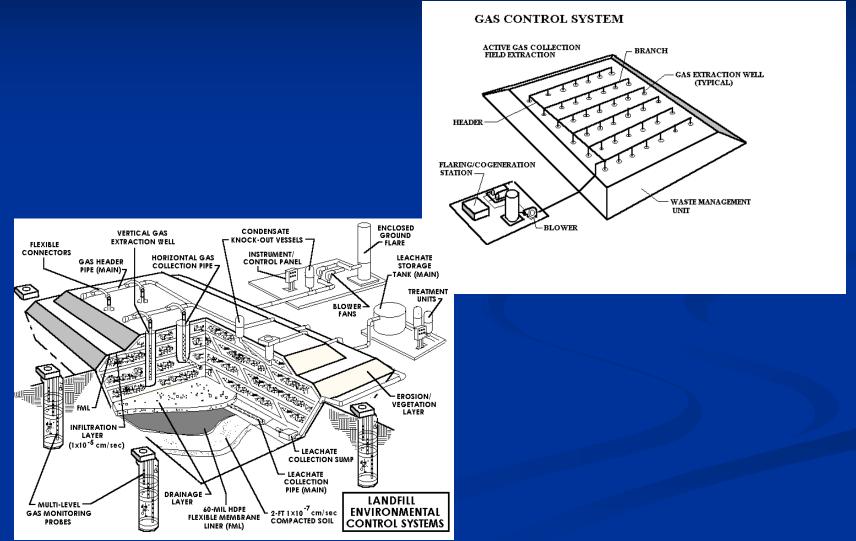
Solid waste is a high energy fuel: MSW is 4,000 to 7,000 BTU/lb Demolition/Land-Clearing/Construction waste is 6,500 BTU/lb Gasoline is 15,000 BTU/lb For example, Landfill Active Face: Place 400 tons daily (CA – PH takes 7500 T/D) equivalent to 42,666 gallons of gasoline


LF Engineering Controls

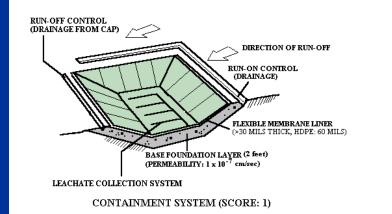
Cover/Cap
LF gas collection
Liners
Leachate collection
GW monitoring wells

Construction

Cell by Cell with daily cover
What type of daily cover
Compaction



Overview LF


LF Gas Collection System (GCS)

Liners and Leachate

Issues

Using Leachate as suppression water?

Gas Collection

Typical Modern LF

Combustion 101

Ignition

Ignition can be divided into two types
 Due to external heating
 Due to internal heating (aka self-heating)

External – match ignites paper
Internal – hay pile ignites/linseed-oil rags

Low Temperature Ignition

 Lowest documented temperature at which a fire was report involved a hot-water pipe operating at 77°C (170°F)

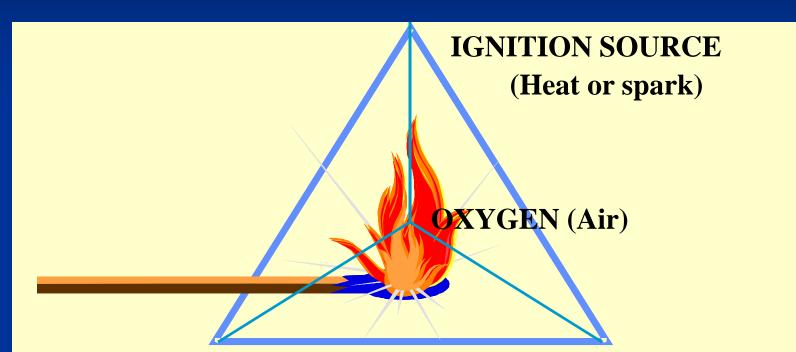
> Source: Vytenis Babrauskas, Ignition Handbook, 2003

Spontaneous Ignition

Definition

"Chemical or biological process that generates sufficient heat to ignite the reaching materials"

Combustion


 Fire is an self-sustaining exothermic oxidation reaction that generates heat and light

- Two Types
 - Flaming
 - Smoldering

Source: Kirk's Fire Investigation, 2007

Fire Tetrahedron

FUEL SOURCE (**Refuse of Gas**) SUSTAINED CHEMICAL REACTION

Flaming

Typically requires oxygen from 21 to 15 %

- Eventually the oxygen concentration (15% to 10%) reaches a limiting concentration that will not support flaming combustion
- Below 10% flaming fire growth is impossible except in post-flashover fires
- That limit is dependent on nature of the fuels and the temp of the combustion gases

Flaming with Limited O₂

Yes

- Oxygen concentrations between 5% and 8% have been observed in room tests with flammable liquids where the ceiling temps are 900 to 1000°C (1652 to 1832°F)
- Post-flashover room fires oxygen concentrations between 0% to 5% when temps in hot gas layer were over 1000°C (1832°F)

Smoldering Combustion

Definition

"The direct combination of a solid fuel with with atmospheric oxygen to generate heat in the asbsence of gaseous flames"

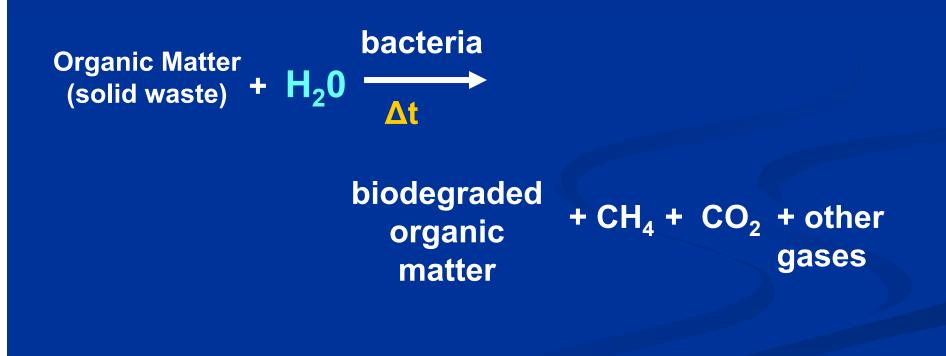
Can result from runaway self-heating
 Smoldering can be started simply by creating a large enough organic pile

Spontaneous Combustion

- A process that increases the temperature of a material without drawing heat from an outside source. [Introduction to Fire Science]
- The process where a waste material is heated by chemical oxidation via biological decomposition to the point of ignition [Thalhamer]
 Smoldering can be started simply by creating a large enough pile of self-heating materials (waste, hay, sawdust, etc.)

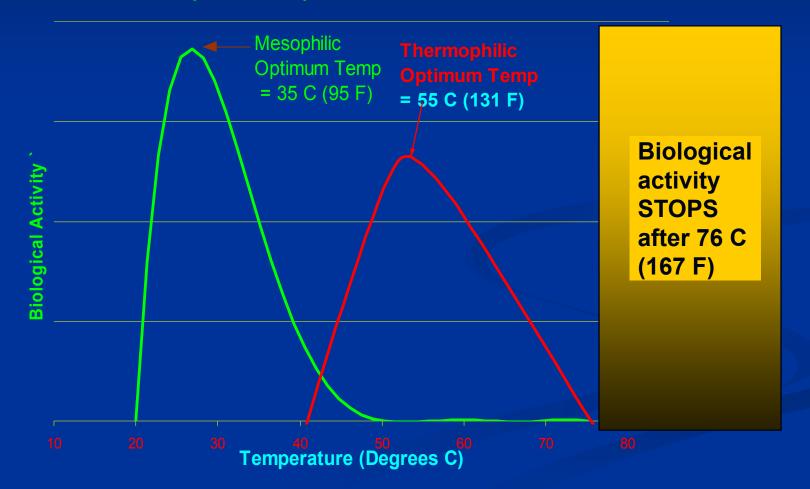
Smoldering Fires

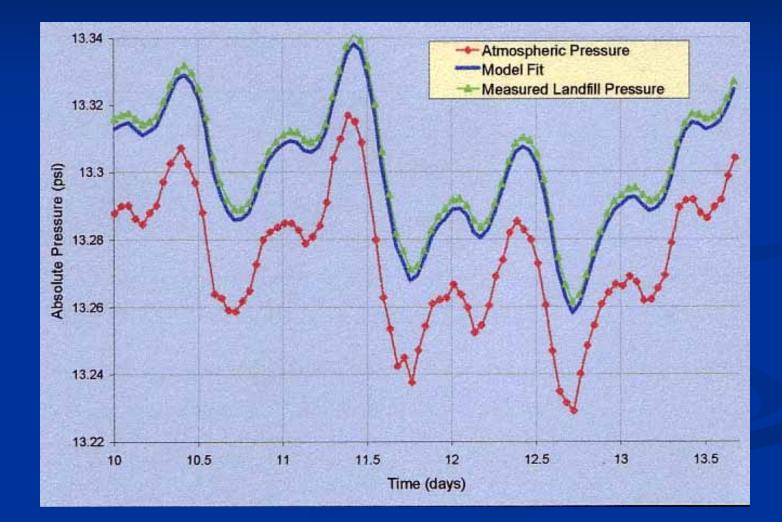
Smoldering Fires will propagate even at oxygen concentrations below 3%
 Produce extensive amounts of carbon monoxide (CO)
 Concentration will range from 1 to 10% (10,000 to 100,000 ppm)


Note: well-ventilated free burning fires produce less that 200 ppm (0.02%)

Underground Fire

Is where spontaneous combustion has occurred in waste materials below the surface.


An underground fire is a smoldering fire



Temperature

Optimum Temperatures for Various Bacteria

Barometric Pressure

2002 Walter, Gary

Hay Fire

 One of the earliest substances known for self-heating

Keys
Microbial Actions
High Moisture
RH from 25% to 95%
RH of 45% is worse case
Chemical Oxidation

Source: Vytenis Babrauskas, Ignition Handbook, 2003

Hay Fire

Three Phases

- 1. Biological Decomposition
- 2. Chemical Oxidization

- 3. Mallard Reaction that forms a dark colored polymer
- Aromatic smell
- Color changes in side
 - Greenish-brown to gold-brown to dark brown to chocolate to black

Other Factors

Gas Extraction Rates
Overpulling
Compaction
Cover
Barometric Pressure
Moisture

Subsurface LF Fire Season?

- Yes, based on empirical data most subsurface fires occur during the spring and fall when barometric pressures are at their greatest Δ
- Any holiday or after 5:00 pm on F/S/S
- 1. Empirical Data: This is information based on observation and experience, not scientific reasoning. Empirical data is often very accurate, although it is not accepted as scientifically sound; however, no area of science is devoid of a real-world/empirical component.

Definitions

ROSE
SOE
Chemical Reaction
Pyrolysis
All the same?

Bottom Line as of 10/2008

- Wood has been show to ignite as low as 77°C (170°F)
- Smoldering fires have been shown to ignite at 172°C (341°F) and as low as 65°C (°149F)
- All anaerobic bacteria die off at 76°C (169°F)
- HDPE melts at 140°C (287°F)

Safe Landfill Temperatures

- NSPS 57°C (135°F) for LF gas
- Liner Manufacture recommendation 65°C (150°F)
- Keep Landfill under 150°F, preferably below 135°F

Video Break