# Wastewater Nutrient Optimization & Nitrogen Removal 2018

#### By

#### Brett Ward Municipal Technical Advisory Service

TN Plant Optimization Program (TNPOP)

1

### Nutrient Removal

- More Complex: Advanced Treatment, Tertiary Treatment
  - Chemical/Physical Treatment
  - Biological Treatment
    - Traditional Treatment-Oxidation Process
    - Nitrogen Removal-Oxidation then Reduction
    - Phosphorus- Reduction then Oxidation
- Complex and often a delicate processes

# AS Review- Plant Configurations

- Plug Flow
  - DO may vary
  - DO demand changes
  - Rate of metabolism changes
  - BOD drops
- Multi Ring Ditch
- ~Intermittent fed SBR



## AS Review- Plant Configuration



- Complete Mix
  - DO ~ equal
  - DO demand ~equal
  - BOD ~ equal
  - Rate of metabolism ~equal
- Single ring ditch
- ~Continuous fed SBR

### Oxidation / Reduction

- Oxidation- add oxygen, releases energy
  - We oxidize BOD, NH<sub>3</sub> to treat sewage, removing the high energy oxygen demanding pollutants.
- Reduction- removes oxygen from NO<sub>2</sub> and NO<sub>3</sub>, reactions that occur when DO is at or near zero.
- PAO's must have both conditions

#### **Bacterial Habitat**



- Different by design
- Different by operations and controls
- Operators must control the bacteria!

#### **Three Different Habitats**

# What are Nutrients? Think Fertilizer

- Nutrients
  - Nitrogen and Phosphorus
  - Two main fertilizer elements needed for growing green plants.
  - They contribute to aquatic plant growth,
  - Excess plant growth clogs streams and,
  - When they die add a organic matter/BOD and nutrient load back onto the stream

7

# How do you remove nutrients?

- Nitrogen
  - Biologically- nitrification followed by denitrification
  - Chemically- ammonia stripping, breakpoint Cl<sub>2</sub>
- Phosphorus
  - Biologically-to ~ 0.5-1.0 mg/L
  - Chemically-with or without biological removal

### NITROGEN REMOVAL

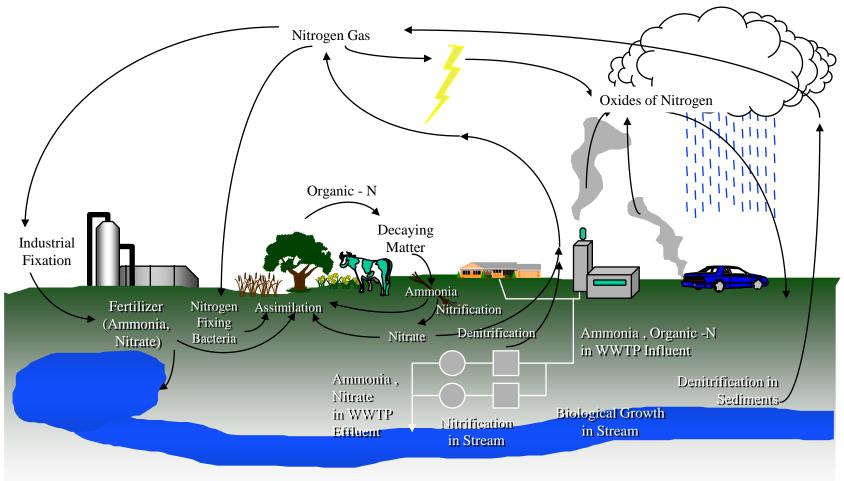
TN Plant Optimization Program (TNPOP)

9

# Forms of Nitrogen in the Environment

#### **Unoxidized Forms**

#### of Nitrogen

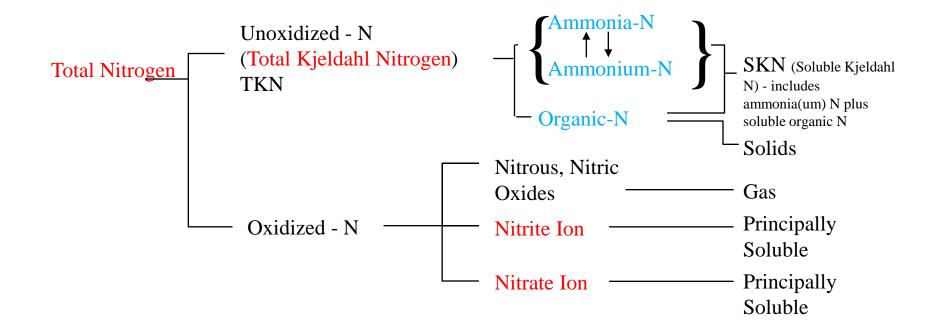

- Nitrogen Gas (N<sub>2</sub>)
   Air is 78 % N<sub>2</sub>
- Ammonia  $(NH_4^+, NH_3)$ 
  - pH 9.0 50%/50%
- Organic Nitrogen (urea, amino acids, peptides, proteins, etc...)

#### **Oxidized Forms**

#### of Nitrogen

- Nitrite  $(NO_2^{-})$
- Nitrate  $(NO_3)$
- Nitrous Oxide (N<sub>2</sub>O) NOS, O<sub>2</sub> fm 21% to 33% anesthetic
- Nitric Oxide (NO)
   Impt. in cell communication,
   precursor of NO<sub>2</sub>
- Nitrogen Dioxide (NO<sub>2</sub>)
   Brown toxic gas & pollutant

## The Nitrogen Cycle






Fate of N: effluent, land, landfill, atmosphere TN Plant Optimization Program (TNPOP) Wastewater Nutrient Optimization & N Removal

Wastewater Nutrient Optimization & N Removal Brett Ward-MTAS

## 4 Tests & 4 Types of Nitrogen



#### Processes to Meet Limits

- <u>Limits</u> Process Products - BOD Organic Oxidation CO<sub>2</sub>, H<sub>2</sub>O, NH<sub>3</sub> - Ammonia Nitrification Nitrite/Nitrate
  - Total Nitrogen
    - Organic Rem. Ammonification
    - Ammonia Rem. Nitrification
    - Nitrite/Nitrate Rem. Denitrification

Ammonia Nitrite/Nitrate Nitrogen Gas

# Nitrogen & Ammonia Sources



- Sewage
- Meat/milk processing
- Hauled in Waste
- Interstate Rest Area
   100mg/L
- Schools, Factories
- Ammonia Refrigeration
- Anaerobic Digester
  - 500-1000 mg/L
  - Leacheate
- STEP or Grinder CS

 1<sup>st,</sup> Organic Nitrogen Removal,
 BOD Bugs Convert Organic Nitrogen (amino acids, proteins in BOD & TSS)(ammonification) to NH<sub>3</sub>

BOD + BOD <sub>Bugs</sub> +  $O_2$  = More BOD <sub>Bugs</sub> +  $CO_2$  +  $H_2O$  +  $NH_3$ 

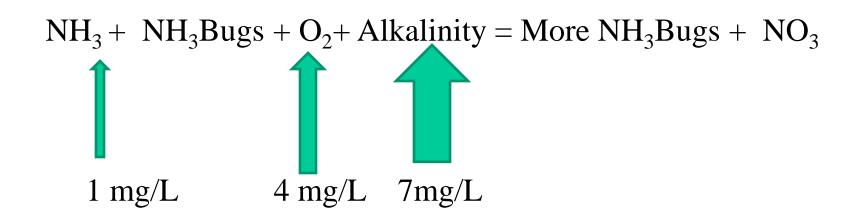


# 2<sup>nd</sup>, Ammonia(NH<sub>3</sub>) Removal

- Nitrification-Biological oxidation of NH<sub>3</sub> to NO<sub>2</sub> then NO<sub>3</sub>
- Removal Factors
  - Plant Design
  - Dissolved Oxygen
  - Microorganisms
  - Alkalinity
  - Temperature
  - No Toxics



# Designs to Remove Ammonia


- Activated Sludge-Extended Aeration, Conventional, Step • Feed (marginal), Contact Stabilization (poor)
- Fixed Film-Trickling Filter, Biotower, RBC, IFAS, MBBR ullet
- Natural/Biological-lagoons, wetlands, often marginal  ${}^{\bullet}$



TN Plant Optimization Program

Brett Ward-MTAS

### Ammonia Conversion Chemistry



#### $NH_3 + AOB's \rightarrow NO_2 + NOB's \rightarrow NO_3$

TN Plant Optimization Program (TNPOP)

Wastewater Nutrient Optimization & N Removal Brett Ward-MTAS

# Dissolved Oxygen

- For each mg/L NH<sub>3</sub> four times as much oxygen is needed as for BOD removal
  - D.O. 1.5-4.0 mg/L, max growth rate at 3.0
  - The most common reason for poor nitrification is low D.O.
  - But, plants will fully nitrify at lower D.O.
     levels, even as low as 0.5 mg/L
  - If DO< 1.5 additional DO may be helpful
  - Hydraulic Detention Time affects

# Nitrification (ammonia removal)

- Two key groups of bacteria
  - AOB's-Ammonia Oxidizing Bacteria, Nitrosomonas, and others
  - NOB's- Nitrite Oxidizing Bacteria, Nitrobacter, and others
  - Autotrophic- energy and carbon from inorganic sources
  - Obligate Aerobes- must have free oxygen

## Nitrification-Microorganisms

- Are there sufficient microorganisms?
  - What is MLSS, or Mean Cell Residence Time (MCRT)
    - MCRT = <u>Total solids in system</u>

Solids Wasted

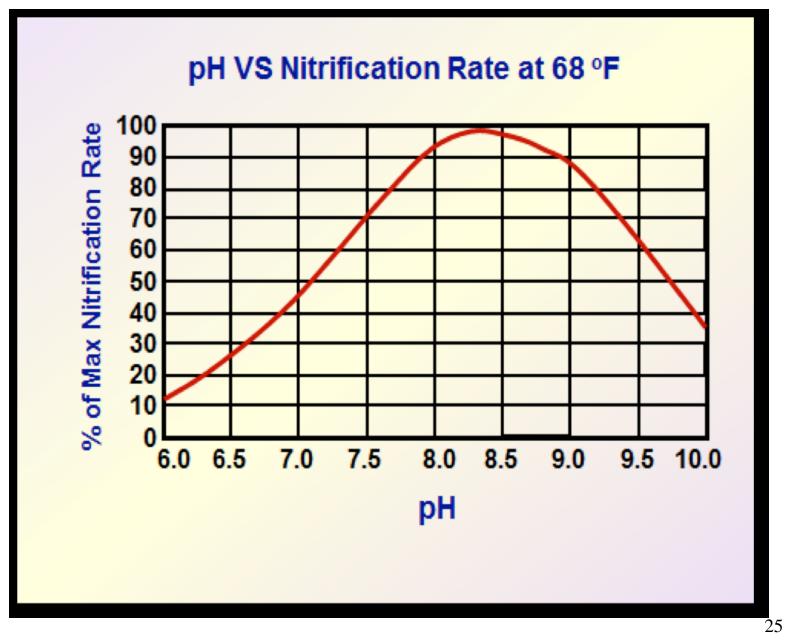
– Generally want MCRT > 2 days, >8 in winter

# Alkalinity

- Alkalinity- capacity of the water to neutralize acid
- Standard Method is a titration test, but for process control "swimming pool" strips are okay




# Alkalinity


- If Alkalinity is low, pH drop also
- Check influent and effluent alkalinity
  - If effluent Alk. < 50mg/L, add alkalinity
  - Influent Alk. < (Influent NH<sub>4</sub> \* 7.14) + 50, add alkalinity
  - If there is a pH drop across the aerator or digester, add alkalinity.
  - Optimum pH is 8.3 s.u.

## Tennessee Alkalinity

Three areas of the state with low alkalinity

 Deep West TN, Cumberland Plateau/Mountains
 and extreme eastern mountains





# Supplemental Alkalinity

- Add high pH materials
  - Caustic, NaOH, Sodium Hydroxide
    - Liquid, very caustic, need feed equipment, cheap
  - Hydrated Lime, Ca(OH)<sub>2</sub>, Calcium Hydroxide
    - Dry powder, very dusty, 50lbs bags, or truckloads
    - Does not dissolve well
  - Mg(OH)<sub>2</sub>, Magnesium Hydroxide, Max pH<9
  - Soda Ash, Na<sub>2</sub>CO<sub>3</sub>, Sodium Carbonate
  - NaHCO<sub>3</sub>, Sodium Bicarbonate, very good but \$

#### Adjust aerator or digester alkalinity

- Use same products used to raise pH
  Alkalinity needed and lbs or product
  - Lbs of alk needed \*0.76 =lbs of lime
  - Lbs of alk needed \* 0.8 = lbs of NaOH
  - Lbs of alk needed \* 1.08= lbs of soda ash
  - Lbs of alk needed \* 1.72= lbs of Sodium
     Bicarbonate

# Temperature impacts Nitrification

- Temperature impacts the rate of oxidation
  - 100% at 29°
  - 55% at 25°
  - 38 % at 20°
  - 25% at 15°
  - 17% at 10°
- Need more bugs and longer MCRT in Winter
- Starting Nitrification at 4° C is ~ impossible

# Toxicity



- Toxics
  - The nitrifying bacteria are wimps!
  - They often are the first to die with a toxic dump
    - Especially the NOB's
  - Quaternary Ammonia compounds
    - ..... "ammonium chloride"....

#### Compounds that Inhibit Nitrification

- Organic Compounds:
- Acetone
- Carbon Disulfide
- Chloroform
- Ethanol
- Monoethanolamine
- <u>Metals and Inorganic Compounds</u>:
- Zinc
- Free Cyanide
- Perchlorate
- Copper
- Mercury
- Chromium
- Nickel
- Silver
- Cobalt
- Thiocyanate

Phenol Ethylenediamine Hexamethylene Diamine Aniline

Sodium CyanideSodium AzideHydrazineSodium CyanatePotassium ChromateCadmiumArsenic (trivalent)FluorideLeadQuaternary Ammonia Compounds30

Wastewater Nutrient Optimization & N Removal Brett Ward-MTAS

# High Effluent Ammonia NH<sub>3</sub>

- Oxidative Pressure
  - More Bugs, longer solids detention time in the aerator, more Air- oxidation rate highest at 3.0 mg/L D.O.
- Longer Hydraulic Detention in Aerator
- Alkalinity additions if needed
- Absence of Toxic impacts
- Temperature

# **Biological Ammonia Oxidation**

• Highest rate of oxidation (removal) is at DO of 3.0 mg/L, Temp of 29°, pH of 8.3, and high reactor ammonia concentrations.

- Treatment is always a compromise,
- Longer HDT and MCRT makes for the various non-optimum conditions.

# Chemical Removal of NH<sub>3</sub>

- Ammonia Stripping
  - At pH 11 and 25° C,
    98% of ammonia is in the gas form and will evaporate to the air.
- Breakpoint chlorination
  - $Cl_2:NH_3$  ration of 10:1
- Ion Exchange



# Denitrification, conversion of NO<sub>3</sub> to Nitrogen Gas



- 1<sup>st</sup> organic N removed
- 2<sup>nd</sup> ammonia removed
- 3<sup>rd</sup> nitrite/nitrate removed
- This should give low Total Nitrogen
- TSS ~ 12% N

34

## **Denitrification Benefits**

- Meet the Permit
- Recycle Oxygen
- Recover Alkalinity/pH
- Improve Effluent
- Select against Filaments
- Improved Solids Proc.
- Save Dollars



# Total Nitrogen Limits

• Total Nitrogen  $TN = TKN + NO_2 + NO_3$ 

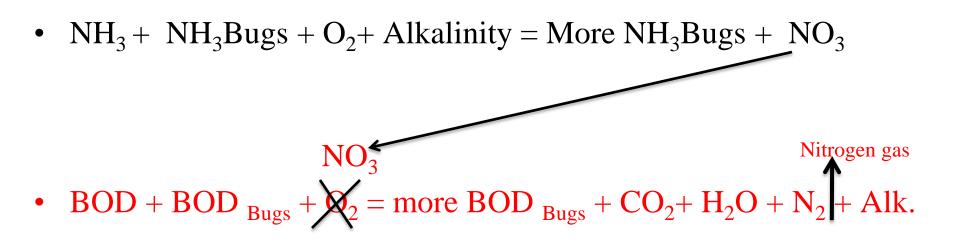
TKN = Organic Nitrogen (BOD & TSS) + Ammonia

NO<sub>2</sub>: generally low

• Nitrate, NO<sub>3</sub> parameter of concern

# Removing Nitrate Through Biological Denitrification

- Create the needed environment
  - Nitrate must be present
  - Anoxic Zone, Dissolved Oxygen < 0.3 mg/L</li>
  - BOD or food must be available
  - BOD organisms must be present
  - ORP to -100mV


37

## **Biological Denitrification**

- Anoxic Process- no free dissolved oxygen
- Heterotrophic bacteria- BOD bugs
  - Facultative- use oxygen or nitrite/nitrate
  - Forced, by design or operations into anoxic respiration for nitrate / nitrogen removal

#### Denitrification

• BOD + BOD <sub>Bugs</sub> +  $O_2$  = More BOD <sub>Bugs</sub> +  $CO_2$  +  $H_2O$  +  $NH_3$ 



## Denitrification, Examples



#### **Clarifier Denitrification-NO!**

#### Settleometer Denitrification

40

TN Plant Optimization Program (TNPOP)

### **Denitrification Efficiency**

- BOD + BOD <sub>Bugs</sub> +  $O_2$  = More BOD <sub>Bugs</sub> +  $CO_2$  +  $H_2O$  +  $NH_3$ 1mg/L 1-1.5 mg/L
- $NH_3 + NH_3Bugs + O_2 + Alkalinity = More NH_3Bugs + NO_3$
- 1 mg/L 4mg/L 7mg/L

• BOD + BOD <sub>Bugs</sub> +  $\lambda_2$  = more BOD <sub>Bugs</sub> + CO<sub>2</sub>+ H<sub>2</sub>O + N<sub>2</sub> + Alk. 1mg/L .35 mg/L 80% 50%

Wastewater Nutrient Optimization & N Removal Brett Ward-MTAS

## Speed of Denitrification

#### Fast

- DO = 0.0 mg/L
- Soluble BOD available

### Slow

- DO > 0.3 mg/L
- Little Food
  - Endogenous
     Respiration
    - Extended Aeration
    - Digester

## Speed of Denitrification

- Dissolved Oxygen vs **Denitrification Rate**
- 0.0 mg/L--100%
- 0.1 mg/L--40%
- 0.2 mg/L--20%
- 0.3 mg/L--10%

- BOD bacteria
  - Soluble BOD vs Particulate BOD
  - pH 6.5-8.5
  - Temperature
    - Slower when cold
    - Faster when warm
      - $2x/10^{\circ}$  C increase

# Removing Nitrate Through Biological Denitrification

- Create the needed environment
  - Nitrate must be present
  - Anoxic Zone, Dissolved Oxygen < 0.3 mg/L</li>
  - BOD or food must be available
  - BOD organisms must be present
  - ORP to -100mV

#### Denitrification & ORP

| ORP<br>Condition       | ORP mV | Process Ranges                          | Process                  |
|------------------------|--------|-----------------------------------------|--------------------------|
| Mildly<br>Negative     | +50    |                                         | Anoxic Zone              |
|                        | 0      | Classic Anoxic Zone                     |                          |
|                        | -50    |                                         |                          |
|                        | -100   | Extended Anoxic Zone                    |                          |
| Moderately<br>Negative | -150   | Classic Ferm Zone<br>Extended Ferm Zone |                          |
|                        | -200   |                                         | Fermentaion Zone         |
|                        | -250   |                                         |                          |
|                        | -300   | *                                       |                          |
| Strongly<br>Negative   | -350   | Fully Anaerobic                         | Anaerobic (Methane) Zone |
|                        | -400   |                                         |                          |
|                        | -450   |                                         |                          |
|                        | -500   | +                                       |                          |

**ORP & Metabolic Processes** 

# **Denitrification Options**

- Post Denitrification with Carbon(CBOD) feed (methanol, glycerin) and filters
- Modified Anoxic/Oxic Activated Sludge
   Modifed Ludzack-Ettinger
- Full Biological Nutrient Removal Design

   Bardenpho
- Anoxic Selector- RAS and Influent
- Off/On Aeration

46 of 50

## Making Your Plant Denitrify

• Locate the basin which best meets the denitrification requirements.

- Primary clarifier, depends of piping
- Aeration basin, perhaps
- Final clarifier, no way!
- Other basins, what do you have?

### Aerator is Common Choice



- Turn the air "OFF",
- Denitrify
- Turn the air back "ON"

## Nitrogen Sources & Fate

#### Sources

- Sewage
  - Organic
  - Inorganic- Ammonia
- Industrial
  - Process wastewater
  - Refrigeration
- Other
  - Trucked in waste
  - Leachate

#### **Fate of Nitrogen**

- Leaves the plant in one of three ways.
  - Effluent
    - Organic, NH<sub>3</sub>, NO<sub>3</sub>
  - Biosolids or sludge
    - Organic, Ammonia, NO<sub>3</sub>
  - Atmosphere
    - Nitrogen gas

### The End !

