การออกแบบระบบผลิตน้ำ

สำหรับน้ำประปาขนาด 5,000 ลูกบาศน์เมตรต่อวัน

โดย นายพรศักดิ์ สมรไกรสรกิจ

2. Design Criteria

Description	Unit	Design Criteria	Design Flow	Max. Flow
			(5000 m ³ /day)	(7500 m ³ /day)
1. Rapid Mixing				
- Time	sec	1 to 3	2.17	1.45
- G - Value	-1 Sec	500 to 700	612	1100
- GT			1328	1595
2. Flocculation Basin				
- Туре		Baffle Channel	Baffle Channel	Baffle Channel
- No. of Stage	No.	2 - 7	4	4
- Energy Input	-1 Sec	20 - 60	stage 1 = 60	110
			stage 2 = 35	64
			stage 3 = 20	37
			stage 4 = 15	27
- Detention Time	minute	20 - 40	31	21
3. Sedimentation Basin				
- Type		Rectangular	Rectangular	Rectangular
- Detention Time	hour	1.5 - 4	2.5	1.67
- Surface Loading	m/min	0.02 - 0.06	0.019	0.029
- Water Depth	m.	3.0 - 4.5	3	3
- Mean Velocity	m/min	<u><</u> 1.5	0.129	0.193
- Method of Sludge Drain		Manual	Manual	Manual
- Inlet Diffuser Wall				
Port Velocity	m/sec	0.15 - 0.60	0.165	0.247
Port Spacing	m.	0.40 - 0.70	0.5	0.5
Port Diameter	mm.	100 max	75	75

Description	Unit	Design Criteria	Design Flow Max. Flow	
			(5000 m ³ /day)	(7500 m ³ /day)
- Effluent Weir Loading	m ³ /m./hr.	12 max	8.68	13
4. Filtration Basin				
- Number of Filter Basin	No.	min. 2	3	3
- Filtration rate	m/hr	5 to 7	5.5	8.33
- Filter Flow			Constar	nt Rate
Control System			Influent Lev	vel Control
- Under Drain System			Pipe Lateral	
- Filter Media				
Type of Media			Sai	nd
Effective Size	mm.		0.55 - 0.65	
Uniformity Coefficient			1.40 - 1.70	
Depth	mm.		700	
- Back Wash Rate	m./min.	0.60 - 0.70	0.	7
- Surface Wash System				
Туре			Fixed N	Vozzle
Rate	m./min.	0.12 - 0.16	0.1	5
Surface Jet Pressure	m.	15 - 20	1	ō

1. ข้อมูลพื้นฐาน

•	
1.1	คุณภาพน้ำ

- Turbidity	=	NTU
- Alkalinity	=	mg/I as CaCO ₃
- pH	=	
- Temperature	=	°C
- Fe	=	mg/l
- Mn	=	mg/l
- Hardness	=	mg/l as $CaCO_3$

1.2 แหล่งน้ำ = Surface Water

1.3 Jar Test

- Alum Dose	=	mg/l
- Alkalinity	=	mg/l as $CaCO_3$
- pH	=	
- Temperature	=	°C

1.4 Design Flow

Design Plant Capacity =	5000	m ³ /d
Design Operation Flow =	24	hr

1.5 Type of Water Treatment Plant

- Hydraulic Design System

3. Coagulation Basin Design

	3.1 Raw Water Pipe		
	Design Flow (Q Design)	= 5,000 m ³ /day	
	Velocity in Pipe	= 1.8 - 2.0 m/s	(Kawamura)
	Use	= 1.8 m/s	
•	Pipe Diameter (D)	$= \sqrt{\frac{4Q}{\pi v}} \\ = \sqrt{\frac{4x5,000}{3.14x1.8x3600x24}}$	
		= 0.2023751 m.	
	Use Pipe Diameter (D)	= 0.2 m.	
•	Acture Velocity	$= \frac{Q}{A}$ = 1.8420711 m/s	
	3.2 Rapid Mixing	= Hydraulic Type	
	Туре	= Static Mixer	
	Design Criteria		
	- Detention Time	= 1-3 sec	
	- G - Value	$= 500 - 700 \text{ sec}^{-1}$	
	- GT	= 350 - 1500	

3.3 Calculation

Theory : Rule of Thumb - estimateing the Length of one element is to designated the length as 1.5 - 2.5 times the pipe diameter the base on this criteria, the length of one element is in the range of 3 - 5 ft (Kawamura, page no. 88)

- 2 stage = 2 element

Static Mixer Length = 1.5xDiameter(m)x2(element) - 0.5xDiameter(m)

Static Mixer Length $= 1.5 x Dia$	umeter(m.)x3(element) - Diameter(m.)
- 4 stage = 4 element Static Mixer Length = 1.5xDia	neter(m.)x4(element) – 1.5xDiameter(m.
- 5 stage = 5 element	
Static Mixer Length $= 1.5xDian$	neter(m.)x5(element) - 2.0xDiameter(m.)

- 3 stage = 3 element

Static Mixer Length = 1.5xDiameter(m.)x6(element) - 2.5xDiameter(m.)

- 7 stage = 7 element

Static Mixer Length = 1.5xDiameter(m.)x7(element) - 3.0xDiameter(m.)

- 8 stage = 8 element

Static Mixer Length = 1.5xDiameter(m.)x8(element) - 3.5xDiameter(m.)

- 9 stage = 9 element

Static Mixer Length = 1.5xDimerter(m)x9(element) - 4.0xDiameter(m)

	Try Static Mixer Diameter	=	200	mm.	
	Use 3 stage	=	3	element	
	Static Mixer Length (L)	=	0.7	m.	
	Acture Velocity	=	$\frac{Q}{A}$		
		=	1.842	m/s	
	Detention Time (t)	=	0.380007	sec.	too less
	Try Static Mixer Diameter	=	250	mm.	
	Use 3 stage	=	3	element	
•••	Static Mixer Length (L)	=	0.875	m.	
•••	Acture Velocity	=	$\frac{Q}{A}$		
		=	A 1.179	m/s	
	Detention Time (t)	=	0.7422013	sec.	
	Bring Acture velocity to Find H	leac	l loss from P\	VA Graph	
•••	Head Loss Across Static Mixer	r =	1	m.	
			ρ_L =	997.1	kg/m ^³ at 25 °C
			μ =	0.000895	kg/m.s (N/m.s) at 25 oC
	Theory <i>G</i>	=	$\sqrt{\frac{h_f x g x \rho}{\mu x t}}$		
		=	2848.0866	sec -1	too hight
	Gxt	=	2113.8535		too hight
	Try Static Mixer Diameter	=	300	mm.	
	Use 2 stage	=	2	element	
	Static Mixer Length (L)	=	0.75	m.	
	Acture Velocity	=	$\frac{Q}{A}$		

Page 4 of 4

$$= 0.819 \text{ m/s}$$

$$\therefore \text{ Detention Time (t)} = 0.9160884 \text{ sec.}$$

$$\therefore \text{ Bring Acture velocity to Find Head loss from PWA Graph}$$

$$\therefore \text{ Head Loss Across Static Mixer} = 0.25 \text{ m.}$$

$$\rho_L = 997.1 \text{ kg/m}^3 \text{ at } 25 ^{\circ}\text{C}$$

$$\mu = 0.000895 \text{ kg/m.s (N/m.s) at } 25 \text{ oC}$$

$$Theory$$

$$G = \sqrt{\frac{h_f x g x \rho}{\mu x t}}$$

$$= 1727.0052 \text{ sec}^{-1} \text{ too hight}$$

$$G_x t = 1582.0895 \text{ too hight}$$

$$Try \text{ Static Mixer Diameter} = 400 \text{ mm.}$$

$$Use 2 \text{ stage} = 2 \text{ element}$$

$$\therefore \text{ Static Mixer Length (L)} = 1 \text{ m.}$$

$$\therefore \text{ Acture Velocity} = \frac{Q}{A}$$

$$= 0.461 \text{ m/s}$$

$$\therefore \text{ Detention Time (t)} = 2.1714688 \text{ sec.}$$

$$\therefore \text{ Bring Acture velocity to Find Head loss from PWA Graph}$$

$$\therefore \text{ Head Loss Across Static Mixer} = 0.08 \text{ m.}$$

 $\rho_L = 997.1 \text{ kg/m}^3 \text{ at } 25 \degree \text{C}$ μ = 0.000895 kg/m.s (N/m.s) at 25 oC

Theory

...

...

$$G = \sqrt{\frac{h_f x g x \rho}{\mu x t}}$$
$$= 634.54224 \quad \text{sec}^{-1} \qquad \text{OK}$$

$$Gxt$$
 = 1377.8887 OK

3. Coagulation Basin Design

	3.1 Raw Water Pipe		
	Design Flow (Q Design)	= 5,000 m ³ /day	
	Velocity in Pipe	= 1.8 - 2.0 m/s (Kawamur	a)
	Use	= 1.8 m/s	
÷	Pipe Diameter (D)	$= \sqrt{\frac{4Q}{\pi v}} \\ = \sqrt{\frac{4x5,000}{3.14x1.8x3600x24}}$	
		= 0.2023751 m.	
	Use Pipe Diameter (D)	= 0.2 m.	
÷	Acture Velocity	$= \frac{Q}{A}$ = 1.8420711 m/s	
	3.2 Rapid Mixing	= Hydraulic Type	
	Туре	= Static Mixer	
	Design Criteria		
	- Detention Time	= 1-3 sec	
	- G - Value	$= 500 - 700 \text{ sec}^{-1}$	
	- GT	= 350 - 1500	

3.3 Calculation

Theory : Rule of Thumb - estimateing the Length of one element is to designated the length as 1.5 - 2.5 times the pipe diameter the base on this criteria, the length of one element is in the range of 3 - 5 ft (Kawamura, page no. 88)

- 2 stage = 2 element Static Mixer Length = 1.5xDiameter(m)x2(element) - 0.5xDiameter(m)

- 3 stage = 3 element
Static Mixer Length = $1.5xDiameter(m.)x3(element)$ – $Diameter(m.)$
- 4 stage = 4 element
Static Mixer Length = $1.5xDiameter(m.)x4(element) - 1.5xDiameter(m.)$
- 5 stage = 5 element
Static Mixer Length = $1.5xDiameter(m.)x5(element) - 2.0xDiameter(m.)$
- 6 stage = 6 element
Static Mixer Length = $1.5xDiameter(m.)x6(element) - 2.5xDiameter(m.)$
- 7 stage = 7 element
Static Mixer Length = $1.5xDiameter(m.)x7(element) - 3.0xDiameter(m.)$
- 8 stage = 8 element
Static Mixer Length = $1.5xDiameter(m.)x8(element) - 3.5xDiameter(m.)$
- 9 stage = 9 element

Static Mixer Length = 1.5xDimerter(m.)x9(element) - 4.0xDiameter(m.)

	Try Static Mixer Diameter	=	200	mm.
	Use 3 stage	=	3	element
•••	Static Mixer Length (L)	=	0.7	m.
•••	Acture Velocity	=	$\frac{Q}{A}$	
		=	1.842	m/s
	Detention Time (t)	=	0.380007	sec.

:. Check Renolds Number(
$$R_{e}$$
) = $\frac{D_p \rho_L v_s}{\mu}$ ρ_L = 997.1 kg/m³ at 25 °C
 μ = 0.000895 kg/m.s (N/m.s) at 25 oC
 R_e = 410442.26

$$f = 0.048 x R_e^{-0.2} \qquad if \qquad 10^4 < R_e < 10^6$$

$$f = 0.193 x R_e^{-0.35} \qquad if \qquad 3x 10^3 < R_e < 10^4$$

...

$$f = 0.003619$$

Theory

Darcy Formular
$$h_f = f \frac{L}{D} \frac{v^2}{2g}$$

 h_{f}

...

$$G = \sqrt{\frac{h_f x g x \rho}{\mu x t}}$$
$$= 251.00527 \quad sec^{-1} \quad \text{too less}$$

$$Gxt = 95.383772$$

Try Static Mixer Diameter	=	250	mm.
Use 3 stage	=	3	element
Static Mixer Length (L)	=	0.875	m.
 Acture Velocity	=	$\frac{Q}{A}$	
	=	1.179	m/s
 Detention Time (t)	=	0.7422013	sec.

:. Check Renolds Number(
$$R_{e}$$
) = $\frac{D_{p}\rho_{L}v_{s}}{\mu}$ ρ_{L} = 997.1 kg/m³ at 25 °C
 μ = 0.000895 kg/m.s (N/m.s) at 25 oC
 R_{e} = 328353.8

$$f = 0.048 x R_e^{-0.2} \qquad if \qquad 10^4 < R_e < 10^6$$

$$f = 0.193 x R_e^{-0.35} \qquad if \qquad 3x 10^3 < R_e < 10^4$$

...

$$f = 0.0037842$$

Theory

Darcy Formular
$$h_f = f \frac{L}{D} \frac{v^2}{2g}$$

 h_{f}

...

$$G = \sqrt{\frac{h_f x g x \rho}{\mu x t}}$$
$$= 117.54084 \quad sec^{-1} \quad \text{too less}$$

$$Gxt = 87.238961$$

	Try Static Mixer Diameter	=	300	mm.
	Use 2 stage	=	2	element
	Static Mixer Length (L)	=	0.75	m.
•••	Acture Velocity	=	$\frac{Q}{A}$	
		=	0.819	m/s
	Detention Time (t)	=	0.9160884	sec.

:. Check Renolds Number(
$$R_{e}$$
) = $\frac{D_p \rho_L v_s}{\mu}$ ρ_L = 997.1 kg/m³ at 25 °C
 μ = 0.000895 kg/m.s (N/m.s) at 25 oC
 R_e = 273628.17

$$f = 0.048 x R_e^{-0.2} \qquad if \qquad 10^4 < R_e < 10^6$$

$$f = 0.193 x R_e^{-0.35} \qquad if \qquad 3x 10^3 < R_e < 10^4$$

...

$$f = 0.0039247$$

Theory

Darcy Formular
$$h_f = f \frac{L}{D} \frac{v^2}{2g}$$

 h_{f}

...

$$G = \sqrt{\frac{h_f x g x \rho}{\mu x t}}$$
$$= 63.237189 \quad sec^{-1} \quad \text{too less}$$

$$Gxt = 57.930857$$

Try Static Mixer Diameter	=	400	mm.
Use 3 stage	=	3	element
 Static Mixer Length (L)	=	1.4	m.
 Acture Velocity	=	$\frac{Q}{A}$	
	=	0.461	m/s
 Detention Time (t)	=	3.0400564	sec.

:. Check Renolds Number(
$$R_{e}$$
) = $\frac{D_{p}\rho_{L}v_{s}}{\mu}$ ρ_{L} = 997.1 kg/m³ at 25 °C
 μ = 0.000895 kg/m.s (N/m.s) at 25 oC
 R_{e} = 205221.13

$$f = 0.048 x R_e^{-0.2} \qquad if \qquad 10^4 < R_e < 10^6$$

$$f = 0.193 x R_e^{-0.35} \qquad if \qquad 3x 10^3 < R_e < 10^4$$

...

$$f = 0.0041572$$

Theory

Darcy Formular
$$h_f = f \frac{L}{D} \frac{v^2}{2g}$$

 h_{f}

...

$$G = \sqrt{\frac{h_f x g x \rho}{\mu x t}}$$
$$= 23.778303 \quad \text{sec}^{-1} \quad \text{too less}$$

$$Gxt = 72.287381$$

	Try Static Mixer Diameter	=	200	mm.
	Use 6 stage	=	6	element
•••	Static Mixer Length (L)	=	1.3	m.
•••	Acture Velocity	=	$\frac{Q}{A}$	
		=	1.842	m/s
	Detention Time (t)	=	0.7057274	sec.

:. Check Renolds Number(
$$R_{e}$$
) = $\frac{D_{p}\rho_{L}v_{s}}{\mu}$ ρ_{L} = 997.1 kg/m³ at 25 °C
 μ = 0.000895 kg/m.s (N/m.s) at 25 oC
 R_{e} = 410442.26

$$f = 0.048 x R_e^{-0.2} \qquad if \qquad 10^4 < R_e < 10^6$$

$$f = 0.193 x R_e^{-0.35} \qquad if \qquad 3x 10^3 < R_e < 10^4$$

...

$$f = 0.003619$$

Theory

Darcy Formular
$$h_f = f \frac{L}{D} \frac{v^2}{2g}$$

 h_{f}

...

Theory

$$G = \sqrt{\frac{h_f x g x \rho}{\mu x t}}$$
$$= 251.00527 \quad \text{sec}^{-1} \quad \text{too less}$$

 \therefore Gxt = 177.14129

	Try Static Mixer Diameter	=	150	mm.
	Use 6 stage	=	6	element
·•	Static Mixer Length (L)	=	0.975	m.
	Acture Velocity	=	$\frac{Q}{A}$	
		=	3.275	m/s
	Detention Time (t)	= ().2977287	sec.

:. Check Renolds Number(
$$R_{e}$$
) = $\frac{D_p \rho_L v_s}{\mu}$ ρ_L = 997.1 kg/m³ at 25 °C
 μ = 0.000895 kg/m.s (N/m.s) at 25 oC
 R_e = 547256.34

$$f = 0.048 x R_e^{-0.2} \qquad if \qquad 10^4 < R_e < 10^6$$

$$f = 0.193 x R_e^{-0.35} \qquad if \qquad 3x 10^3 < R_e < 10^4$$

...

$$f = 0.0034167$$

Theory

Darcy Formular
$$h_f = f \frac{L}{D} \frac{v^2}{2g}$$

 h_{f}

...

$$G = \sqrt{\frac{h_f x g x \rho}{\mu x t}}$$
$$= 667.53577 \quad \sec^{-1}$$

$$Gxt = 198.74458$$

Page 1 of 1

WATER TREATMENT PLANT DESIGN2

Graph Static Mixer(PWA)

4. Flocculation Basin Design

4.1 Hydraulic Mixing

Type :	Round and End Baffle Wall					
Design Plant Capacity :			5000	m ³ /day		
Design Ope	eration Flow	:	24	hr.		

4.2 Design Criteria

- G - Value	=	20 - 60	sec
- No. of Stage	=	2 - 7	
- Detention Time	=	20 - 40	minute

4.3 Calculation

No. of Flocculation basin	=	2	Tank
Flow Rate per Tank	=	2500	m ³ /day
	=	104.2	m ³ /hr
Give Detention Time	=	30	min

Theory

$$(G_{opt})^{2.8} = \frac{44x10^5}{Cxt_d}$$

Where :

C is Optimum Dose Alum	=	30	mg/l
t _d is Detention Time	=	30	min

	G_{opt}	=	20.78	sec ⁻¹
Use	G_{opt}	≈	25	sec ⁻¹
Give :	No. of Stage	=	4	
	G1 - Value	=	60	sec ⁻¹
	G2 - Value	=	35	sec ⁻¹

```
Page 2 of 6
```

					ι –
	G3 - Value	=	20	sec ⁻¹) (G is reduce 50 %)
	G4 - value	=	15	sec ⁻¹	ļ
	Water Depth of Flocculation	Bas	sin =	2	m.
<i>.</i>	Flocculation basin Volume	=	Qxt		
		=	52.08	m ³	
<i>.</i>	Flocculation Area	=	26.04	m^2	
	Baffle Area 15 % of Floccula	tion	Basin Area		
		=	3.90625	m^2	
	Total Area	=	29.95	m^2	
	Give Width of Flocculation B	asir	ן =	4.5	m.
	Then Length of Flocculation	Bas	sin =	6.7	m.
	Use	=	7.0	m.	
	Give No. of Baffle at Width	=	7.0		
	Give No. of Baffle at Length	=	4.0		
	Total No. of baffle				
	- No. of baffle at Width	=	Width of Flocc	ulation E	Ba sin xNo.of Baffle
		=	31.50		
·.	- No. of baffle at Length	=	Length of Floc	cculation	Ba sin xNo.of Baffle
		=	28.00		
	Total No. of baffle	=	59.50		
	Cive Width of Concrete	_	0.08	m	
•		_	0.00	2	
•••	I Utal Area OT Battle	=	4.70	m 2	
•••	Acture Flocculation Area	=	26.74	m 3	
	Acture Floculation Volume	=	53.48	m	
•••	Acture Detention Time	=	31	min	

	Give No. of	Stage	=	4			
	Give No. of	Baffle per Stage	=	10			
	Stage 1	Acture Volume in	ı ste	$age1 = \frac{Acture F}{age1}$	Flocculation	n Volume	
		G1 - Value	=	60	sec		-No. of stage
		at Q Design	=	104.2	m ³ /hr		
			=	0.028935185	m ³ /s		
	Theory					Ļ	
		ΔH	=	$\frac{(G(s^{-1}))^2 x \gamma(n)}{g(m/s^2)}$	$\frac{m^2/s}{xO(m^3/s)}$	n^3)	
				8 (2(
		Where : γ	=	0.898×10^{-6}	m^2/s at	25° C	
••		ΔH	=	0.15	m.		
•••	Head loss ir	n each bend(slit)	=	0.015	m.		
	Theory			v^2			
		ΔH	=	$K\frac{r}{2g}$	Give K =	1.6	(Dr. Kawamura)
		v	=	0.43	m/s		
	The required	d width for each s	slit ir	n the stage 1 cł	nannel is ca	alculate to	be
		Q	=	Av			
		when A	=	width for ea	ch slit(m)	xwaterc	lepth(m)
	width of eac	h slit in stage 1	=	0.033	m.		
			=	33.4811	mm.		
				A / T	1 1 .•	T 7 1	
	Stage 2	Acture Volume in	ı ste	$igel = \frac{Acture F}{acture F}$	1000000000000000000000000000000000000		
		G2 - Value	=	35	sec		∼No. of stage
		at Q Design	=	104.2	m ³ /hr		

 $= 0.028935185 \text{ m}^3/\text{s}$

Page 4 of 6

Theory

$$\Delta H = \frac{(G(s^{-1}))^2 x \gamma(m^2 / s) x V(m^3)}{g(m / s^2) x Q(m^3 / s)}$$

Where:
$$\gamma = 0.898 \times 10^{-6} \ m^2 / s \ at \ 25^{\circ} C$$

$$\therefore \qquad \Delta H = 0.05 \qquad \text{m.}$$

$$\therefore \qquad \text{Head loss in each bend(slit)} = 0.005 \qquad \text{m.}$$

Theory

$$\Delta H = K \frac{v^2}{2g}$$
 Give K = 1.6 (Dr. Kawamura)

m/s

1

$$v = 0.25$$

... The required width for each slit in the stage 2 channel is calculate to be

$$Q = Av$$
when $A = width for each slit(m)xwater depth(m)$
... width of each slit in stage 2 = 0.057 m.
$$= 57.3961 \text{ mm.}$$

Stage 3 Acture Volume in stage1 =
$$\frac{Acture Flocculation Volume}{4}$$

G3 - Value = 20 sec⁻¹ No. of stage
at Q Design = 104.2 m³/hr
= 0.028935185 m³/s
Theory
 $\Delta H = \frac{(G(s^{-1}))^2 x \gamma (m^2 / s) x V(m^3)}{g(m/s^2) x Q(m^3 / s)}$
Where : $\gamma = 0.898 x 10^{-6} m^2 / s at 25^{\circ} C$

 \therefore $\Delta H = 0.02$ m.

 \therefore Head loss in each bend(slit) = 0.002 m.

$$\Delta H = K \frac{v^2}{2}$$

Page 5 of 6

$$\Delta H = K \frac{v^2}{2g} \qquad \text{Give K} = 1.6 \quad (\text{Dr. Kawamura})$$

$$\therefore \quad v = 0.14 \qquad \text{m/s}$$

$$\therefore \quad \text{The required width for each slit in the stage 3 channel is calculate to be
$$Q = Av$$

$$\text{when} \quad A = \text{width for each slit(m).xwater depth(m)}$$

$$\therefore \quad \text{width of each slit in stage 3 = 0.100 \qquad \text{m.}} = 100.4432 \qquad \text{mm.}}$$

$$\text{Stage 4} \quad Acture Volume in stagel = \frac{Acture Flocculation Volume}{4}$$

$$G4 - value = 15 \qquad \text{sec}^{-1} \qquad \text{Mo. of stace}$$

$$at Q \text{ Design} = 104.2 \qquad \text{m}^3/\text{hr}$$

$$= 0.028935185 \qquad \text{m}^3/\text{s}$$

$$\text{Theory}$$

$$\Delta H = \frac{(G(s^{-1}))^2 xy(m^2/s) xV(m^3)}{g(m/s^2) xQ(m^3/s)}$$

$$\text{Where :}$$

$$\gamma = 0.000000898 \qquad \text{m}^2/\text{s} \quad \text{at } 25^\circ \text{C}$$

$$\Delta H = 0.01 \qquad \text{m.}$$

$$\text{Theory}$$

$$\Delta H = K \frac{y^2}{2g} \qquad \text{Give K} = 1.6 \quad (\text{Dr. Kawamura})$$

$$\therefore \qquad v = 0.11 \qquad \text{m/s}$$

$$\therefore \qquad \text{The required width for each slit in the stage 4 channel is calculate to be}$$

$$Q = Av$$

$$\text{when} \qquad A = \text{width for each slit(m).xwater depth(m)}$$

$$\therefore \quad \text{width of each slit in stage 4 = 0.134 \qquad \text{m.}}$$

$$= 133.9243 \qquad \text{mm.}$$$$

CHECK	G_{averag}	= e	$\frac{G_1 + G_2 + G_2}{4}$	$G_{3} + G_{4}$	
		=	32.5	sec ⁻¹	
	$G_{average}$	$e^{xt} =$	60,0	69	OK.
Design Criteria	$1x10^4$ $1x10^4$	< Gxt < < Gxt <	$1x10^5$ $15x10^4$	(Kawamura) (Qasim)	

0.1 TURBULENT ZONE 0.09 80.0 ZONE COMPLETE TURBULENCE, ROUGH PIPES 0.05 ITT 0.07 TTT 4444 TH 111 111 111 111 0.06 0.03 d the 0.05 0.02 0.015 11 0.04 TIII 5 0.1 LV2 d 2p 0.008 eld 0.006 1 factor / 0.03 -----0.004 rough Friction Relativo 0.025 FIF 0.002 0.02 0.001 0.0008 VIT IIII П 0.0006 5400 TTT TIT 0.0004 ПП NJIII 1111 HPIP 0.015 AII 55 11 0.0002 111 0.0001 IT 0.00005 0.01 1111 111 0.009 ПП 0.00001 111 0.008 4 5 6 8 106 3 4 5 6 8 107 2 2 3 4 5 6 8 105 2 3 2 13 103 2 3 4 56 8 104 4 5 6 8 108 Reynolds number $N_R = \frac{dV_P}{dV_P}$

Moody Diagram

Page 2 of 2

5. Sedimentation Basin Design

5.1 Design Criteria (Dr.Kawamura)

5.1.1 Rectangular Basin (Horizontal Flow)

Surface Loading	= ().83 - 2.5	m/hr
Water Depth	=	3 - 5	m.
Detention Time	= 1.	.5 - 3.0	hr.
Width/Length	=	> 1/5	
Weir loading	=	< 11	m ³ /m.hr.

5.1.2 Upflow type (Radial-Upflow type)

Circular or square in shape			
Surface Loading	=	1.3 - 1.9	m/hr
Water Depth	=	3 - 5	m.
Settling Time	=	1 - 3	hr.
Weir loading	=	7	m ³ /m.hr.

5.1.3 Reactor Clarifiers

Flocculation Time	=	approx 20	min
Settling Time	=	1 - 2	hr.
Surface Loading	=	2 - 3	m/hr
Weir loading	=	7.3 - 15	m ³ /m.hr.
Upflow Velocity	=	< 50	mm./min.

5.1.4 Sludge Blanket Clarifier

Flocculation Time	=	approx 20	min
Settling Time	=	1 - 2	hr.
Surface Loading	=	2 - 3	m/hr
Weir loading	=	7.3 - 15	m ³ /m.hr.
Upflow Velocity	=	< 10	mm./min.

5.2 Calculation

Type :	Horizontal rectangula	ar Tank		
Design F	Plant Capacity	:	5000	m ³ /day
Design C	Deration Flow	:	24	hr.

Design Criteria for Horizontal Rectangular Tank

5.2.1 Inlet and Outlet of the Basin

Headloss through the ports	=	0.3 - 0.9	mm.	
The Size of Ports in Diameter	=	0.075 - 0.20	m.	
The Ports spacing approx	=	0.25 - 0.5	m.	
Velocity through Diffuser wal	=	0.15 - 0.60	m/s	(Prof. Munsin)
Weir Loading rate	=	6 - 11	m ³ /hr.m	(Prof. Munsin)

5.2.2 Horizontal rectangular Tank Design (Dr.Kawamura)

Minimum number of tank	= 2	
Water Depth	= 3 - 4.5	m.
Mean Flow Velocity	= 0.3 - 1.7	m/min
	= 0.15 - 0.91	m/min (Prof. Munsin)
Surface Loading	= 0.02 - 0.06	m/min (Prof. Munsin)
	= 1.4 - 3.4	m/hr
Detention Time	= 1.5 - 4	hr.
	= 2 - 4	hr.
Length/Width Ratio (L/W)	= Minimum of 4	1:1
Water Depth/Length Ratio	= Minimum of 1	:15
Sludge Collector Speed		
For the Collection path	= 0.3 - 0.9	m/min
For the Return	= 1.5 - 3.0	m/min

Design Plant Capacity	=	5000	m ³ /day
Number of Sedimentation	=	2	Tank
 Flow rate per Basin	=	2500	m ³ /day

5.3 Inlet Zone

Inlet Diffusion Wall

Darcy - Weisbach Formular

$$h_f = f \frac{L}{D} \frac{v^2}{2g}$$

Relationship with G

$$G^{2} = \frac{f v^{3} \rho}{2 g D \mu}$$

 $G = Mean \ velocity \ gradient(s^{-1})$ Where : = Friction Factor f = velocity passthrough orifice(m / s) v = $Diameter \ of \ Orifice(m)$ D = Mass Density of Water (kg / m^3) = 997.1 kg/m² at 25 oC ρ = $absolute vis \cos ity(kg/m.s)$ = 0.000895 kg/m.s (N/m.s) at 25 oC μ 10 1/Sec (Design Criteria G = $10 - 75 \text{ s}^{-1}$) Give G = Orifice made from concrete : \mathcal{E} = 1.22 mm. m^2 Give Diameter of Orifice \therefore Area = 0.007854 = 100 mm. E/D = 0.0122 find f Give from Reynolds number

Give Reynolds number(R) = 17,000From Moody Diagram then f = 0.042

•••	V	=	0.161	m/sec			
		(I	WA . Criteria	n 0.15 -	0.20 m/sec)		
	Check Renold Number (R)						
	R	=	vD/V	or	$D_p \delta_L v_s$	γ =	$\frac{\mu}{\delta}$
			17,957	0.K.	μ		U
	Total Area of Pores	=	Q/v		m^2		
			0.35888		m ²		
			46		pores		
Theory	Headloss	=2	$\frac{1}{g} x \left(\frac{v}{C}\right)^2$				
	Give C for Orifice	=	0.65				
	Headloss	=	0.0031	m.			

5.4 Horizontal Rectangular Basin

	Design Plant Capacity	=	5000	m ³ /day	
	Number of Sedimentation	=	2	Tank	
	Flow rate per Basin	=	2500	m ³ /day	
	Give Water Depth	=	3	m.	
	Give Surface Loading	=	1.9	m/hr.	
		=	0.031667	m/min	(Design Criteria : 0.02 - 0.06 m/min)
••••	The Required total surface	e Ar	ea = Surfac	$Q(m^3 / m)$ se Loadin	$\frac{\sin}{g(m/\min)}$ m ²
			U	·	
		=	54.82	m^2	
	Give Tank Width	=	4.5	m.	(Because Flocculation basin Width : 4.5 m)
	Tank Length	=	12.18	m.	
	Give Detention Time	=	3	hr.	
	Tank Volume	=	Qxt		
		=	312.50	m^3	
•••	Acture Tank Length	=	23.15	m.	
	Use Acture Tank length	≈	24	m.	
	Width : Length	=	1:	5.14	(Design Criteria > Minimum 1:5) OK.
	Acture Surface Loading	=	1.00	m/hr.	
		=	0.0167	m/min.	(PWA. Design Criteria : 0.02 - 0.06 m/min)

5.5 Outlet Zone

Give Weir Loading	=	12	m ³ /hr.m.
Weir Length	=	8.68	m.
Give Outlet Zone Width	=	2.5	m.

Theory

Launder Size (d) = $Q^{0.4}$ m. Use 2 Launder per Basin = $\left(\frac{2500}{24x3600x2}\right)^{0.4}$

•••	d	=	0.18	m.
	Use d	= k	0.25	m.

Check Weir Length (L)

Theory $L = \frac{0.2Q}{Hv_s}$

where :

L = Combined weir length (m)
Q = Flow rate (m³/day) = 2500 m³/day
H = Depth of Tank (m) = 3 m

$$v_s$$
 = Settling velocity (m/day)

Give
$$v_s = 0.04812$$
 m/min = 69.2928 m/day

$$L = \frac{0.2x2500(m^3 / day)}{3(m)x69.3(m / day)}$$

Weir Length (L) =	2.41	m.
Use weir length =	2.5	m.
Weir length/Basin =	10	m.

...

...

Check Launder Depth

Theory
$$W = \left(\frac{Q(m^3/s)}{1.4B(m)}\right)^{\frac{2}{3}}$$

where :

W = Launder Depth (m.)
 Q = Total flow rate of discharge (m³/sec)
 B = inside width of the Launder (m.)

$$W = 0.19$$
 m.
Use $W = 0.3$ m.

Use V-noych weir 90 degree

Theory Discharge of water over V-notch weir

$$Q = \frac{8}{15}C_d\sqrt{2g}\tan\frac{\theta}{2}H^{\frac{5}{2}}$$
where :

$$Q = \text{Overflow Discharge (m^3/s)}$$

$$C_d = \text{Discharge Coefficient} = 0.584$$

$$\theta = \text{V- notch angle} \qquad 90 \text{ degree}$$

$$H = \text{Heigh of flow (m.)}$$
Give 1 V-notch weir have length = 0.15 m.
Total V-notch weir = 67
Flow rate per V-notch weir = 1.56 m^3/hr

$$H^{\frac{5}{2}} = 0.000194$$

$$H = 0.033 \text{ m.}$$

...

...

6. Fiter Tank Design

Design Criteria (Dr. Kawamura)

6.1 Number of Fliter	= minimum	2
Theory		
	$N = 1.2Q^{0.5}$	

Where :

- N = Total number of filters
- Q = Maximum plant flow rate in (mgd)

6.2 Size of Filter

6.2.1 Ordinary gravity filters

- Width of Filter cell	= 3 - 6	m.
- Length to width ratio	= 2:1 to 4:1	
- Area of Filter cell	= 25 - 100	m^2
- Depth of the filter	= 3.2 - 6	m.

6.2.2 Self-backwash filters

- Depth of the filter	= 3 - 6	m.
- Length to width ratio	= 2:1 to 4:1	
- Area of Filter cell	= 25 - 80	m^2
- Depth of the filter	= 5.5 - 7.5	m.

6.3 Filter Bed

Type of Medium and Depth

E/G _e / 1000 for ordinary monosand and media be	$L/d_{o} >$	1000	for ordinary monosand and media be
--	-------------	------	------------------------------------

6.4 Filtration Rate

Eilten voto	- 15 00	³ /la m/ma ²
Filler rale	= 15-20	m /nr/m

6.5 Headloss across the filter

- Total Headloss across	each filter (for	ordinary	gravity filter) =	2.7	7 - 4.5	m.

- Net Headloss available for filtration (for ordinary gravity filter) = 1.8 - 3.6 m.

6.6 Filter washing

- Ordinary rapid sand bed	= 0.6 - 0.74	m/min
- Ordinary dual media bed	= 0.74 - 0.9	m/min

6.7 Surface Wash Rate	: Fix nozzle type	•
- Flow rate	= 0.12 - 0.16	n/min
- Pressure	= 55 - 83	KPa

6.8 Filter Media

6.8.1 Medium Sand for rapid sand filter

- Filter rate	=	1.0 - 1.5	m/hr.
- Effective Size	=	0.45 - 0.65	mm.
- U.C.	=	1.4 - 1.7	
- Depth	=	0.6 - 0.75	m.
- S.G.	=	2.63	
6.8.2 Multimedia filter			
- High rate filtration		10 - 30	m/hr.
Sand			
- Effective Size	=	0.45 - 0.65	mm.
- U.C.	=	1.4 - 1.7	
- U.C. - Depth	=	1.4 - 1.7 0.3	m.
- U.C. - Depth Anthacite Coal	=	1.4 - 1.7 0.3	m.
- U.C. - Depth Anthacite Coal - Effective Size	=	1.4 - 1.7 0.3 0.90 - 1.4	m. mm.
- U.C. - Depth Anthacite Coal - Effective Size - S.G.	= =	1.4 - 1.7 0.3 0.90 - 1.4 1.5 - 1.6	m. mm.

6.9 Underdrain

6.9.1 Normal backwash filters

- Pipe lateral
 - Headloss at ordinary backwash rate = 0.9 1.5 m.
 - Ordinary size (diameter) = 6 10 mm.
 - Lateral spacing = 12 inch
 - Orifices are spaced 3 4 in. apart and 45° down-angle from the horizontal
 - on both sides of the lateral
 - Maximum lateral length of 20 ft

- Precast concrete laterals

- Headloss at ordinary backwash rate
- Orific size (diameter) = 8 10 mm.
- 12 in lateral spacing
- 3 in. orifice spacing on eather side of the lateral
- Maximum lateral length of 16 ft.

6.9.2 Self - backwash type of filter

- Headloss at design backwash rate : 0.15 - 0.3 m.

Gravel Support Bed

Layer Number	Size	Depth of Size
1	20 - 40 mm.	100 - 150
2	12 - 20 mm.	75 mm.
3	6 - 12 mm.	75 mm.
4	3 - 6 mm.	75 mm.
5	1.7 - 3 mm.	75 mm.

6.9.3 Ba	sic Hydraul	ic
----------	-------------	----

	Ordinary Filter	Self-backwash filter
	(m/s)	(m/s)
1. Influent channel	0.6	0.6
2. Influent valve	0.91	1.52
3. Effluent Channel	1.52	0.6
4. Effluent Valve	1.52	0.6
5. Backwash main	3.05	0.91
6. Backwash valve	2.4	1.52
7. Surface wash line	2.4	2.4
8. Wash-waste main	2.4	2.4
9. Wash-waste valve	2.4	2.4
10. Inlet to filter underdrain lateral	1.37	1.37

6.10 Filtration Design

Filtration type	: Single Filter Media				
Backwash by	Elevation Tank and Surface wash				
- Q design	5000 m ³ /day				
Theory					
N	1.2Q ^{0.5} (Dr.Kawamura,210 pa	age)			
Where :					
Ν	Total Number of filters				
Q	Maximum plant flow rate in mgd				
 Ν	1.37922 Use 3 Tanks				
Give Hydraulic Loading	$7 m^{3}/hr/m^{2}$				
 Surface Area of Filter Tank	29.76 m ²				
 Area per Tank	9.92 m ²				
 Use Tank area	4.45 x 2.23 (Length to width r	atio 2 : 1 to 4 : 1)			
Use Acture Tank Area	$5 \times 2.5 m^2$				
 Acture tank Area	12.5 m ²				
 Flow per Tank	1667 m ³ /day				

1. Inlet Pipe Design

- Give velocity = 0.6 m/s (JWWA)

$$Q = Av$$
$$D = \sqrt{\frac{4Q(m^3/s)}{\pi v}}$$

D = 0.20238 m.

 \therefore Use inlet pipe diameter (D) = 0.2 m.

Acture Velocity
$$= \frac{Q(m^3 / s)}{A(m^2)}$$

 \therefore Acture Velocity = 0.61434 m/s

Headloss

- Give Pipe length (L) = 2.5 m.
- Friction Loss

Theory

...

...

...

Hazen - William Equation

$$Q(m^{3}/s) = 0.278CD_{(m)}^{2.63}S^{0.54}$$

$$S = \left(\frac{Q(m^{3}/s)}{0.278CD_{(m)}^{2.63}}\right)^{\frac{1}{0.54}} = \left(\frac{3.597Q(m^{3}/s)}{CD_{(m)}^{2.63}}\right)^{1.85}$$

From Slope of Energy grade Line (S) = $\frac{h_L}{L}$

$$\therefore$$
 $h_L = SxL$

$$h_L = \left(\frac{3.597Q(m^3/s)}{CD_{(m)}^{2.63}}\right)^{1.85} xL$$

New Pipe use C = 120

$$h_L = 0.00644$$
 m

Miner Loss	k	(- Valu	e
1 - Inlet	=	0.5	(velocity head)
1 - Outlet	=	1	(velocity head)
1 - Gate Valve	=	0.2	
Total	=	1.7	

mm.

	Miner Loss	$= \frac{Kv^2}{2g}$
	Miner Loss	= 0.0327 m
÷	Total Headloss	= Friction Loss + Miner Loss= 0.03914 m
	2. Filter Media	
	Sand	
	- Effective Size	= 0.45 - 0.65 mm. ≈ 0.55
	- Uniformity Coefficient	= 1.40 - 1.70

- Sand Fliter Depth (L)	=	0.65	m		
- L/d _e	=	1182	more than	1000	OK.

Gravel Support Bed

Layer		Size (mm.)	Depth of Layer (mm)
Upper	1	1.7 - 3.0	150
	2	3 - 6	75
	3	6 - 1 2	75
	4	12 - 20	75
Lower	5	20 - 40	75

Underdrain design

- Type : Pipe lateral

- Velocity in lateral pipe	=	1.37	m/s
- Lateral spacing	=	0.08 - 0.2	20 m (Mahidol University)
use	=	0.2	m
- Orifice diameter	=	6.38 - 12	.7 mm. (Mahidol University)
use	=	7	mm

- Orifice area/crossection area of filter tank

		=	0.0015	- 0.005		
	- Orifice area/pipe area	=	0.25 - ().5		
	- Number of lateral	=	25	(give la	teral	spacing 0.2 m. Length Tank)
	- Flow rate	=	Velocity	rate in la	teral	$pipe(m/s)xSurface Area(m^2)$
	Surface area of Pipe lateral	=	0.0005	6 m ²		
	- Flow per Lateral	=	3	m ³ /hr		
	- Pipe Lateral Diameter	=	$\sqrt{\frac{4Q}{\pi v}}$	$\frac{(m^3 / s)}{(m / s)}$)	m
		=	0.0267	9		m
	Use Pipe Lateral Diameter(E	\approx	27			mm
	- Total Orifice area/ filter are	ea =	=	0.35	%	(Design Criteria : 0.2 - 1.5 %)
	Total Orofice Area	=	0.0437	5 m ²		
	- Give Number of Orifice	=	Ν			
	$Nx \frac{\pi D(m)^2}{4}$	=	Total	Orifice A	rea(m^2)
•	Ν	=	1137			
	- Number of Orifice / Latera	=	45.5	pores		
	- Orifice Spacing	=	0.0549	8 m		

Use Orifice Spacing = 0.05 m

3. Clear Water Pipe in Filter tank

3.1 Clear water pipe in Filter tank (Lateral pipe)

- Velocity = 1 m/s (JWWA) - Flow per tank = 1667 m³/day = 69.4 m³/hr

- Pipe Diameter (D)

$$Q = Av$$

$$D = \sqrt{\frac{4Q(m^3/s)}{\pi v}}$$

$$= 0.157 \text{ m}$$
- Use pipe diameter = 200 mm.
Lateral Pipe length = 2.5 m.

3.2 Clear water pipe in Filter tank (Maniflow)

- Pipe Diameter (D)

$$Q = Av$$

$$D = \sqrt{\frac{4Q(m^3/s)}{\pi v}}$$

$$= 0.2715 \text{ m}$$

$$\therefore \text{ Use} \approx 300 \text{ mm.}$$

4. Backwash Pipe

...

- Backwash rate = 0.7 m/min (Design Criteria 0.6 - 0.7 m/min) Q = Av- Flow rate = 525 m³/hr - Velocity = 2 m/s (JWWA) - Pipe Diameter $\sqrt{4Q(m^3/s)}$

$$D = \sqrt{\frac{4Q(m^2)}{\pi v}}$$

	=	0.3048	m
 Use pipe diameter	=	300	mm.

5. Lateral Backwash pipe

- Flow rate = $525 \text{ m}^3/\text{hr}$
- Velocity = 2 m/s (JWWA)
- Pipe Diameter

$$D = \sqrt{\frac{4Q(m^3/s)}{\pi v}}$$

= 0.3048

$$\therefore$$
 Use pipe diameter = 300 mm.

6. Collecter Backwash Pipe

- Flow per tank	=	69.4	m ³ /hr	
- Velocity	=	3	m/s	(JWWA criteria 2.5 - 6.0 m/s)
- Pipe Diameter D	=	$\sqrt{\frac{4Q(m)}{\pi N}}$	$\frac{3}{3}/s)$	
	=	0.091	m	
Use pipe diameter	=	100	mm.	

m

7. Surface wash Pipe

...

- Surface wash rate = 0.15 m/min (Design Criteria 0.12 - 0.16 m/min) - Flow rate Q = Av= 112.5 m³/hr Use Flow rate = 115 m³/hr - Surface jet pressure = 15 - 20 m. (Design criteria)

(headloss)

Use = <u>15</u> m

$$h = \frac{1}{2g}x\left(\frac{v}{c}\right)^{2}$$

$$\therefore \quad \text{Velocity} = 11.151 \quad \text{m/s}$$

$$-\text{Give Orifice Diameter} = 5 \quad \text{mm.}$$

$$-\text{Orifice Area} = \frac{\pi D^{2}}{4}$$

$$= 1.9635E-05 \quad \text{m}^{2}$$

$$-\text{Flow per orifice} = 0.0002 \quad \text{m}^{3}/\text{s}$$

$$-\text{Number of Orofice} = \frac{Q_{coult}}{Q_{orifice}}$$

$$= 146 \quad \text{holes}$$

$$-\text{Use 2 Pipe lateral}$$

$$\therefore \quad \text{Number of Orifice per lateral} = 73.0 \quad \text{holes}$$

$$\therefore \quad \text{Orifice spacing} = 0.0658 \quad \text{m} \quad (\text{Tank Length} = 5 \quad \text{m}) \quad (\text{minus length from Wall tank = 0.1 m.} \\ 2 \text{ side = } 0.2 \text{ m})$$

$$-\text{Try orifice Diameter} = 6 \quad \text{mm.}$$

$$\therefore \quad \text{Orifice area} = 2.82743E-05 \quad \text{m}^{2} \\ -\text{Flow per orifice} = 0.0003 \quad \text{m}^{3}/\text{s}$$

$$\therefore \quad \text{Number of Orifice per lateral} = 101.3198 \quad \text{holes} \\ -\text{Use 2 Pipe lateral}$$

$$\therefore \quad \text{Number of Orifice per lateral} = 50.65992 \quad \text{holes}$$

 \therefore Orifice spacing = 0.1 m

-Surface wash pipe Diameter

Main Pipe

Page 4 of 4

Velocity	=	2.4	m/s	(Dr.Kawamura)
Pipe Diameter D	=	$\sqrt{\frac{4Q(m^3)}{\pi v}}$	/ s)	
Use Pipe Diameter	• =	0.1302	m	
Use Pipe Diameter	• =	150	mm.	
Lateral	=	2	pipe	
Velocity	=	2.4	m/s	(Dr.Kawamura)
Pipe Diameter D	=	$\sqrt{\frac{4Q(m^3)}{\pi v}}$	/ s)	
Use Pipe Diameter	• =	0.092	m.	

 \therefore Use Pipe Diameter = 100 mm.

...

FIGURE 21-35. Height and spacing of wash troughs.

higher upflow velocity when flow gets above the trough bottom elevation and the U-shaped troughs allow for thinner walls because of a higher moment of inertia and greater structural integrity. The bottom of the wash trough should not be flat because froth and suspended matter is often trapped under the trough bottom and may never be washed out.

In either case, the troughs should be large enough to carry the maximum expected wash rate wit 1 5-10 cm free-fall into the trough at the upper end. They should also provide a free-fall to the main collection outlet gullet at the lower end. The bottom of the trough may be either horizontal or sloping.

The required cross-sectional area of the wash trough for a given design flow can be quickly estimated from Figure 21-36. For troughs that have level inverts and rectangular cross section, required trough height can be computed by the following formula:

wy + Ble + Free boond

Minimum trough height = $\left(\frac{Q}{1.4B}\right)^{2/1}$ + free board $W \neq B/2 = 2 \left(\frac{Q}{0.0}\right)^{2/2} \neq e^{\frac{Q}{1.4B}}$ where Q is the total flow rate of discharge (m³/sec),

where Q is the total flow rate of discharge (m³/sec), B is the inside width of the trough (m), and, freeboard should be a minimum of 50 mm (2 in.).

Filter Underdrains

y. The botfilter underdrainage systems differ primarily due to the different filter-washing systems and filter types panp socoon and the system and filter types

FIGURE 21-36. Wash-through sizing diagram. (Courtesy of Leopoid Co.)

8. Water Through Design

Theory

...

...

$$\begin{aligned} Minimum trough height &= \left(\frac{Q(m^3/s)}{1.4B(m)}\right)^{\frac{2}{3}} + free \ board^{-1} \\ Minimum \ trough \ height &= W + \frac{B}{2} + free \ board \end{aligned}$$
Equation 2

Minimum trough height =
$$W + \frac{B}{2} + free \ board$$
 Equation

Equation = Equation 2

$$W + \frac{B}{2} = \left(\frac{Q(m^3/s)}{1.4B(m)}\right)^{\frac{2}{3}}$$

Where :

W = water depth inside of the trough from base line (m)

B = inside width of the trough (m)

Q = total flow rate of discharge per trough (m³/s)

Design Criteria backwash water and air =
$$0.25 - 0.7 \text{ m}^3/\text{m}^2$$
.min use $0.7 \text{ m}^3/\text{m}^2$.min

backwash rate =
$$\frac{Q(m^3 / s)}{Surface area(m^2)}$$

••••	<i>Q</i> =	0.14583	m ³ /s			
Use	2 trough per Fil	ter tank				
	total flow rate	of discha	arge per tr	rough =	0.072917	′ m ³ /s
	Give Free board =	0.051	m.	(free board	l should be	e a minimum of 50 mm.)
	Give inside width of	the trough	า =	0.4	m.	
••••	Minimum trough heig	ght(P) =	0.307897	,	m.	
		=	30.78971		cm.	
		\approx	31		cm.	
From San	d Layer Depth (L) =	650	mm.	=	0.65	m.

♦ ₩

$$1.5H_o < S < 2H_o$$

 $1.31497 < S < 1.753294$
Use $S = 1.53$ m

Hydraulic Design

- 1. Head loss (Run)
 - 1.1 Head loss Sand
 - 1.2 Head loss Gravel
 - 1.3 Head loss Underdrain
 - 1.4 Head loss at outlet piping
- 2. Head loss (Backwash)
 - 2.1 Head loss Sand
 - 2.2 Head loss Gravel
 - 2.3 Head loss Underdrain
 - 2.4 Head loss piping from Elevation Tank
- 3. Head loss from Surface wash
- Calculation later from Layout and find out Hydraulic grade line and Surface & Backwash pipe

9. Chlorination Design

Design Criteria (Dr. Kawamura)

Dosage	:	1 - 5 mg/l (2.5 mg/l average)
Number of chlorine feeder	:	Minimum of two : one stanby is required
Residual Chlorine	:	Over 0.5 mg/l (Higher Level)
Contact time	:	Over 30 min (longer)
рН	:	6 - 7
Chlorine solution tank	:	Enough to produce a 1 day supply
Chlorine stock	:	Minimum of 15 days storage
Safety features	:	Eye wash, shower, gas masks

Design

Use liquid chlorine concentration 1 % prepare from stock liquid chlorine 50 % feed to main pipe before Elevation tank. Keep Contact time = 30 min (minimum)

1. Chlorine Feeder

	Q - Design	=	5000	m ³ /d			
		=	208.3	m ³ /hr			
Assume C	Chlorine demand of water	=	1	mg/l			
For residu	al chlorine about 0.5 - 1 mg	g/l					
Use chlori	ne dosage 1.5 - 2 mg/l						
Required	chlorine	=	208.3 x	(1.5 to 2	mg/l)		
		=	312.5	to	416.7	g/hr	
Meaning o	of liquid chlorine 1 % is chl	orine	=	10	g/l (1 L of	water = 1000 g)
Chorine fe	eder rate	=	31.25	to	41.67	L/hr	
	Use Chlorine feeder rate	=	35	to	40	L/hr	

2. Dilution stock liquid chlorine solution 50 % to 1 % liquid chlorine solution

Assume s	stock liquid chlorine solutior	า 50	% one pla	astic equal	=	20	liters
Theory	$N_1 x V_1$	=	$N_2 x V_2$				
Where :							
	N = Chlorine concentration	on ('	%)				
	V = Volume of Liquid (lite	rs)					
Give	N_1	=	50	%			
	V_1	=	20	liters			
	N_2	=	1	%			
	V_2	=	?	liters			
	50 % x 20) =	1% x V ₂				
	V_2	=	1000	liters			
	Use mixing tank volume	=	1000	liters	made from p	lastic	
	Fill stock Liquid Chlorine	=	20	liters	in mixing tan	k and fill \	water until
					limited	1000	liters
3. Period	of Mixing						
Maximum	chlorine feeder rate	=	40	Liters/hr			
Required	Liquid Chlorine	=	960				
		=	960	Liters/day	,		
So period	l of mixing	=	Every Day	/			
4. Liquid	Clorine 50 % Stock						
	Use storage time	=	30	days	(1 month)		
	Required Liquid Chlorine	=	1	%			
		=	28800	Liters per	month		
	Required Liquid Chlorine	=	50	%			
		=	576	Liters per	month		
	Stock Liquid Chlorine	=	28.8	Plastic Ta	nk per Month		

... For Order per Month say = 29 Plastic Tank

10. Surface Wash and Backwash System

- Use water from Elevation tank
- Water Level in Elevation tank = 22 25 m.
- From Site Pant : Pipe length = 35 m.

Backwash System

Use Pressure for Backwash

- Head loss due to water flowing through a sand bed fluidized

Theory

$$\frac{h_L}{L} = (1-e)(S_g - 1)$$

Where :

 h_L = head loss through the media bed during backwash. (m)

- e = porosity of the clean stratified bed at rest. (not fluidize = 0.4
- L = depth of the stratified bed at rest. (m) = 0.65 m
- S_g = specific gravity of the media. = 2.65

Calculation

$$h_L = 0.6$$
 m

- Head loss through the supporting gravel bed fluidzed

จาก H/L = (150VV/g)	$[(1-\varepsilon)^2/\varepsilon^2]$	$(1/\omega)^2 \sum (xi/di^2) + (xi/di^2)$	$(1.75 \text{V}^2/\text{g})(1-\epsilon/\epsilon^2)(1/6$)) Σ (xi/di)
ν	=	0.9629	mm ² /s	
V(Backwash rate)	=	11.67	mm/s	
3	=	0.4		
ω	=	0.8		

	Layer	Size (mm)		di	Depth (mm)	xi	xi/di	xi/di ²
	1	1.7 - 3		2.26	150	0.3333	0.1476	0.0654
	2	3 - 6		4.24	75	0.1667	0.0393	0.0093
	3	6 - 12		8.49	75	0.1667	0.0196	0.0023
	4	12 - 20		15.49	75	0.1667	0.0108	0.0007
	5	20 - 40		28.28	75	0.1667	0.0059	0.0002
					450	1.0000	0.2232	0.0778
	From H/L		=	0.0995	;			
	Н		=	0.0448	3	m.		
- Backwa	sh trough he	eight						
Give Fluid	ized Bed Ex	pand	=	25	%			
	Media Dep	th(Fluidized)) =	0.65	5 +	0.1625		
			=	0.8125	5 m			
	Expanded	sand depth	=	0.8125	- -	Sand Fliter	Depth	
			=	0.1625	5 m			
•	Backwash	trouah heiat	nt=	Expanded	Sand Depth	+ troug	oh heioht	+ 6 <i>in</i>
	Bactivaon			(Mi	unsin Tuntuw	ate)	Suncigni	1 0111
			=	0.6227971		ui <i>c)</i>		

·•• Head loss for Backwash system =

Headloss in sand bed fluidized + gravel bed fluidized + sand depth + backwashtrough

= 1.9611 m

11. Headloss in Piping System

	Give backwash rate	=	0.7	m/min	(Design criteria = 0.6 - 0.7 m/min)
	Acture tank Area	=	12.5	m^2	
•••	Backwash flow rate	=	$A(m^2)$	xv(m/hr)	
		=	525	m ³ /hr	
	Give Main Pipe Diameter	=	300	mm	
		=	0.3	m	
	Acture velocity	=	2.0642	2 m/s	

11.1 Friction Loss (h_L) at Main Pipe

Theory Hazen-William Equation

...

$$Q(m^{3} / s) = 0.278CD_{(m)}^{2.63}S^{0.54}$$

$$h_{L} = SxL$$

$$h_{L} = \left(\frac{3.597Q(m^{3} / s)}{CD_{(m)}^{2.63}}\right)^{1.85}xL(m)$$

Give New Pipe C = 120
Pipe Diameter = 0.3 m
Pipe Length = 35 m

$$h_L = 0.5288$$
 m too Low

Try Main Pipe Diameter =
$$250$$
 mm
= 0.25 m
 \therefore Velocity = 2.9724 m/s
 \therefore h_L = 1.2839 m OK

11.2 Velocity Miner HeadLoss

11.2.1.accessory

1 - Inlet	=	1
$3 - 90^{\circ}$ Bend	=	2.25
Total	=	3.25

Theory

Headloss =
$$K \frac{v^2}{2g}$$

Headloss = 1.464 m

Κ

11.2.3. Velocity headloss in Main pipe

1. Pipe Diameter	=	0.3	m
2. Velocity	=	2.0642	m/s
3. K	=	2.2	
Headloss	=	0.4778	m

11.3 Headloss at lateral

			3
Flow per Lateral	=	21	m /hr

Theory Hazen-William Equation

$$h_L = \left(\frac{3.597Q(m^3/s)}{CD_{(m)}^{2.63}}\right)^{1.85} x L(m)$$
Pipe Diameter = 0.0268 m
Headloss = 12.472 m

11.4 Headloss at Orifice

...

Flow per Orifice	=	0.061	m ³ /hr
- Orifice diameter	=	7	mm
Velocity	=	0.4411	m/s

Theory	Headloss	=	$\frac{1}{2g} x \left(\frac{v}{C}\right)^2$				
	Give C for Orifice	=	0.65				
	Headloss	=	0.0235	m			
	Total Headloss	=	16.409	m			
- Sand De	epth	=	0.65	m			
- Gravel D	epth	=	0.45	m			
- Sand Ex	pansion	=	0.16	m			
- Trough H	Height	=	0.31	m			
 Trough He	ight From Base Line	e =	1.57	m			
 Total Dyna	mic Head	=	17.98	m			
- Water Le	evel in Elevation tan	k =	22 - 25 m.		Choose =	22	m.
 Different H	lead Loss	=	4.02	m.			

11.5 Use Orifice Plate

Theory Headloss = $\frac{1}{2g} x \left(\frac{v}{C}\right)^2$ Give C for Orifice = 0.65

Velocity (v) = 5.58 m/s

Theory

...

Pipe Diameter

$$D = \sqrt{\frac{4Q(m^3/s)}{\pi v}}$$

 $\therefore \qquad \text{Pipe Diameter} = 0.182 \quad \text{m.}$ $= 182 \quad \text{mm.}$

12. Headloss and Hydraulic Profile

Q_{design}	=	5000	m ³ /d				
Q _{max}	=	1.5Q _{design}					
	=	7500	m ³ /d				
- Headl	oss at	static Mixer					
	at C) design	=	0.08	m.		
- Headl	oss at	Flocculation					
fo	or 1st S	Stage					
	at C) design	=	0.15	m.		
fc	or 2nd	Stage					
	at C) design	=	0.05	m.		
fo	or 3rd	Stage					
	at C) design	=	0.02	m.		
fo	or 4th	Stage					
	at C) design	=	0.01	m.		
- Headloss at Diffuser wall (Inlet Zone Sedimentation)							
	at C) design	=	0.0031	m.		
- Headl	oss Ov	er V-notch w	veinr (Out	let Zone S	Sedimentation)		
	at C) design	=	0.0328	m.		

- Headloss Inlet Pipe (Filtration)

```
at Q design = 0.0391 m.
```

- Head loss pass through clean filter media (Filtration)

จาก H/L	=	(5VV/g)[(1-E)	$(6/\omega)^2 \Sigma(xi/di^2)$
ν	=	0.9629	mm ² /s
V	=	1.94	mm/s
3	=	0.4	
ω	=	0.8	
ชั้นทรายสูง	=	0.65	m.
H/L	=	1.00	
Н	=	0.65	m.

- Headloss Through Gravel (Filtration)

จาก H/L =	(150vV/g	$(1-\epsilon)^2/\epsilon^2](1/6)$	$(1.7)^2 \sum (xi/di^2) + (1.7)^2$	$75 \text{V}^2/\text{g}(1-\epsilon/\epsilon^2)(1/\omega) \Sigma(\text{xi/di})$
ν	=	0.9629	mm ² /s	
V	=	1.94	mm/s	
3	=	0.4		
ω	=	0.8		

Layer	Size (mm)	di	Depth (mm)	xi	xi/di	xi/di ²
1	1.7 - 3	2.26	150	0.3333	0.1476	0.0654
2	3 - 6	4.24	75	0.1667	0.0393	0.0093
3	6 - 12	8.49	75	0.1667	0.0196	0.0023
4	12 - 20	15.49	75	0.1667	0.0108	0.0007
5	20 - 40	28.28	75	0.1667	0.0059	0.0002
			450	1.0000	0.2232	0.0778
From H/L	=	0.0076				

Н	=	0.0034	m.
		0.0001	

Head loss pass through clean filter media (Filtration) +
 Headloss Through Gravel (Filtration)

= 0.652 m.

- Head loss for underdrain
- 1. Head loss at orifice

	Total Number of filters	=	3	Tanks
	- Q design	=	5000	m ³ /day
	Flow rate per Tank	=	1667	m ³ /day
1 Tank ha	ve Number of lateral	=	25	
	Flow rate per lateral	=	66.67	m ³ /day
1 lateral h	nave Number of orifice	=	45.47	pores
	Flow rate per orifice	=	1.466	m ³ /day
		=	0.061	m ³ /hr

Theory

$$Q = Av$$

: Velocity pass through orifice

= 0.441 m/s

... Head loss at orifice

$$Q = C_d A \sqrt{2gh_L} \tag{1}$$

$$Q = Av \tag{2}$$

$$\therefore \quad Av = C_d A \sqrt{2gh_L} \quad (3)$$

$$\left(\frac{v}{C_d}\right)^2 = 2gh_L$$

$$\therefore \quad h_L = \frac{1}{2g} \left(\frac{v}{C_d}\right)^2 \quad (4)$$

$$2g(C_d)$$

 C_d Orifice = 0.61 \therefore Head loss at orifice = 0.027 m.

2. Head loss at Lateral

Flow rate per lateral =
$$66.67 \text{ m}^3/\text{day}$$

= $2.778 \text{ m}^3/\text{hr}$

Theory

Q = Av

- ... Velocity pass through lateral = 1.37 m/s Minor loss = $K \frac{v^2}{2g}$
- K outlet = 1 \therefore Minor loss = 0.096 m.

Theory

$$h_L = \left(\frac{3.597Q(m^3/s)}{CD_{(m)}^{2.63}}\right)^{1.85} xL$$

New Pipe C = 120

$$h_L = 0.296$$
 m.

$$\therefore \text{ Total Head loss at } Q_{\text{design}} = h_L + \text{Minor loss}$$
$$= 0.391 \text{ m.}$$

- Head loss at delivery Pipe (Lateral Clear water Pipe in Filtration Tank)

$$Q = Av$$

- Flow per tank	=	69.44	m ³ /hr
- Use pipe diameter	=	0.2	m.

: Velocity pass through lateral clear water pipe

			=	0.614	m/s
	- Miner Loss		K - Val	ue	
	1 - Inlet	=	0.5	(velocity	head)
	1 - Outlet	=	1	(velocity	head)
	1 - Gate Valve	=	0.2		
	90° bend	=	0.9		
	Тее	=	1.8		
	Total	=	4.4		
Theory	Miner Loss	=	$\frac{Kv^2}{2a}$		
			<i>28</i>		

- Head loss at delivery Pipe (Maniflow Clear water Pipe in Filtration Tank)

= 0.085 m.

Give Pipe Length = 20 m.

Theory

$$h_L = \left(\frac{3.597Q(m^3/s)}{CD_{(m)}}\right)^{1.85} xL$$

New Pipe C = 120

$$h_L$$
 = 0.089 m.