Lab#

Pump Selection

Wankesha Dísplacement Pumps

Summary

Summary

The selection of a displacement pump for an alcohol production (ethanol) plant will be discussed. The pump will be selected using the Waukesha manual. A procedure to solve the problem using spread sheet will be demonstrate during the lab.

4.1 Background

In designing a liquid transport system, the need for a pump is determined on the basis of flow and pressure requirements. In selecting a pump for a given system, it is imperative that the characteristics of the system are closely defined. The pump requirements are based on the system characteristics. The following information about the system must be known:

flow rate of liquid, the required differential pressure, the available net positive suction head, the pump capacity, pump speed, characteristics of the fluid.

4.2 Objectives

- 1.) To present the Waukesha manual
- 2.) To use the manual to select a pump for an alcohol production plant
- 3.) To solve the problem using spread sheet
- 4.) To use the spread sheet to change the system for appricot puree

4.4 Procedure

a.) Using the spread sheet presented in class, modify your system to transport mayonnaise, considering the following:

• mayonnaise is a thixotropic material and can be described by:

 $\sigma = \lambda [7 + 28.5 \dot{\gamma}^{0.32}]$ $\lambda = (0.012 \dot{\gamma}^{0.13} t + 2.70)^{-1} + 0.063$

• the material will be transported from tank1 (processing) to the filling nozzles located a distance no less than 5 m from the pump.

• the pump will be located at 2 m from tank1 exit

• Calculate the viscosity at t = 0 for given shear rate - after being transported to the filling nozzles calculate the viscosity at the shear rate you selected to transport - the final viscosity must be large or equal 30% of initial viscosity

- density is 1200 kg/mз
- selected the pipe diameter, the flow rate, and system layout
- b.) determine the maximum velocity in the pipe
- c.) determine the maximum safe distance L that the pump can be located
- d.) discuss the significance of fluid rheological characteristics in pump selection

Lab 2

Pump selections - to transport sugar cane must

		д			
2000 L/h =	L/min =	_GPM			
Pipe size = 1.5 in =	m				
Velocity of must = <i>u</i> = Q/A =	m/s				
Determine Reynold's number for the Newtonian Fluid					
$N_{Re,N} = \left(\frac{D(\vec{u})\rho}{\mu}\right)$ Re =	Recrit =	Flow regime =			
Determine the friction factor - f - also called fanning factor					
f =					
Determine the effective viscosity					
$\mu_e = \frac{fm}{4\pi D} \mu_e =$	cPs				
PReliminary PUMP choice - based on GPM x viscosity:					

Lab 2

Pump selections - to transport sugar cane must

Lab 2

Pump selections - to transport sugar cane must

From must tanks to fermentation vats	condensate
(3) NIPA vs NIPR	90 ⁰ elbow 370 cm
NIPA > NIPR otherwise the pump will cavitate	
Using the worksheet - NIPR	110 cm
using the worksheet - NIPA	430 cm
Calculate the Pressure needed to pump the fluid to the fermenta	ation vat
The energy balance from u_2^2	$\frac{1}{2} - u_1^2 + \frac{P_2 - P_1}{2} + (z_2 - z_1)g + \Sigma F = -W$
the must tank to the pump	$-z_1 = 1.5; u_1 = 0; P_1 = 0; W = 0$
P 2	$= \boldsymbol{\rho} \bigg[-\boldsymbol{z}_2 \boldsymbol{g} - \frac{\boldsymbol{u}_2^2}{\boldsymbol{a}} - \boldsymbol{\Sigma} \boldsymbol{F} \bigg]$
From manual	
pump; NIPR =psia	
L =m	
# elbows =kf EL=	
#gate valve= kfGV=	
#tee = kf T=	
∑F =J/kg	
P2 = Pa =psig	
P2 + Patm =+ 14.69 psia =	<u>.</u>
NIPA = P2 - Pvapor = P2 - 7.11 = ps	sia
NIPANIPR	
Power requirement	
W = (P1-P2)/ρ =J/kg; HP =; T = H	IP 5250/spd =ft-lb <ok?< td=""></ok?<>

CHANGE THE FLUID RHEOLOGICAL	PROPERTIES
------------------------------	------------

n = 0.35

K = 8.9 Pa sⁿ

Re =_____Recrit =_____Flow regime = _____.

f = _____

Pump size = _____.

Maximum length = _____.

BACK TO NEWTONIAN FLUID - Change Q to 5000 L/h

n = 1

K = 0.0015 Pa.s

Re =_____Recrit =_____Flow regime = _____.

f = _____

Pump size = _____

Maximum length = _____.

BACK TO Q to 2000 L/h - Change the pipe diameter to 3 in

n = 1

K = 0.0015 Pa.s

Re =	Recrit =	Flow regime =	
------	----------	---------------	--

f = _____

Pump size = _____

Maximum length = _____.