UNIT OPERATION IN FOOD PROCESSING
Department of Biological and Agricultural Engineering Texas AEM University

Pump Selection

Wankesha Displacement Pumps

BAEN/CHEN-422-622

Summary

summary

The selection of a displacement pump for an alcohol production (ethanol) plant will be discussed. The pump will be selected using the waukesha manual. A procedure to solve the problem using spread sheet will be demonstrate during the lab.

4.1 Background

In designing a liquid transport system, the need for a pump is determined on the basis of flow and pressure requirements. In selecting a pump for a given system, it is imperative that the characteristics of the system are closely defined. The pump requirements are based on the system characteristics. The following information about the system must be known:
flow rate of liquid, the required differential pressure, the available net positive suction head, the pump capacity, pump speed, characteristics of the fluid.
4.2 Objectives
1.) To present the Waukesha manual
2.) To use the manual to select a pump for an alcohol production plant
3.) To solve the problem using spread sheet
4.) To use the spread sheet to change the system for appricot puree

4.4 Procedure

a.) Using the spread sheet presented in class, modify your system to transport mayonnaise, considering the following:

- mayounaise is a thixotropic material and can be described by:

$$
\begin{aligned}
& \sigma=\lambda\left[7+28.5 \dot{\gamma}^{0.32}\right] \\
& \lambda=\left(0.012 \dot{\gamma}^{0.13} t+2.70\right)^{-1}+0.063
\end{aligned}
$$

- the material will be transported from tank1 (processing) to the filling nozzles located a distance no less than 5 m from the pump.
- the pump will be located at 2 m from tank1 exit

BAEN /CHEN-422-622
UNIT OPERATION IN FOOD PROCESSING
Department of Biological and Agricultural Engineering
Texas AEM universíty

- calculate the viscosity at $t=0$ for given shear rate - after being transported to the filling nozzles calculate the viscosity at the shear rate you selected to transport - the final viscosity must be large or equal 30% of initial viscosity
- densíty is $1200 \mathrm{~kg} / \mathrm{m}_{3}$
- selected the pipe diameter, the flow rate, and system layout
b.) determine the maximum velocity in the pipe
c.) determine the maximum safe distance L that the pump can be located
d.) discuss the significance of fluid rheological characteristics in pump selection

Pump selections - to transport sugar cane must

From must tanks to fermentation vats

Preliminary choice - based on GPM x viscosity
$\mathrm{n}=1, \mathrm{k}=0.0015$ Pa.s; density $=1176 \mathrm{~kg} / \mathrm{m}^{3} ; \mathrm{P}_{\mathrm{v}}=7.11 \mathrm{psia}$
$2000 \mathrm{~L} / \mathrm{h}=$ L/min = \qquad GPM

Pipe size $=1.5 \mathrm{in}=$ \qquad m

Velocity of must $=u=Q / A=$ \qquad m / s

Determine Reynold's number for the Newtonian Fluid

$$
N_{R e, N}=\left(\frac{D(\bar{u}) \rho}{\mu}\right)
$$

$\mathrm{Re}=$ \qquad Recrit $=$ \qquad Flow regime = \qquad
Determine the friction factor - f - also called fanning factor
$f=$ \qquad .

Determine the effective viscosity

$$
\mu_{e}=\frac{f \dot{m}}{4 \pi D}
$$

$$
\mu_{\mathrm{e}}=
$$

\qquad cPs

PReliminary PUMP choice - based on GPM x viscosity: \qquad .

Pump selections - to transport sugar cane must

From must tanks to fermentation vats

(2) Discharge Limitations

waukesha pump can withstand a pressure difference of 200 psi (1370 kPa)
using the tab-Dischargepre
using the tab-NIPR

Calculate the Pressure needed to pump the fluid to the fermentation vat
The energy balance from
the pump to the fermentation
tank

$$
\begin{aligned}
& \frac{u_{2}^{2}-u_{1}^{2}}{a}+\frac{P_{2}-P_{1}}{\rho}+\left(z_{2}-z_{1}\right) g+\Sigma F=-W \\
& u_{2}=u_{1} ; P_{2}=0 ; W=0 ;\left(z_{2}-z_{1}\right)=0.9 \\
& P_{1}=\left[\left(z_{2}-z_{1}\right) g+\Sigma F\right] \rho \\
& \Sigma F=\frac{2 f u^{2} L}{D}+\Sigma \frac{k_{\mu} u^{2}}{2}
\end{aligned}
$$

$\mathrm{L}=$ \qquad m;
\# elbows = \qquad kf EL= \qquad
\#gate valve= \qquad kfGV= \qquad .
$\sum \mathrm{F}=$ \qquad J / kg
$\mathrm{P} 1=$ \qquad $\mathrm{Pa}=$ \qquad psig
$\mathrm{P} 1+\mathrm{Patm}=$ \qquad $+14.69 \mathrm{psia}=$ \qquad .

Will the pump withstand a 200 psi pressure drop? \qquad .

Pump speed

From manual GPR = \qquad ,
speed $=$ GPM/GPR $=$ \qquad rev/min

Pump selections - to transport sugar cane must

From must tanks to fermentation vats
(3) NIPA vs NIPR

NIPA > NIPR otherwise the pump will cavitate
using the worksheet - NIPR
using the worksheet-NIPA

Calculate the Pressure needed to pump the fluid to the fermentation vat

The energy balance from
the must tank to the pump

$$
\begin{aligned}
& \frac{u_{2}^{2}-u_{1}^{2}}{a}+\frac{P_{2}-P_{1}}{\rho}+\left(z_{2}-z_{1}\right) g+\Sigma F=-W \\
& z_{2}-z_{1}=1.5 ; u_{1}=0 ; P_{1}=0 ; W=0 \\
& P_{2}=\rho\left[-z_{2} g-\frac{u_{2}^{2}}{a}-\Sigma F\right]
\end{aligned}
$$

From manual
\qquad pump; NIPR = \qquad psia
$\mathrm{L}=$ \qquad m
\# elbows = \qquad kf EL= \qquad .
\#gate valve= \qquad kfGV= \qquad .
\#tee = \qquad kf T= \qquad .
$\sum \mathrm{F}=$ \qquad J / kg

P2 = \qquad $\mathrm{Pa}=$ \qquad psig
$\mathrm{P} 2+\mathrm{Patm}=$ \qquad $+14.69 \mathrm{psia}=$ \qquad
NIPA = P2 - Pvapor = P2-7.11 = \qquad . psia

NIPA \qquad NIPR

Power requirement

$\mathrm{W}=(\mathrm{P} 1-\mathrm{P} 2) / \rho=$ \qquad J / kg; HP = \qquad ; T = HP 5250/spd = \qquad $\mathrm{ft}-\mathrm{lb}<$ \qquad

CHANGE THE FLUID RHEOLOGICAL PROPERTIES

$\mathrm{n}=0.35$
$K=8.9 \mathrm{~Pa}^{\mathrm{n}}$
$\mathrm{Re}=$ \qquad Recrit $=$ \qquad Flow regime = \qquad _.
$\mathrm{f}=$ \qquad
Pump size = \qquad .

Maximum length $=$ \qquad -

BACK TO NEWTONIAN FLUID - Change Q to 5000 L/h

```
n = 1
K=0.0015 Pa.s
```

$\mathrm{Re}=$ \qquad Recrit $=$ \qquad Flow regime = \qquad .
\qquad
$=$
Pump size = \qquad
Maximum length = \qquad

BACK TO Q to 2000 L/h - Change the pipe diameter to 3 in

$$
\begin{aligned}
& \mathrm{n}=1 \\
& \mathrm{~K}=0.0015 \text { Pa.s }
\end{aligned}
$$

$\mathrm{Re}=$ \qquad Recrit $=$ \qquad Flow regime = \qquad .
$\mathrm{f}=$ \qquad
Pump size = \qquad
Maximum length = \qquad

