Wave Interference and Diffraction Part 1: Introduction, Double SIt

PHY 2049 Physics 2 with Calculus

PHY 2049: Chapter 35

Quiz

→Three beams of light, a, b and c, of the same wavelength are sent through 3 layers of plastic with the indices of refraction as shown. Which material has the *most* number of wavelengths inside the material?

Shortest wavelength in material, so fits most # of waves

◆ 2. b◆ 3. c

♦ 1. a

♦ 4. Same for all

Need to Understand Light as Wave!

- → (You already have read this material)
- →Index of refraction
 - Speed of EM wave in medium:
 - Wavelength of light:

$$c_n = c / n$$
$$\lambda_n = \lambda / n$$

- → Propagation of light: Huygens principle (36-2)
 - Explains reflection and refraction
 - Explains interference (from superposition)
 - Explains diffraction (spreading of light around barrier)

Interference as a Wave Phenomenon

→Interference of light waves

- Caused by superposition of waves
- Intensity can increase or decrease!
- Contrast with particle model of light

→Effects and applications

- Double slit
- Single slit
- Diffraction gratings
- Anti-reflective coatings on lenses
- Highly reflective coatings for mirrors
- Iridescent coatings on insects
- Colors on thin bubbles
- Interferometry with multiple telescopes

Interference from Wave Superposition

Basic rule: Add displacement at every point

Constructive Interference

→Same wavelength, phase difference = 0°
→Amplitude larger: Higher intensity

Destructive Interference

→Same wavelength, phase difference = 180° (1/2 λ) →Amplitude smaller: Lower intensity

Examples

- \rightarrow Two waves, same λ , with amplitudes 2A and A
 - \blacklozenge Initial intensities 4I and I, respectively (I \propto A²)
- →No interference
 - Combined intensity: $I_{new} = 4I + I = 5I$
- →Maximum constructive interference ($\phi = 0$)
 - New amplitude: $A_{new} = 2A + A = 3A$
 - New intensity: $I_{new} = 9I$

→Maximum destructive interference ($\phi = \pi$)

- New amplitude:
- New intensity:

$$A_{new} = 2A - A = A$$

 $I_{new} = I$

General Treatment of Interference

→Most interference is partial

- Amplitudes for 2 waves are generally different
- Phase difference : $0 < \phi < 180^{\circ}$

$$E(x,t) = E_1 \cos(kx - \omega t) + E_2 \cos(kx - \omega t + \phi)$$

→Additional considerations

- Wavelengths can be different
- Multiple waves may interfere (e.g., diffraction grating)
- But easy to accommodate: just sum over all waves

$$E(x,t) = \sum_{i} E_{i} \cos(k_{i}x - \omega_{i}t + \phi_{i})$$

Interference and Path Length

Two sources, spaced 3 wavelengths apart, emit waves with the same wavelength and phase. In how many places on the circle will the net intensity be a relative maximum?

Answer = 12 Can you see why?

Hint: Start at far right and move counterclockwise towards top, noting path length changes.

Key idea: Path difference leads to phase difference

Interference and Path Length

Two sources, separated by 4λ, emit waves at same wavelength and phase. Find relative minima on +x axis.
 Solution: path *difference* must be a half-multiple of λ

Double Slit Interference

→Incident light

- Light waves strike 2 narrow slits close together
- Light goes through both slits, diffracts in all directions

→Interference

- At certain angles, waves constructively interfere \Rightarrow brighter
- At other angles, waves destructively interfere \Rightarrow darker

Interference

Basic Requirements for Two Slit Setup

- →Light beam strikes normal to slits
- →Light beam illuminates both slits equally
- →Light beam is in phase at both slits: coherent
 - Young used small slit in front of 2 slits to get coherence
 - Modern versions use laser for coherence (much brighter)

 $d\sin\theta = m\lambda$ Maximum $d\sin\theta = \left(m + \frac{1}{2}\right)\lambda$ Minimum

Double Slit Intensity Pattern on Screen

Example of Double Slit Max and Min

Example 1: $d = 5\lambda$

Max
$$\sin \theta = m(\lambda/d) = 0.2m$$

Min $\sin \theta = (m + \frac{1}{2})(\lambda/d) = 0.2(m + \frac{1}{2})$

m	$\sin \theta_{max}$	$ heta_{max}$	$\sin \theta_{\min}$	$ heta_{min}$
0	0	0	±0.1	±5.7
±1	±0.2	±11.5	±0.3	±17.5
±2	±0.4	±23.6	±0.5	±30
±3	±0.6	±36.9	±0.7	±44.4
±4	±0.8	±53.1	±0.9	±64.2
±5	±1.0	±90	±1.1	

Intensity vs Angle for $d = 5\lambda$

Double slit, a=0, lambda=0.2*d

PHY 2049: Chapter 35

Example 2: $d = 2.0 \ \mu m$, $\lambda = 550 \ nm$

→How many bright fringes? Where are they?

 $\sin\theta = m(\lambda/d) = 0.275m$

 \rightarrow m can equal 0, ±1, ±2, ±3 \Rightarrow 7 maxima

m = 0	$\sin\theta = 0$	$\theta = 0$
$m = \pm 1$	$\sin\theta = 0.275$	$\theta = 16.0^{\circ}$
m = ±2	$\sin\theta = 0.55$	$\theta = 33.4^{\circ}$
m = ±3	$\sin\theta = 0.825$	$\theta = 55.6^{\circ}$

Intensity vs θ for $d = 2.0 \ \mu m$, $\lambda = 550 \ nm$

PHY 2049: Chapter 35

Calculating Double Slit Intensity

→Assumptions

- Each slit acts as a source of waves
- Waves radiate equally in all directions

Double Slit Intensity (2)

→Add amplitudes, include phase difference

- Assume equal size slit widths
- Phase difference from path difference: $2\pi \times \#$ wavelengths
- We ignore x dependence here (analysis does not depend on it)

$$E(t) = E_0 \cos(\omega t) + E_0 \cos(\omega t + \phi)$$
$$\phi = 2\pi \left(\frac{d\sin\theta}{\lambda}\right)$$

Double Slit Intensity (3)

→Intensity is time average of amplitude *squared*

- Consider single wave of amplitude $E = E_0 \cos \omega t$
- Intensity from time average of E²: $I_0 = K^2 E_0^2 \langle \cos^2 \omega t \rangle = \frac{1}{2} K^2 E_0^2$
- ♦ <...> is time average over a period, K is a constant
- Use these to calculate total intensity

$$I_{\text{tot}} = K^2 \left\langle \left(E_0 \cos(\omega t) + E_0 \cos(\omega t + \phi) \right)^2 \right\rangle$$
$$= K^2 E_0^2 \left\langle \cos^2 \omega t \right\rangle + K^2 E_0^2 \left\langle \cos^2 \left(\omega t + \phi\right) \right\rangle$$
$$+ 2K^2 E_0^2 \left\langle \cos \omega t \cos(\omega t + \phi) \right\rangle$$

We work out these 3 terms on next page

Double Slit Intensity (4)

$$\left\langle \cos^2 \omega t \right\rangle = \frac{1}{2}$$
$$\left\langle \cos^2 \left(\omega t + \phi \right) \right\rangle = \frac{1}{2}$$
$$\left\langle \cos \omega t \cos \left(\omega t + \phi \right) \right\rangle = \frac{1}{2} \cos \phi$$

$$\phi = 2\pi \left(\frac{d\sin\theta}{\lambda}\right)$$

From expanding $cos(\omega t+\phi)$ term

$$I_{\text{tot}} = K^2 E_0^2 \left(1 + \cos \phi \right) = 2I_0 \left(1 + \cos \phi \right)$$
$$= 4I_0 \cos^2 \frac{1}{2} \phi$$
$$= 4I_0 \cos^2 \left(\pi d \sin \theta / \lambda \right)$$

Double Slit Intensity (5)

→So the intensity is $I = 4I_0 \cos^2(\pi d \sin \theta / \lambda)$

→Maxima occur when argument inside cos() is $n\pi$

 $d\sin\theta = n\lambda$

→Minima occur when argument inside cos() is $(n+1/2)\pi$

$$d\sin\theta = \left(n + \frac{1}{2}\right)\lambda$$

