Wave I nterference and Diffraction

Part 1: I ntroduction, Double Slt

$$
\begin{array}{ccc}
\text { Air } & \mathrm{MgF}_{2} & \text { Glass } \\
n_{1}=1.00 & n_{2}=1.38 & n_{3}=1.50
\end{array}
$$

PHY 2049

Physics 2 with Calculus

Quiz

\rightarrow Three beams of light, a, b and c, of the same wavelength are sent through 3 layers of plastic with the indices of refraction as shown. Which material has the most number of wavelengths inside the material?

1. a Shortest wavelength in material, so fits most \# of waves

- 2. b
-3. c

4. Same for all

Need to Understand Light as Wave!

\rightarrow (You already have read this material)
\rightarrow Index of refraction

- Speed of EM wave in medium: $\quad c_{n}=c / n$
- Wavelength of light:

$$
\lambda_{n}=\lambda / n
$$

\rightarrow Propagation of light: Huygens principle (36-2)

- Explains reflection and refraction
- Explains interference (from superposition)
- Explains diffraction (spreading of light around barrier)

Interference as a Wave Phenomenon

\rightarrow Interference of light waves

- Caused by superposition of waves
- Intensity can increase or decrease!
- Contrast with particle model of light
\rightarrow Effects and applications
- Double slit
- Single slit
- Diffraction gratings
- Anti-reflective coatings on lenses
- Highly reflective coatings for mirrors
- Iridescent coatings on insects
- Colors on thin bubbles
- Interferometry with multiple telescopes

I nterference from Wave Superposition

Basic rule: Add displacement at every point

Constructive I nterference

\rightarrow Same wavelength, phase difference $=0^{\circ}$
\rightarrow Amplitude larger: Higher intensity

Destructive I nterference

\rightarrow Same wavelength, phase difference $=180^{\circ}(1 / 2 \lambda)$
\rightarrow Amplitude smaller: Lower intensity

$E(x)=\sin (k x)+0.5 \sin (k x+\pi)=0.5 \sin (k x)$

Examples

\rightarrow Two waves, same λ, with amplitudes 2A and A
\rightarrow Initial intensities 4 I and I, respectively $\left(I \propto A^{2}\right)$
\rightarrow No interference
Combined intensity: $I_{\text {new }}=4 I+I=5 I$
\rightarrow Maximum constructive interference ($\phi=0$)
\rightarrow New amplitude: $\quad A_{\text {new }}=2 A+A=3 A$
\bullet New intensity: $\quad I_{\text {new }}=91$
\rightarrow Maximum destructive interference ($\phi=\pi$)

- New amplitude: $\quad A_{\text {new }}=2 A-A=A$
- New intensity:
$I_{\text {new }}=I$

General Treatment of I nterference

\rightarrow Most interference is partial

- Amplitudes for 2 waves are generally different
- Phase difference : $0<\phi<180^{\circ}$
$E(x, t)=E_{1} \cos (k x-\omega t)+E_{2} \cos (k x-\omega t+\phi)$
\rightarrow Additional considerations
- Wavelengths can be different
- Multiple waves may interfere (e.g., diffraction grating)
- But easy to accommodate: just sum over all waves

$$
E(x, t)=\sum_{i} E_{i} \cos \left(k_{i} x-\omega_{i} t+\phi_{i}\right)
$$

I nterference and Path Length

Two sources, spaced 3 wavelengths apart, emit waves with the same wavelength and phase. In how many places on the circle will the net intensity be a relative maximum?

Answer $=12$
Can you see why?

Hint: Start at far right and move counterclockwise towards top, noting path length changes.

Key idea: Path difference leads to phase difference

Interference and Path Length

\rightarrow Two sources, separated by 4λ, emit waves at same wavelength and phase. Find relative minima on $+x$ axis.

- Solution: path difference must be a half-multiple of λ

$$
\begin{aligned}
& \Delta L=\sqrt{x^{2}+(4 \lambda)^{2}}-x=\left(n+\frac{1}{2}\right) \lambda \\
& x=\frac{16-\left(n+\frac{1}{2}\right)^{2}}{2 n+1} \lambda \longleftarrow 4 \text { values }
\end{aligned}
$$

$n=0$	$x=15.8 \lambda$	$\Delta L=\lambda / 2$
$n=1$	$x=4.58 \lambda$	$\Delta L=3 \lambda / 2$
$n=2$	$x=1.95 \lambda$	$\Delta L=5 \lambda / 2$
$n=3$	$x=0.54 \lambda$	$\Delta L=7 \lambda / 2$

Double Slit Interference

\rightarrow Incident light

- Light waves strike 2 narrow slits close together
- Light goes through both slits, diffracts in all directions
\rightarrow Interference
- At certain angles, waves constructively interfere \Rightarrow brighter
- At other angles, waves destructively interfere $\quad \Rightarrow$ darker

Interference

Light waves

Basic Requirements for Two Slit Setup

\rightarrow Light beam strikes normal to slits
\rightarrow Light beam illuminates both slits equally
\rightarrow Light beam is in phase at both slits: coherent

- Young used small slit in front of 2 slits to get coherence
- Modern versions use laser for coherence (much brighter)

Two Slit Analysis

Double Slit Intensity Pattern on Screen

Example of Double Slit Max and Min

(5) 2006 Brooks/Cole - Thomson

Example 1: d = 5λ

Max $\sin \theta=m(\lambda / d)=0.2 m$
Min $\sin \theta=\left(m+\frac{1}{2}\right)(\lambda / d)=0.2\left(m+\frac{1}{2}\right)$

\mathbf{m}	$\boldsymbol{\operatorname { s i n }} \theta_{\max }$	$\theta_{\max }$	$\boldsymbol{\operatorname { s i n }} \theta_{\min }$	$\theta_{\text {min }}$
0	0	0	± 0.1	± 5.7
± 1	± 0.2	± 11.5	± 0.3	± 17.5
± 2	± 0.4	± 23.6	± 0.5	± 30
± 3	± 0.6	± 36.9	± 0.7	± 44.4
± 4	± 0.8	± 53.1	± 0.9	± 64.2
± 5	± 1.0	± 90	± 1.1	--

I ntensity vs Angle for $\mathrm{d}=5 \lambda$
Double slit, $a=0$, lambda $=0.2 * d$

Example 2: $d=2.0 \mu \mathrm{~m}, \lambda=550 \mathrm{~nm}$

\rightarrow How many bright fringes? Where are they?

$$
\sin \theta=m(\lambda / d)=0.275 m
$$

$\rightarrow \mathrm{m}$ can equal $0, \pm 1, \pm 2, \pm 3 \Rightarrow 7$ maxima

$m=0$	$\sin \theta=0$	$\theta=0$
$m= \pm 1$	$\sin \theta=0.275$	$\theta=16.0^{\circ}$
$m= \pm 2$	$\sin \theta=0.55$	$\theta=33.4^{\circ}$
$m= \pm 3$	$\sin \theta=0.825$	$\theta=55.6^{\circ}$

Intensity vs θ for $d=2.0 \mu \mathrm{~m}, \lambda=550 \mathrm{~nm}$

Calculating Double Slit Intensity

\rightarrow Assumptions

- Each slit acts as a source of waves
- Waves radiate equally in all directions

Double Slit Intensity (2)

\rightarrow Add amplitudes, include phase difference

- Assume equal size slit widths
- Phase difference from path difference: $2 \pi \times$ \# wavelengths
- We ignore x dependence here (analysis does not depend on it)

$$
\begin{aligned}
& E(t)=E_{0} \cos (\omega t)+E_{0} \cos (\omega t+\phi) \\
& \phi=2 \pi\left(\frac{d \sin \theta}{\lambda}\right)
\end{aligned}
$$

Double Slit Intensity (3)

\rightarrow Intensity is time average of amplitude squared

- Consider single wave of amplitude $E=E_{0} \cos \omega t$
\rightarrow Intensity from time average of $E^{2}: I_{0}=K^{2} E_{0}^{2}\left\langle\cos ^{2} \omega t\right\rangle=\frac{1}{2} K^{2} E_{0}^{2}$
- $<$...> is time average over a period, K is a constant
\checkmark Use these to calculate total intensity

$$
\begin{aligned}
I_{\mathrm{tot}} & =K^{2}\left\langle\left(E_{0} \cos (\omega t)+E_{0} \cos (\omega t+\phi)\right)^{2}\right\rangle \\
& =K^{2} E_{0}^{2}\left\langle\cos ^{2} \omega t\right\rangle+K^{2} E_{0}^{2}\left\langle\cos ^{2}(\omega t+\phi)\right\rangle \\
& +2 K^{2} E_{0}^{2}\langle\cos \omega t \cos (\omega t+\phi)\rangle
\end{aligned}
$$

We work out these 3 terms on next page

Double Slit Intensity (4)

$$
\begin{aligned}
\left\langle\cos ^{2} \omega t\right\rangle & =\frac{1}{2} \\
\left\langle\cos ^{2}(\omega t+\phi)\right\rangle & =\frac{1}{2}
\end{aligned}
$$

$$
\langle\cos \omega t \cos (\omega t+\phi)\rangle=\frac{1}{2} \cos \phi \quad \text { From expanding } \cos (\omega t+\phi) \text { term }
$$

$$
\begin{aligned}
I_{\text {tot }} & =K^{2} E_{0}^{2}(1+\cos \phi)=2 I_{0}(1+\cos \phi) \\
& =4 I_{0} \cos ^{2} \frac{1}{2} \phi \\
& =4 I_{0} \cos ^{2}(\pi d \sin \theta / \lambda)
\end{aligned}
$$

Double Slit Intensity (5)

\rightarrow So the intensity is $I=4 I_{0} \cos ^{2}(\pi d \sin \theta / \lambda)$
\rightarrow Maxima occur when argument inside $\cos ()$ is $n \pi$

$$
d \sin \theta=n \lambda
$$

\rightarrow Minima occur when argument inside $\cos ()$ is $(n+1 / 2) \pi$

$$
d \sin \theta=\left(n+\frac{1}{2}\right) \lambda
$$

