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Abstract. Wavelets provide a powerful and remarkably flexible set of tools
for handling fundamental problems in science and engineering, such as audio
de-noising, signal compression, object detection and fingerprint compression,
image de-noising, image enhancement, image recognition, diagnostic heart
trouble and speech recognition, to name a few. Here, we are going to con-
centrate on wavelet application in the field of Image Compression so as to
observe how wavelet is implemented to be applied to an image in the process
of compression, and also how mathematical aspects of wavelet affect the com-
pression process and the results of it. Wavelet image compression is performed
with various known wavelets with different mathematical properties. We study
the insights of how wavelets in mathematics are implemented in a way to fit
the engineering model of image compression.

1. Introduction

Wavelets are functions which allow data analysis of signals or images, accord-
ing to scales or resolutions. The processing of signals by wavelet algorithms in fact
works much the same way the human eye does; or the way a digital camera pro-
cesses visual scales of resolutions, and intermediate details. But the same principle
also captures cell phone signals, and even digitized color images used in medicine.
Wavelets are of real use in these areas, for example in approximating data with
sharp discontinuities such as choppy signals, or pictures with lots of edges.

While wavelets is perhaps a chapter in function theory, we show that the al-
gorithms that result are key to the processing of numbers, or more precisely of
digitized information, signals, time series, still-images, movies, color images, etc.
Thus, applications of the wavelet idea include big parts of signal and image pro-
cessing, data compression, fingerprint encoding, and many other fields of science
and engineering. This thesis focuses on the processing of color images with the use
of custom designed wavelet algorithms, and mathematical threshold filters.

Although there have been a number of recent papers on the operator theory
of wavelets, there is a need for a tutorial which explains some applied tends from
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scratch to operator theorists. Wavelets as a subject is highly interdisciplinary and
it draws in crucial ways on ideas from the outside world. We aim to outline various
connections between Hilbert space geometry and image processing. Thus, we hope
to help students and researchers from one area understand what is going on in the
other. One difficulty with communicating across areas is a vast difference in lingo,
jargon, and mathematical terminology.

With hands-on experiments, our paper is meant to help create a better under-
standing of links between the two sides, math and images. It is a delicate balance
deciding what to include. In choosing, we had in mind students in operator theory,
stressing explanations that are not easy to find in the journal literature.

Our paper results extend what was previously known, and we hope yields new
insight into scaling and of representation of color images; especially, we have aimed
for better algorithms.

The paper concludes with a set of computer generated images which serve to
illustrate our ideas and our algorithms, and also with the resulting compressed
images.

1.1. Overview. How wavelets work in image processing is analogous to how
our eyes work. Depending on the location of the observation, one may perceive
a forest differently. If the forest was observed from the top of a skyscraper, it
will be observed as a blob of green; if it was observed in a moving car, it will
be observed as the trees in the forest flashing through, thus the trees are now
recognized. Nonetheless, if it is observed by one who actually walks around it,
then more details of the trees such as leaves and branches, and perhaps even the
monkey on the top of the coconut tree may be observed. Furthermore, pulling out
a magnifying glass may even make it possible to observe the texture of the trees
and other little details that cannot perceived by bare human eyes. See [Mac01],
[Mar82].

Wavelet Image Processing enables computers to store an image in many scales
of resolutions, thus decomposing an image into various levels and types of details
and approximation with different-valued resolutions. Hence, making it possible to
zoom in to obtain more detail of the trees, leaves and even a monkey on top of the
tree. Wavelets allow one to compress the image using less storage space with more
details of the image.

The advantage of decomposing images to approximate and detail parts as in
3.3 is that it enables to isolate and manipulate the data with specific properties.
With this, it is possible to determine whether to preserve more specific details. For
instance, keeping more vertical detail instead of keeping all the horizontal, diagonal
and vertical details of an image that has more vertical aspects. This would allow
the image to lose a certain amount of horizontal and diagonal details, but would
not affect the image in human perception.

As mathematically illustrated in 3.3, an image can be decomposed into ap-
proximate, horizontal, vertical and diagonal details. N levels of decomposition is
done. After that, quantization is done on the decomposed image where different
quantization maybe done on different components thus maximizing the amount of
needed details and ignoring ‘not-so-wanted’ details. This is done by thresholding
where some coefficient values for pixels in images are ‘thrown out’ or set to zero
or some ‘smoothing’ effect is done on the image matrix. This process is used in
JPEG2000.
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1.2. Motivation. In many papers and books, the topics in wavelets and image
processing are discussed in mostly in one extreme, namely in terms of engineering
aspects of it or wavelets are discussed in terms operators without being specifically
mentioned how it is being used in its application in engineering. In this paper, the
author adds onto [Sko01], [Use01] and [Vet01] more insights about mathematical
properties such as properties from Operator Theory, Functional Analysis, etc. of
wavelets playing a major role in results in wavelet image compression. Our paper
aims in establishing if not already established or improve the connection between
the mathematical aspects of wavelets and its application in image processing. Also,
our paper discuss on how the images are implemented with computer program,
and how wavelet decomposition is done on the digital images in terms of computer
program, and in terms of mathematics, in the hope that the communication be-
tween mathematics and engineering will improve, thus will bring greater benefits
to mathematicians and engineers.

2. Wavelet Color Image Compression

2.1. Methods. The whole process of wavelet image compression is performed
as follows: An input image is taken by the computer, forward wavelet transform is
performed on the digital image, thresholding is done on the digital image, entropy
coding is done on the image where necessary, thus the compression of image is
done on the computer. Then with the compressed image, reconstruction of wavelet
transformed image is done, then inverse wavelet transform is performed on the
image, thus image is reconstructed. In some cases, zero-tree algorithm [Sha93] is
used and it is known to have better compression with zero-tree algorithm but it
was not implemented here.

2.1.1. Forward Wavelet Transform. Various wavelet transforms are used in this
step. Namely, Daubechies wavelets, Coiflets, biorthogonal wavelets, and Symlets.
These various transforms are implemented to observe how various mathematical
properties such as symmetry, number of vanishing moments and orthogonality differ
the result of compressed image. Advantages short support is that it preserves
locality. The Daubechies wavelets used are orthogonal, so do Coiflets. Symlets
have the property of being close to symmetric. The biorthogonal wavelets are not
orthogonal but not having to be orthogonal gives more options to a variety of filters
such as symmetric filters thus allowing them to possess the symmetric property.

MATLAB has a subroutine called wavedec2 which performs the decomposi-
tion of the image for you up to the given desired level (N) with the given desired
wavelet(wname). Since there are three components to deal with, the wavelet trans-
form was applied componentwise. “wavedec” is a two-dimensional wavelet analy-
sis function. [C,S] = wavedec2(X ,N ,‘wname’) returns the wavelet decomposition
of the matrix X at level N , using the wavelet named in string ‘wname’. Out-
puts are the decomposition vector C and the correspondingbookkeeping matrix S
[MatlabUG]. Here the image is taken as the matrix X .

2.1.2. Thresholding. Since the whole purpose of this project was to compare the
performance of each image compression using different wavelets, fixed thresholds
were used.

Soft threshold was used in this project in the hope that the drastic differences
in gradient in the image would be noted less apparently. The soft and hard thresh-
oldings Tsoft, Thard are defined as follows:
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(2.1) Tsoft(x) =











0 if |x| ≤ λ

x− λ if x > λ

x+ λ if x < −λ

(2.2) Thard(x) =

{

0 if |x| ≤ λ

x if |x| > λ

where λ ∈ R+. As it could be observed by looking at the definitions, the
difference between them is related to how the coefficients larger than a threshold
value λ in absolute values are handled. In hard thresholding, these coefficient values
are left alone. Unlike in hard thresholding, the coefficient values area decreased by
λ if positive and increased by λ if negative [Waln02].

MATLAB has this subroutine called wthrmngr which computes the global
threshold or level dependent thresholds depending on the option and method. The
options available are global threshold and level dependent threshold, and the global
threshold is used in the program. However, a fixed threshold values were used so
as to have the same given condition for every wavelet transform to compare the
performances of different conditions. Here, fixed thresholds 10 and 20 were used.
For the lossless compression 0 is used as the threshold for an obvious reason.

2.1.3. Entropy Encoding. Entropy defined as

H(s) = −
q

∑

i=1

P (si)log2(P (si)),

where si are codewords and S is the message. Entropy coding uses codewords with
varying lengths, here codewords with short length are used for values that have to be
encoded more often, and the longer codewords are assigned for less encoded values.
H(S) measures the amount of information in the message, ie. the minimal number
of bits needed to encode one word of the message. Unfortunately, the entropy
encoding was not implemented on the codes for the color image compression using
wavelets. However, Shannon entropy which is defined below was used in the code
for the image compression with wavelet packets. See [Son04] and [Bra02].

The Shannon entropy functional is defined by

(2.3) M(c{bj}) = −
∑

n=1

M |〈c, bj〉|2log|〈c, bj〉|2

Also, entropy could be viewed as a quantity that measures the amount of un-
certainty in a probability distribution, or equivalently of the amount of information
obtained from one sample from the probability space.

2.1.4. Reconstruction of Wavelet Transformed Image. At this step, the sig-
nificance map is taken and with the amplitudes of the non-zero valued wavelet
coefficients, the wavelet transformed image is reconstructed.

2.1.5. Inverse Wavelet Transformation. The wavelet parameters are converted
back into an image almost identical to the original image. How much identical they
are will be dependent upon whether the compression was lossy or lossless.
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2.2. Wavelets. Compactly supported wavelets are functions defined over a
finite interval and having an average value of zero. The basic idea of the wavelet
transform is to represent any arbitrary function f(x) as a superposition of a set
of such wavelets or basis functions. These basis functions are obtained from a
single prototype wavelet called the mother wavelet ψ(x), by dilations or scaling
and translations. Wavelet bases are very good at efficiently representing functions
that are smooth except for a small set of discontinuities.

For each n, k ∈ Z, define ψn,k(x) by

(2.4) ψn,k(x) = 2n/2ψ(2nx− k)

Constructing the function ψ(x), L2 on R, such that {ψn,k(x)}n,k∈Z is an or-
thonormal basis on R. As mentioned before ψ(x) is a wavelet and the collection
{ψn,k(x)}n,k∈Z is a wavelet orthonormal basis on R; this framework for constructing
wavelets involves the concept of a multiresolution analysis or MRA.

2.2.1. Multiresolution Analysis. Multiresolution analysis is a device for com-
putation of basis coefficients in L2(R) : f =

∑∑

cn,kψn,k. It is defined as follows,
see [Kei04]: Define

Vn = {f(x)|f(x) = 2n/2g(2nx), g(x) ∈ V0},
where

f(x) =
∑

n∈Z

〈f, φ(· − n)〉φ(x − n).

Then a multiresolution analysis on R is a sequence of subspaces {Vn}n∈Z of functions
L2 on R, satisfying the following properties:

(a) For all n, k ∈ Z, Vn ⊆ Vn+1.
(b) If f(x) is C0

c on R, then f(x) ∈ span{Vn}n∈Z. That is, given ǫ > 0, there
is an n ∈ Z and a function g(x) ∈ Vn such that ‖f − g‖2 < ǫ.

(c)
⋂

n∈Z
Vn = {0}.

(d) A function f(x) ∈ V0 if and only if 2n/2f(2nx) ∈ Vn.
(e) There exists a function φ(x), L2 on R, called the scaling function such

that the collection φ(x − n) is an orthonormal system of translates and
V0 = span{φ(x− n)}.

Definition 2.1. Let {VJ} be an MRA with scaling function φ(x) which satisfies
(2.14) and scaling filter h(k), where h(k) = 〈2−1/2φ(x

2 ), φ(x−k)〉. Then the wavelet
filter g(k) is defined by

g(k) = (−1)kh(1 − k)

and the wavelet by

ψ(x) =
∑

k∈Z

g(k)
√

2φ(2x− k).

See [Kei04].

Then {ψn,k(x)}n,k∈Z is a wavelet orthonormal basis on R.

Definition 2.2. The orthogonal projection of an arbitrary function f ∈ L2

onto Vn is given by

Pnf =
∑

k∈Z

〈f, φn,k〉φn,k

[Kei04].
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As k varies, the basis functions φn,k are shifted in steps of 2−n, so Pnf cannot
represent any detail on a scale smaller than that. We say that the functions in Vn

have the resolution 2−n or scale 2−n. Here, Pnf is called an approximation to f at
resolution 2−n. For a given function f , an MRA provides a sequence of approxima-
tions Pnf of increasing accuracy [Kei04]. We include the following known proof
for the benefit of the readers.

Theorem 2.3. [Waln02] For all f(x) ∈ C0
c (R), limn→∞ ‖Pnf − f‖2 = 0

Proof. Let ǫ > 0. Then there exists N ∈ Z and g(x) ∈ Vj such that ‖f−g‖2 <
ǫ/2. By 2.1, g(x) ∈ Vn and Png(x) = g(x) for all n ≤ N . Thus,

‖f − Pnf‖2 = ‖f − g + Png − Pnf‖
≤ ‖f − g‖2 + ‖Pn(f − g)‖2

≤ 2‖f − g‖2

< ǫ

where Minkowski’s and Bessel’s inequalities are applied. Since this holds for all
n ≥ N the proof is complete. �

Definition 2.4. The difference between the approximations at resolution 2−n

and 2−n−1 is called the fine detail at resolution 2−n which is as follows:

Qnf(x) = Pn+1f(x) − Pnf(x)

or

Qnf =
∑

k∈Z

〈f, ψn,k〉ψn,k

Qn is also an orthogonal projection and its rangeWn is orthorgonal to Vn where
the following holds:

(2.5) Vn = {f |Pnf = f}

(2.6) Wn = {f |Qnf = f}

(2.7) Vn ⊕Wn = Vn+1

(2.8) ψ ∈ V−1 ⊖ V0 = {f |f ∈ V−1, f⊥V0} = W0

Theorem 2.5. [Dau92], [Waln02] There are choices of the numbers h and g

in 2.1 such that {ψn,k(x)}n,k∈Z is a wavelet orthonormal basis on R.

Proof. We must show othornomality and completeness. As for completenes,
we have

(2.9)
⋂

n∈Z

Vn = 0

and

(2.10)
⋃

n

Vn = L2(R).

Then we have {ψn,k|k ∈ Z} = Wn = Vn ⊖ Vn−1. Hence {ψn,k}n,k∈Z is complete if
and only if

∑

nWn = L2(R) holds, and this is true if and only if (2.9) and (2.10)
holds. Since we have those conditions for {ψn,k}n,k∈Z, it is complete.
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Now, as for the orthonomality,

〈ψn,k, ψn,l〉 = 〈2n/2ψ(2nx− k), 2n/2ψ(2nx− l)〉

= 〈ψ0,k, ψ0,l〉 = δ(k − l).

To prove orthonomality between scales, let n, n′ ∈ Z with n′ < n, and let k, k′ ∈ Z

be arbitrary. Since ψ(x) ∈ V1, ψ0,k′ (x) ∈ V1 also. Then we have ψn′,k′ ∈ Vn′+1.
Since 〈ψ0,k, ψ0,l〉 = 0 for all k, l ∈ Z, it follows that 〈ψn,k, φn,l〉 = 0, for all n, k, l ∈
Z. Given f(x) ∈ Vn we know that f(x) =

∑

k〈f, φn,k〉φn,k(x). Hence for f(x) ∈ Vn,

〈ψn,l, f〉 = 〈ψn,l,
∑

k

〈f, φn,k〉φn,k〉

=
∑

k

〈f, φn,k〉〈ψn,l, φn,k〉 = 0

Since, n′ < n, Vn′+1 ⊆ Vn and since ψn′,k′ ∈ Vn′+1, ψn′,k′ ∈ Vn also. Hence
〈ψn,k, ψn′,k′〉 = 0. Therefore {ψn,k(x)}n,k∈Z is a wavelet orthonormal basis on R.
See [Waln02]. �

2.2.2. Symmetry. Symmetric filters are preferred for they are most valuable
for minimizing the edge effects in the wavelet representation of discrete wavelet
transform(DWT) of a function; large coefficients resulting from false edges due to
periodization can be avoided.

Since orthogonal filters in exception to Haar-filter cannot be symmetric, biorthog-
onal filters are almost always selected for image compression application [Waln02].

2.2.3. Vanishing Moments. Vanishing Moments are defined as follows: From
the definition of multiresolution analysis(MRA), any wavelet ψ(x) that comes from
an MRA must satisfy

(2.11)

∫

R

ψ(x)dx = 0

The integral (2.11) is referred to as the zeroth moment of ψ(x), so that if (2.11)
holds, we say that ψ(x) has its zeroth moment vanishing. The integral

∫

R
xkψ(x)dx

is referred to as the kth moment of ψ(x) and if
∫

R
xkψ(x)dx = 0, we say that ψ(x)

has its kth moment vanishing [Waln02].
We may encounter a situation where having different number of vanishing mo-

ments on the analysis filters than on the reconstruction filters. As a matter of
fact, it is possible to have different number of vanishing moments on the analysis
filters than on the reconstruction filters. Vanishing moments on the analysis filters
are desired for small coefficients in the transform as a result, whereas vanishing
moments on the reconstruction filter results in fewer blocking artifacts in the com-
pressed image thus is desired. Thus having sufficient vanishing moments which
maybe different in numbers on each filters are advantageous.

2.2.4. Size of the filters. Long analysis filters results in greater computation
time for the wavelet or wavelet packet transform. Long reconstruction filters can
create unpleasant artifacts in the compressed image for the following reason. The
reconstructed image is made up of the superposition of only a few scaled and shifted
reconstruction filters. So features of the reconstruction filters such as oscillations
or lack of smoothness, can be obvious noted in the reconstructed image. Smooth-
ness can be guaranteed by requiring a large number of vanishing moments in the
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reconstruction filter. However, such filters tend to be oscillatory [Waln02]. Also,
see [Vet01].

2.3. Various Wavelets. For later use in computations, we recall here the
specific wavelets needed:

2.3.1. Haar Wavelet. Haar wavelet is the only known wavelet that is compactly
supported, orthogonal and symmetric [WaEx05].

The Haar system is defined as follows in [Waln02]: Define

In,k = [2−nk, 2−n(k + 1))].

Let p(x) = χ[0,1)(x), and for each n, k ∈ Z, define pn,k(x) = 2n/2p(2nx − k). The
collection {φn,k(x)}n,k∈Z is referred to as the system of Haar scaling functions.

(a) For each n, k ∈ Z, pn,k(x) = 2n/2χIn,k
(x), so that pn,k(x) is supported on

the interval In,k and does not vanish on that interval. There for we refer
to the scaling function pn,k(x) as being associated with the interval In,k.

(b) For each n, k ∈ Z,
∫

R
pn,k(x)dx =

∫

In,k
pn,k(x)dx = 2n/2 and

∫

R

|pn,k(x)|2dx =

∫

In,k

|pn,k(x)|2dx = 1.

Definition 2.6. Let h(x) = χ[0,1/2)(x) − χ[1/2,1)(x), and for each n, k ∈ Z

define hn,k(x) = 2n/2h(2nx−k). The collection {hn,k(x)}n,k∈Z is referred to as the
Haar system on R. For each n ∈ Z, the collection {hn,k(x)}n,k∈Z is referred to as
the system of scale j Haar functions.

Definition 2.7. Given J,N ∈ N with J < N and a finite sequence c0 =

{c0}2N
−1

k=0 , the discrete Haar transform of c0 is defined by {dj(k)|1 ≤ j ≤ J ; 0 ≤ k ≤
2N−j − 1} ∪ {cJ(k)‖0 ≤ k ≤ 2N−j − 1} where

(2.12) cj(k) =
1√
2
cj−1(2k)+

1√
2
cj−1(2k+1)dj(k) =

1√
2
cj−1(2k)+

1√
2
cj−1(2k+1)

(2.13) cj−1(2k) =
1√
2
cj(k) +

1√
2
dj(k)cj−1(2k + 1) =

1√
2
cj(k) −

1√
2
dj(k)

Haar wavelets are basically same as Daubechies wavelet db1 (in MATLAB) or
Daub4. Haar wavelets are example of compactly supported wavelets. The compact
support of the Haar wavelets enables the Haar decomposition to have a good time
localization. Specifically, this means that the Haar coefficients are effective for
locating jump discontinuities and also for the efficient representation of signals with
small support. However, the fact that they have jump discontinuities(sect5.4.3), in
particular in the poorly decaying Haar coefficients of smooth functions and in the
blockiness of images reconstructed from subsets of the Haar coefficients [Waln02].

2.3.2. Daubechies Wavelets Constructions. In order to construct compactly-
supported, orthogonal wavelets, we first look at the dilation equation

(2.14) φ(x) =
√

2
∑

k∈Z

h(k)φ(2x− k)

and the wavelet equation
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(2.15) ψ(x) =
√

2
∑

k∈Z

g(k)φ(2x− k)

Notice from these two equations that the compactness of the support of φ and
ψ can be achieved if we choose the number of nonvanishing coefficients {h(k)}, that

is, the filter length, to be finite. This implies that m0(ω) =
∑

j h(j)e
−inω/

√
2 is a

trigonometric polynomial.
One can see that once we know φ at the integers, the values of φ at the dyadic

points k/2n then can be obtained recursively using the scaling equation. Once we
find φ we can use (2.15) to generate ψ.

So Daubechies’ approach to finding φ and ψ is to first determine the finite
number of filter coefficients h(j) such that orthogonality and smoothness or moment
conditions are guaranteed. To find h(j) we start from the Fourier domain where
the orthogonality condition for the scaling function φ is.

(2.16) |m0(ω)|2 + |m0(ω + π)|2 = 1.

The condition that the first N moments of vanish is

(2.17)

∫

R

xkψ(x)dx = 0for k = 0, 1, ..., N − 1.

To satisfy the moment condition (2.17), m0(ω) has to assume the following
form:

(2.18) m0(ω) ∝ (
1 + eiω

2
)N

Now, define
M0(ω) = |m0(ω)|2,

where M0(ω) is a polynomial in cos(ω), the moment-vanishing condition implies

(2.19) M0(ω) = (cos2ω/2)NL(ω),

where L(ω) is a polynomial in cos(ω), and the orthogonality condition gives

(2.20) M0(ω) +M0(ω + π) = 1,

By the half angle identity, we can write L(ω) = P (sin2ω/2). Now, it leaves
us to find the form of the polynomial P, “take its square root” to get m0(ω), and
identify the coefficients {h(j)}. Let y = sin2ω/2, using (2.19) and (2.20), we see
that P satisfies

(2.21) (1 − y)NP (y) + yNP (1 − y) = 1,

or

(2.22) P (y) = (1 − y)−N (1 − yNP (1 − y)).

It turns out that the lowest-degree polynomial that satisfies (2.21) is N −1. So
we can find the form of the polynomial P with degree N − 1 explicitly from (2.22)
by expanding (1 − y)−N in a Taylor series and retaining terms up to order N − 1:

(2.23) P (y) = (1 − y)−N (1 − yNP (1 − y)) =

N−1
∑

k=0

(

N + k − 1
k

)

yk.

Notice that P (y) ≥ 0 for y ∈ [0, 1].
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Summarizing what we have done, we have established

(2.24) |m0(ω)|2 = M0(ω) = (cos2ω/2)NP (sin2ω/2),

where P is given by (2.23), such that m0(ω) satisfies the required moment-vanishing
condition and the orthogonality condition. Now it leaves us to ”take the square
root” of P to obtain m0(ω) and it will be done by spectral factorization.

We write,

A(ω) = P (
1 − cos(ω)

2
) = α

N−1
∏

j=0

(cos(ω) − cj)

where we have regarded P as a polynomial of degree N − 1, and expressed it in
terms of its roots {cj} (α is a constant). Since the polynomial has real coefficients,
the roots cj either are real or occur in complex conjugate pairs.

On the other hand, we can also write the original polynomial P in terms of
z = eiω,

(2.25) A(ω) = α

N−1
∏

j=0

(
z + z−1

2
− cj) = P (

1 − (z + z−1/2)

2
) = P (z).

The zeros of p(z) appear in quadruplets {zj, z̄j , z
−1
j , z̄j

−1} if zj ∈ C, and in doublets

{rj , r−1
j } if zj = rj ∈ R. So we can write

p(z) = αz−(N−1)
N−1
∏

j=0

(
z2

2
− cjz +

1

2
)

= α′z−(N−1)
∏

j

(z−zj)(z−z̄j)(z−z−1
j )(z−z̄j

−1)
∏

k

(z−zk)
2((z−z̄k)2

∏

l

(z−rl)(z−r−1
l ).

Earlier, we have separated the case zj = eiαj , where zj = z̄j
−1 and the quadruplet

reduces to a doublet of degeneracy 2 [WaEx05].
The Daubechies wavelets are orthogonal wavelets which is energy or norm pre-

serving. There are a number of Daubechies wavelets, DaubJ, where J = 4, 6, , 20.
The easiest way to understand this transform is just to treat them as simple gener-
ations of the Daub4 transform with the scaling and translation factors. The most
apparent difference between each of them is the length of the supports of their scal-
ing signals and wavelets. Daub4 wavelet is the same as the Haar wavelet. Daub4
wavelet preserves the energy due to its orthogonality and the proof of this could be
found in p.39-40 of [Wal99]. Daub4 transform is suitable for identifying features
of the signal that are related to turning points in its graph [Wal99]. Now, one
might wonder why we have so many different DaubJs and their advantages, and
disadvantages. Daub6 often produces smaller size fluctuation values than those
produced by Daub4 transform. The types of signals for which this occurs are the
ones that are obtained from the sample of analog signals that are at least three
times continuously differentiable. These kinds of signals are approximated better,
over a large proportion of their values by quadratic approximations. The curve
graphs of quadratic functions enable then to provide superior approximations to
the parts of the signal that are near to the turning points in its graph. So for
signal compression Daub6 transform generally does a better job. However, the fact
that Daub4 being better in approximating signals better approximated by linear
approximation [Wal99].
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If H = H ′ and G = G′ in a biorthogonal set [Dau92] of quadrature filters,
then the pair H , G is called an orthogonal quadrature filter pair which is a pair of
operators and is defined as follows:

(2.26) Hu(i) =

∞
∑

j=−∞

h(2i− j)u(j), i ∈ Z

(2.27) Gu(i) =

∞
∑

j=−∞

g(2i− j)u(j), i ∈ Z

In addition, following conditions hold:

• Self-duality: H ′H∗ = G′G∗ = I
• Independence: GH∗ = HG∗ = 0
• Exact reconstruction: H∗H +G∗G = I
• Normalization: H1 =

√
21

H is the low-pass filter and G is the high-pass filter.
The first two conditions may be expressed in terms of the filter sequences h, g

which respectively define H, G:

(2.28)
∑

k

h(k)h̄(k + 2n) = δ(n) =
∑

k

g(k)ḡ(k + 2n)

(2.29)
∑

k

g(k)h̄(k + 2n) = 0 =
∑

k

h(k)ḡ(k + 2n)

See [Wic94].
2.3.3. Coiflets. Coiflets are designed so as to maintain a close match between

the trend values and the original signal values. All of the coiflets, CoifI, I =
6, 12, 18, 24, 30 are defined in a similar way as Daubechies wavelets but they have
some different properties. Coif6 transform produces a much closer match between
trend subsignals and the original signal values than the match that any of the
DaubJ transforms can produce. This means that the . CoifI wavelets have nearly
symmetric graphs [Wal99].

Coifman wavelet systems are similar to Daubechies wavelet systems (in rank
2) in that they have a maximal number of vanishing moments, but the vanishing
of moments are equally distributed between the scaling function and the wavelet
function. In contrast to the case for Daubechies wavelets, there is no formula
for Coiflets of arbitrary genus, and there is no formal proof of their existence for
arbitrary genus at this time. There are numerical solutions using Newton’s method
which work well until round-off error gives problems, up to about genus 20 (round-
off error is also a problem in calculating the Daubechies scaling vector numerically
beyond this same range with spectral factorization, even though the formulas are
valid and give an existence theorem for every genus [Res98].

If we used Daubechies wavelets in the same way, one cannot get the same
approximation results, except to low order.

It is very advantageous to have a high number of vanishing moments for ψ; it
leads to high compressibility because the fine scale wavelets coefficients of a function
would be essentially zero where the function is smooth. Since

∫

R
φ(x) = 1, the

same thing can never happen for the 〈f, φn,k〉. Nevertheless, if
∫

R
xlφ(x)dx = 0 for

l = 1, ..., L, then we can apply the same Taylor expansion argument and conclude
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that for N large, 〈f, φ−N,k〉 ≈ 2N/2f(2−Nk), with an error that is negligibly small
where f is smooth. This means that we have a remarkably simple quadrature rule
to go from the sample of f to its fine scale foefficients 〈f, φ−N,k〉. For this reason, R.
Coifman suggested that it might be worthwhile to construct orthonormal wavelet
bases with vanishing moments not only for ψ, but also for φ. See [Dau92].

2.3.4. Biorthogonal Wavelets. The biorthogonal wavelets have bases that are
defined in a way that has weaker definition of the bases of orthogonal wavelet
bases. Though the orthogonal wavelet’s filter has self-duality only, the biorthogonal
wavelet’s filter has duality. Since the orthogonality of the filter makes the wavelet
energy preserving as proven in [Wal99], the biorthogonal wavelets are not energy
preserving.

Current compression systems use biorthogonal wavelet instead of orthogonal
wavelets despite the fact that it is not energy preserving. The fact that biorthogonal
wavelets are not energy preserving is not a big problem since there are linear phase
biorthogonal filter coefficients which are “close” to being orthogonal [Use01]. The
main advantage of the biorthogonal wavelet transform is that it permits the use of
a much broader class of filters, and this class includes the symmetric filters. The
biorthogonal wavelet transform is advantageous because it can use linear phase
filters which gives symmetric outputs when presented with symmetric input. This
transform is called the symmetric wavelet transform and it solves the problems of
coefficient expansion and border discontinuities. See [Use01].

A quadruplet H , H ′, G, G′ of convolution operators or filters is said to form a
set of biorthogonal quadrature filters, if the filters satisfy the following conditions:

• Duality: H ′H∗ = G′G∗ = I = HH ′∗ = GG′∗

• Independence: G′H∗ = H ′G∗ = 0 = GH ′∗ = HG′∗

• Exact reconstruction: H∗H ′ +G∗G′ = I = H ′∗H +G′∗G
• Normalization: H1 = H ′1 =

√
21 and G1 = G′1 = 0

H and H ′ are the low-pass filter and G and G′ are the high-pass filter.
The first two conditions may be expressed in terms of the filter sequences h,

h′, g, g′ which respectively define H , H ′, G, G′:

(2.30)
∑

k

h′(k)h̄(k + 2n) = δ(n) =
∑

k

g′(k)ḡ(k + 2n)

(2.31)
∑

k

g′(k)h̄(k + 2n) = 0 =
∑

k

h′(k)ḡ(k + 2n)

See [Wic94].
Notice the difference in (2.3.2) and (2.3.4) that self-duality no longer holds in

2.3.4 and the conditions are weakened.

(2.32)
∑

k

h(k) =
√

2;

(2.33)
∑

k

g(2k) = −
∑

k

g(2k + 1);

(2.34)
∑

k

h′(k) =
√

2;
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(2.35)
∑

k

g′(2k) = −
∑

k

g′(2k + 1).

See [Wic94]. Having four operators gives plenty of freedom to construct filters
with special properties, such as symmetry.

2.3.5. Symlets. The family of wavelets symlets are short of “symmetrical wavelets”.
They are not perfectly symmetrical, but they are designed in such a way that they
have the least asymmetry and highest number of vanishing moments for a given
compact support [Gon02]. Symlets are another family of Daubechies wavelets thus
are constructed in the same way as Daubechies wavelets.

Theorem 2.8. The wavelet algorithms listed in this chapter can be realized as

images; ie. the wavelets as matrices can be applied to image matrices for wavelet

decomposition.

The proof is implemented in the next section.

3. Digital Image Representation and Mathematics behind It

In this section we will explore the digital image representation and Mathematics
behind it. MATLAB is an interactive system whose basic data element is an array
that does not require dimensioning. This enables formulating solutions to many
technical computing problems, especially those involving matrix representations, in
a fraction of the time it would take to write a program in a scalar non-interactive
language such as C or Fotran.

The name MATLAB stands for matrix laboratory. In university environments,
MATLAB is the standard computational tool for introductory and advanced courses
in mathematics, engineering and science. In industry, MATLAB is the computa-
tional tool of choice for research, development, and analysis. MATLAB is comple-
mented by a family of application-specific solutions called toolboxes; here, Wavelet
Toolbox is used [Gon04].

3.1. Digital Image Representation. An image is defined as a two-dimensional
function ie. a matrix, f(x, y), where x and y are spatial coordinates, and the am-
plitude of f at any pair of coordinates (x, y) is called the intensity or gray level
of the image at the point. Color images are formed by combining the individual
two-dimensional images. For example, in the RGB color system, a color images
consists of three namely, red, green and blue individual component images. Thus
many of the techniques developed for monochrome images can be extended to color
images by processing the three component images individually. When x, y and the
amplitude values of f are all finite, discrete quantities, the image is called a digital
image. The field of digital image processing refers to processing digital images by
means of a digital computer. A digital image is composed of a finite number of
elements, each of which has a particular location and value. These elements are
referred to as picture elements, image elements, pels and pixels. Since pixel is the
most widely used term, the elements will be denoted as pixels from now on.

An image maybe continuous with respect to the x- and y-coordinates, and also
in amplitude. Digitizing the coordinates as well as the amplitude will take into
effect the conversion of such an image to digital form. Here, the digitization of
the coordinate values are called sampling; digitizing the amplitude values is called
quantization. A digital image is composed of a finite number of elements, each of
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which has a particular location and value. The field of digital image processing
refers to processing digital images by means of a digital computer. See [Gon04].

3.1.1. Coordinate Convention. Assume that an image f(x, y) is sampled so that
the resulting image has M rows and N columns. Then the image is of size M ×N .
The values of the coordinates (x, y) are discrete quantities. Integer values are used
for these discrete coordinates. In many image processing books, the image origin
is set to be at (x, y) = (0, 0). The next coordinate values along the first row of the
image are (x, y) = (0, 1). Note that the notation (0, 1) is used to signify the second
sample along the first row. These are not necessarily the actual values of physical
coordinates when the image was sampled. Note that x ranges from 0 to M −1, and
y from 0 to N − 1, where x and y are integers. However, in the Wavelet Toolbox
the notation (r, c) is used where r indicates rows and c indicates the columns. It
could be noted that the order of coordinates is the same as the order discussed
previously. Now, the major difference is that the origin of the coordinate system
is at (r, c) = (1, 1); hence r ranges from 1 to M , and c from 1 to N for r and c
integers. The coordinates are referred to as pixel coordinates. See [Gon04].

3.1.2. Images as Matrices. The coordinate system discussed in preceding sec-
tion leads to the following representation for the digitized image function:

f(x,y) =











f(0, 0) f(0, 1) · · · f(0, N − 1)
f(1, 0) f(1, 1) · · · f(1, N − 1)

...
...

...
...

f(M − 1, 0) f(M − 1, 1) · · · f(M − 1, N − 1)











The right side of the equation is a representation of digital image. Each element of
this array(matrix) is called the pixel.

Now, in MATLAB, the digital image is represented as the following matrix:

(3.1) f =











f(1, 1) f(1, 2) · · · f(1, N)
f(2, 1) f(2, 2) · · · f(2, N)

...
...

...
...

f(M, 1) f(M, 2) · · · f(M,N)











where M = the number of rows and N = the number of columns Matrices in
MATLAB are stored in variables with names such as A, a, RGB, real array and so
on. See [Gon04].

3.1.3. Color Image Representation in MATLAB. An RGB color image is an
M × N × 3 array or matrix of color pixels, where each color pixel consists of a
triplet corresponding to the red, green, and blue components of an RGB image at
a specific spatial location. An RGB image may be viewed as a “stack” of three
gray-scale images, that when fed into the red, green, and blue inputs of a color
monitor, produce a color image on the screen. So from the “stack” of three images
forming that RGB color image, each image is referred to as the red, green, and blue
component images by convention. Now, the data class of the component images
determine their range of values. If an RGB color image is of class double, meaning
that all the pixel values are of type double, the range of values is [0, 1]. Likewise,
the range of values is [0, 255] or [0, 65535] for RGB images of class uint8 or uint16,
respectively. The number of bits used to represent the pixel values of the component
images determines the bit depth of an RGB color image. See [Gon04].
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The RGB color space is shown graphically as an RGB color cube. The vertices
of the cude are the primary (red, green, and blue) and secondary (cyan, magenta,
and yellow) colors of light. See [Gon04].

3.1.4. Indexed Images. An indexed image has two components: a data matrix
of integers, X, and a colormap matrix, map. Matrix map is an m × 3 array of
class double containing floating-point values in the range [0, 1]. The length, m, of
the map is equal to the number of colors it defines. Each row of map specifies the
red, green, and blue components of a single color. An indexed image uses “direct
mapping” of pixels intensity values of colormap values. The color of each pixel is
determined by using the corresponding value of integer matrix X as a pointer into
map. If X is of class double then all of its components with value 2 point to the
second row, and so on. If X is of class unit 8 or uint16, then all components with
value 0 point to the first row in map, all components with value 1 to point to the
second row, and so on [Gon04].

3.1.5. The Basics of Color Image Processing. Color image processing tech-
niques deals with how the color images are handled for a variety of image-processing
tasks. For the purposes of the following discussion we subdivide color image process-
ing into three principal areas: (1) color transformations (also called color mappings);
(2) spatial processing of individual color planes; and (3) color vector processing.
The first category deals with processing the pixels of each color plane based strictly
on their values and not on their spatial coordinates. This category is analogous to
the intensity transformations. The second category deals with spatial (neighbor-
hood) filtering for individual color planes and is analogous to spatial filtering. The
third category deals with techniques base on processing all components of a color
image simultaneously. Since full-color images have at least three components, color
pixels are indeed vectors. For example, in the RGB color images, the RGB system
color point can be interpreted as a vector extending from the origin to that point
in the RGB coordinate system.

Let c represent an arbitrary vector in RGB color space:

c =





cR
cG
cB



 =





R
G
B





This equation indicates that the components of c are simply the RGB components
of a color image at a point. Since the color components are a function of coordinates
(x, y) by using the notation

c(x, y) =





cR(x, y)
cG(x, y)
cB(x, y)



 =





R(x, y)
G(x, y)
B(x, y)





For an image of size M × N , there are MN such vectors, c(x,y), for x =
0, 1, ,M − 1 and y = 0, 1, , N − 1 [Gon04].

In order for independent color component and vector-based processing to be
equivalent, two conditions have to be satisfied: (i) the process has to be applicable
to both vectors and scalars. (ii) the operation on each component of a vector must
be independent of the other components. The averaging would be accomplished by
summing the gray levels of all the pixels in the neighborhood. Or the averaging
could be done by summing all the vectors in the neighborhood and dividing each
component of the average vector is the sum of the pixels in the image corresponding
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to that component, which is the same as the result that would be obtained if the
averaging were done on the neighborhood of each component image individually,
and then the color vector were formed [Gon04].

3.2. Reading Images. In MATLAB, images are read into the MATLAB en-
vironment using function called imread. The syntax is as follows: imread(filename)
Here, filename is a string containing the complete name of the image file including
any applicable extension. For example, the command line >> f = imread (lena.jpg);
reads the JPEG image lena into image array or image matrix f.

Since there are three color components in the image, namely red, green and
blue components, the image is broken down into the three distinct color matrices
fR, fG and fB in the form 3.1. See [Gon04].

3.3. Wavelet Decomposition of an Image.

3.3.1. Color Conversion. In the process of image compression, applying the
compression to the RGB components of the image would result in undesirable color
changes. Thus, the image is transformed into its intensity, hue and color saturation
components. The color transformation used in JPEG 2000 standard [Sko01] has
been adopted. For the lossy compression, equations (3.2) and (3.3) were used in
the program.

(3.2)





Y
Cb

Cr



 =





0.299 0.587 0.114
−0.16875 −0.33126 0.5

0.5 −0.41869 −0.08131









R
G
B





(3.3)





R
G
B



 =





1.0 0 1.402
1.0 0.34413 −0.71414
1.0 1.772 0









Y
Cb

Cr





Also, see [Bha97], [Rao96]. For more details about subjective quality evalu-
ation of the different color spaces, plesae see [JPG00], [Nad99]. In Y CbCr color
space, Y is the single component that represents luminance. Cb and Cr store the
color information where Cb stands for difference between the blue component and a
reference value, and Cr is the difference between the red component and a reference
value [Gon04]. In the case of lossless compression equations (3.4) and (3.5) were
used.

(3.4)





Yr

Vr

Ur









⌊R+2G+B
4 ⌋

R−G
B −G





(3.5)





G
R
Br



 =





Yr − ⌊Ur+Vr

4 ⌋
Vr +G
Ur +G





Here, Y is the luminance and U and V are chrominance values (light intensity
and color intensity), the subscript r stands for reversible. The advantage of this
color system is that the human perception for the Y component is substantially
more sensitive than for fluctuations in the U or V components. This can practically
be used to transform U and V components are transfered less. That is, of these
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components, it reduces the data set of these two components to 1/4 of the original
amount to be worth transferring [Han00], [Sko01].

Figure 1. Original Lena Image.
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Figure 2. Wavelet Decomposition of an Image Component. The
image has been modified: the average detail has been lightened and
the horizontal, vertical and diagonal details are shown as negative
images with a reversal of white and black, because of contraints of
the printing process.

A 1-level wavelet transform of an N ×M image can be represented as

(3.6) f 7→





a1 | h1

−− −−
v1 | d1





(3.7)

a1 = V 1
m ⊗ V 1

n = φ(x, y) = φ(x)φ(y) =
∑

i

∑

j hihjφ(2x− i)φ(2y − j)

h1 = V 1
m ⊗W 1

n = ψH(x, y) = ψ(x)φ(y) =
∑

i

∑

j gihjψ(2x− i)φ(2y − j)

v1 = W 1
m ⊗ V 1

n = ψV (x, y) = φ(x)ψ(y) =
∑

i

∑

j higjφ(2x − i)ψ(2y − j)

d1 = W 1
m ⊗W 1

n = ψD(x, y) = ψ(x)ψ(y) =
∑

i

∑

j gigjψ(2x− i)ψ(2y − j)

where the subimages h1,d1,a1 and v1 each have the dimension of N/2 by M/2.
Here, a1 denotes the first averaged image, which consists of average intensity

values of the original image. h1 denotes the first detail image of horizontal compo-
nents, which consists of intensity difference along the vertical axis of the original
image. v1 denotes the first detail image of vertical components, which consists
of intensity difference along the horizontal axis of the original image. d1 denotes
the first detail image of diagonal components, which consists of intensity difference
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along the diagonal axis of the original image. The original image is reconstructed
from the decomposed image by taking the sum of the averaged image and the detail
images and scaling by a scaling factor. See [Wal99].

Here wavelet decomposition of images was performed the number of times the
image can be divided by 2 ie. (floor(log2(min(size of Image)))) times. The averaged
image of the previous level is decomposed into the four subimages in each level of
wavelet image decomposition.

Applying further wavelet decomposition on image in Figure 2 would result in
images Figure 3 and Figure 4. Note that the image on the top left most corner
get blurrier as it gets “averaged” out and also note the horizontal, vertical and
diagonal components of the image. A better example where the horizontal, vertical
and diagonal components are more explicitly shown in images Figure 6 and Figure
7. Notice that the horizontal, vertical and diagonal components in the rectangular
duster in the picture.

Figure 3. Wavelet Decomposition of an Image Component - 2nd
Level Decomposition. The image has been modified: the average
detail has been lightened and the horizontal, vertical and diagonal
details are shown as negative images with a reversal of white and
black, because of contraints of the printing process.
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Figure 4. Wavelet Decomposition of an Image Component - 3rd
Level Decomposition. The image has been modified: the average
detail has been lightened and the horizontal, vertical and diagonal
details are shown as negative images with a reversal of white and
black, because of contraints of the printing process.
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The following are some more examples that illustrate how the horizontal, verti-
cal, diagonal and average components work. Take note of the frame in the picture.

Figure 5. The Original Image Before the Wavelet Decomposition.
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Figure 6. Wavelet Decomposition of an Image Component - 1st
Level Decomposition. The image has been modified: the average
detail has been lightened and the horizontal, vertical and diagonal
details are shown as negative images with a reversal of white and
black, because of contraints of the printing process.
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Figure 7. Wavelet Decomposition of an Image Component - 2nd
Level Decomposition. The image has been modified: the average
detail has been lightened and the horizontal, vertical and diagonal
details are shown as negative images with a reversal of white and
black, because of contraints of the printing process.
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The following example is a simple example where the average, horizontal, di-
agonal and vertical components are explicitly depicted. As one can see, only the
horizontal difference and some horizontalness are detected for the horizonal com-
ponent and only the vertical difference and some verticalness are detected for the
vertical component. As for the diagonal component, one can only see the diago-
nal difference and the average component carries the ’shape’ of the original image
throughout.

Figure 8. The Original Image Before the Wavelet Decomposition.
The image has been lightened because of the constrains of the
printing process.
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Figure 9. Wavelet Decomposition of an Image Component - 1st
Level Decomposition. The image has been modified: the average
detail has been lightened and the horizontal, vertical and diagonal
details are shown as negative images with a reversal of white and
black, because of contraints of the printing process.
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Figure 10. Wavelet Decomposition of an Image Component - 2nd
Level Decomposition. The image has been modified: the average
detail has been lightened and the horizontal, vertical and diagonal
details are shown as negative images with a reversal of white and
black, because of contraints of the printing process.
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Figure 11. Wavelet Decomposition of an Image Component - 3rd
Level Decomposition. The image has been modified: the average
detail has been lightened and the horizontal, vertical and diagonal
details are shown as negative images with a reversal of white and
black, because of contraints of the printing process.
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In the process of the computation using MATLAB, it keeps track of two ma-
trices C and S; C is the coefficient decomposition vector:

C =
[

a(n) h(n) v(n) d(n) h(n− 1) ... v(1) d(1)
]

where a, h, v and d are columnwise vectors containing approximation, horizontal,
vertical and diagonal coefficient matrices, respectively. C has 3n+1 sections where
n is the number of wavelet decompositions. S is an (n+2)x2 bookkeeping matrix:

S =
[

sa(n, :) sd(n, :) sd(n− 1, :) ... sd(1, :) sx
]

Where sa is the approximation size entry and sd is detail size entry [Gon04].
The above process is performed mathematically as follows: fR, fG and fB are

treated as vectors of row vectors. For example, for fR we have

(3.8) fR =











fR1

fR2

...
fRM











wherefi = (fi,1, fi,2, ..., fi,N )

Then each row vectors in fR go through the following operation:

(3.9)





























si,1

si,2

...
si,N/2

di,1

di,2

...
di,N/2





























=

















h0 h1 h2 h3 0 · · · · · · · · · 0
0 0 h0 h1 h2 h3 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
g0 g1 g2 g3 0 · · · · · · · · · 0
0 0 g0 g1 g2 g3 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·



























fi,1

fi,2

...
fi,N











After performing above operation on each row vector, form a matrix with the
resulting row vectors. Multiplying the same matrix to the colomn vector of the
resulting matrix would result in (3.6). It can be seen in [Pre92] that the above
process is done by performing double loops of multiplication of the vector sequence
with the matrix.

For the image compression, the quantization process takes place after the
wavelet decomposition stage. That is, threshoding 2.1.2 of the matrix takes place
thus resulting in data reduction. A more detailed description of this process can be
found in [Wal99]. Also, see [Bri03] and [Woh03].

3.4. Mathematical Insights. In this section, we are going to make some
changes. H and G in previous sections and chapters will now be denoted as S0 and
S1. The projection operators S0 and S1 are operators in L2(R), since computers
cannot compute infinite integrals we have to convert the mathematical decompo-
sition process to something that can be expressed to computer algorithm. This is
made possible by the property that in Hilbert space L2(R) ∼= L2(T) ∼= l2(Z). See
[Dou98]. Recall that choices are involved in the isomorphisms, e.g. ∼= L2(T) ∼=
l2(Z) is Fourier’s choice. Thus an integral can be expressed in terms of sequences.
The relationship between projection operators S0 and S1 can be expressed as the
following matrices where the boxes are the coefficients hj’s as in (3.9).
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S0 = S0* =

Figure 12. S0 and S∗

0 .

Vn and Wn defined in 2.2.1 can now be expressed as follows:

Vn = S0en

and
Wn = S1en

where en = (0, ..., 0, 1, 0, ...0), 1 is in the nth place.
We can compare the operations performed in two different spaces namely, L2(T)

and l2(Z). See [Jor05] for more details about the operator notion.

S0* S0

S1* S1

Analysis Synthesis

low-pass filter dual low-pass filter

high-pass filter dual high-pass filter

Signal In Signal Out

ξ ξ

down-sampling up-sampling

Figure 13. For L2(T).

Perfect reconstruction (Operator notation):

S0S
∗

0 + S1S
∗

1 = I
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Figure 14. For l2(Z).

See (2.31), (3.9).

4. Results and Discussion

4.1. Implementation of the Program. The program was implemented us-
ing MATLAB with various subroutines that enables the wavelet transformation,
image compression and threshold computation from the Wavelet Toolkit .

4.2. Discussion.

4.2.1. Lossy Compression. There are various factors that influence the image
compression. As mentioned above in section 2, nonorthogonality of the wavelet
may cause the compression to be lossy. When threshold is applied to the com-
pression, some of the ’insignificant’ coefficients are thrown out thus the resulting
in lossy compression. Also, the number of levels the wavelet transform is applied
would influence the compression quality. Although the lossiness caused by the
nonorthogonal wavelet was not avoidable when certain wavelets were used, an at-
tempt to minimize the lossiness was made for the number of levels part by going
down all the way to the single pixel level when the wavelet transform was applied
(floor(log2(min(size of Image)))). In addition various threshold values are applied
to observe the lossiness.

A lossy compression method tend to produce inaccuracies in the decompressed
image. Lossy compression method is used when these inaccuracies are so small that
they are imperceptible. If those imperceptible inaccuracies are acceptable the lossy
technique is advantageous compared to the lossless ones for higher compression
ratios can be attained.

In order to support the claims made by comparison of the resulting images
and the theoretical knowledge that we obtained from the texts, some numerical
comparisons are made. They are the compression ratio, the root mean square
error, rms, the relative two norm difference, D, and the peak signal to noise ratio,
PNSR. The formulas used are as follows:

(4.1) ratio =
1

X×Y ×3−(L2normrecoveryin%X×Y ×3/100)
X×Y ×3

(4.2) rms =

√

∑3
n=1

∑Y
i=1

∑X
j=1(fi,j,n − gi,j,n)2

X × Y × 3
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(4.3) D =

√

√

√

√

∑3
n=1

∑Y
i=1

∑X
j=1(fi,j,n − gi,j,n)2

∑3
n=1

∑Y
i=1

∑X
j=1 f

2
i,j,n

(4.4) PSNR = 20 log
255

rms

See [Wal99]
Various wavelet transforms with two different thresholdings were used to com-

press the and 8-bit color image lena.png. The results are as follows:
One thing that could be noted right away by looking at the images is that the

images compressed with smaller threshold value that is 10 look closer to the original
lena.png compared to the images compressed with threshold value 20 overall.

Now, looking at the performances of each wavelet transforms given the same
threshold value, bior 2.2 (Biorthogonal wavelet), sym5 (Symlet) and Coif3 (Coiflet)
seem to have produced the less flawless compressed images compare to all the other
wavelets.

Within the Daubechies wavelets db2 appears to have produced the least flaw-
less compressed image; that agrees with what was discussed above in Daubechies
wavelets that db2 is being better in signal compression than db1(Haar). Consider-
ing the errors and compression ratios as well as the perception of the image sym5
would be the best choice of wavelets, among the ones that was used for the image
compression. So, in this case, sym5 being very close to symmetric wavelet did a
better job in image compression. Also, having the extra properties as mentioned
under the Coiflets section made Coif3 perform better in image compression. Having
biorothogonal property also seem to result in better image compression. On the
other hand the orthogonal Daubechies wavelets do not seem to perform better than
coiflets, biorthogonal wavelets and symlets. See [Wal99]

Also, having longer support which is proportional to the order of the wavelet,
appears to worsen the performance of the image compression.

With the threshold value 10, when a Daubechies wavelet, db1 was used the
compression ratio was 34.2627 while db2 resulted in 38.4340. A Coiflet Coif1 re-
sulted in compression ratio of 37.0173 whereas Coif 3 resulted in compression ratio
of 26.8321. Biorthogonal wavelets bior1.1 and bior2.2 gave 34.2627 and 30.2723 for
the compression ratio respectively. Symlets sym2 and sym5 resulted in compression
ratios of 38.4340 and 34.3523 respectively. Now, with higher threshold value, since
more date is being lost, the compression ratio increases. However, the quality of
the image diminishes at the same time.

4.3. Conclusion. Wavelet compression did show remarkable performance es-
pecially with smaller threshold value; it was not differentiable in between the orig-
inal image and the compressed image for some cases.

However, more improvements can still be made. As it is mentioned in [Sko01]
there is more room for improvement by adding more stages to the compression such
as quantization, entropy encoding, etc. Also, we have not covered all the wavelets
that is out there, that it cannot be decided as to which one performs the best image
compression.
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Mathematical aspects of wavelets play a very significant role in differing the
results of engineering applications. I hope to study the mathematical properties of
wavelets and their applications in various parts of engineering.
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