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ABSTRACT: We investigate protein−protein interactions in solution by
small-angle X-ray scattering (SAXS) and theoretical modeling. The
structure factor for solutions of bovine pancreatic trypsin inhibitor
(BPTI), myoglobin (Mb), and intestinal fatty acid-binding protein
(IFABP) is determined from SAXS measurements at multiple concen-
trations, from Monte Carlo simulations with a coarse-grained structure-
based interaction model, and from analytic approximate solutions of two
idealized colloidal interaction models without adjustable parameters. By
combining these approaches, we find that the structure factor is essentially
determined by hard-core and screened electrostatic interactions. Other soft
short-ranged interactions (van der Waals and solvation-related) are either
individually insignificant or tend to cancel out. The structure factor is also
not significantly affected by charge fluctuations. For Mb and IFABP, with a
small net charge and relatively symmetric charge distribution, the structure factor is well described by a hard-sphere model. For
BPTI, with a larger net charge, screened electrostatic repulsion is also important, but the asymmetry of the charge distribution
reduces the repulsion from that predicted by a charged hard-sphere model with the same net charge. Such charge asymmetry may
also amplify the effect of shape asymmetry on the protein−protein potential of mean force.

■ INTRODUCTION

Protein−protein interactions govern the functional assembly of
supramolecular structures1,2 as well as the dysfunctional
aggregation of misfolded proteins.3 Weak protein−protein
interactions also determine the thermodynamics and phase
behavior of concentrated protein solutions,4 of relevance for
optimizing protein crystallization5 and for understanding how
proteins behave in the crowded cytoplasm.6 Fundamental
progress in these areas requires a quantitative understanding of
how proteins interact with themselves in solution. Specifically,
we need to know the effective solvent-averaged protein−
protein interaction energy or potential of mean force, w(r).
Much of the available information about protein−protein

interactions in solution has come from scattering experiments
via the osmotic second virial coefficient, B22, and the structure
factor, S(q).7−16 Whereas B22 is an integral measure of the pair
interaction, S(q) is the Fourier transform of the isotropically
averaged protein−protein pair correlation induced by the
interactions.17 Extraction of w(r) from S(q) is a nontrivial
problem without a unique solution.18 Typically, a parametrized
interaction model, w(r;a,b,...), is postulated and S(q) is
computed by molecular simulation9,11,13 or by an approximate
integral equation theory.7,8,10,12,14−16 The model parameters
a,b,... are then optimized by comparing the computed S(q) with
that determined by small-angle X-ray (SAXS) or neutron
(SANS) scattering.

The interaction models used in this context may be classified
as colloidal or structure-based. Colloidal interaction models are
typically7,8,10,13−15 based on the Derjaguin−Landau−Verwey−
Overbeek (DLVO) potential,19 often complemented with
phenomenological short-range contributions.20 In the DLVO
model, the protein is described as a uniformly surface-charged
sphere embedded in a dielectric continuum. Such highly
idealized models have the virtue of simplicity but cannot do full
justice to protein−protein interactions.21−26 At the short and
intermediate protein−protein separations, the irregular shape
and the discrete and asymmetric charge distribution of real
proteins cannot be ignored. Structure-based interaction models
explicitly incorporate such structural features, either at atomic
resolution or at a coarse-grained level. For computational
expediency, the solvent is treated as a dielectric continuum;
solvation-related interaction terms of a phenomenological
nature are therefore sometimes included in the model. While
this approach has been used extensively to compute B22,

27−33

relatively few studies have reported S(q) calculations with
structure-based interaction models.29,31

Here we report the structure factor S(q), determined by
SAXS, for aqueous solutions of three globular proteins: bovine
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pancreatic trypsin inhibitor (BPTI), equine skeletal muscle
myoglobin (Mb), and rat intestinal fatty acid-binding protein
(IFABP). To extract information about the protein−protein
interactions, we use Metropolis Monte Carlo (MC) simulations
to compute S(q) for these solutions based on a coarse-grained
structure-based (CGSB) interaction model with the individual
amino acid residues as interaction sites.28 This implicit solvent
model incorporates excluded volume, van der Waals (vdW)
attraction, and screened Coulomb interactions, and the charges
of the ionizable residues are allowed to fluctuate. To gain
further insight, we compare the experimental and CGSB S(q)
with the (analytic) structure factors for two colloidal interaction
models: the hard-sphere fluid in the Percus−Yevick (PY)
approximation34,35 and the hard-sphere Yukawa (HSY) fluid in
the modified penetrating-background corrected rescaled mean
spherical approximation (MPB-RMSA).36,37

With only excluded volume and screened Coulomb
interactions (no vdW attraction or other soft short-range
interactions) and without any adjustable parameters, the CGSB
model reproduces the experimental S(q) nearly quantitatively
for all three proteins within the q range 0.5−3.0 nm−1 accessed
by the MC simulations. For Mb and IFABP, which were
examined near isoelectric pH, the hard-sphere model predicts
essentially the same S(q) as does the CGSB model in this q
range. For the more highly charged BPTI, neither the hard-
sphere model nor the charged hard-sphere model can
reproduce the experimental S(q). The implications of these
findings are discussed.

■ MATERIALS AND METHODS

SAXS Experiments. Protein solutions for SAXS measure-
ments were prepared by dissolving lyophilized BPTI, Mb, or
IFABP, purified and desalted as described,38 in Milli-Q water.
After the pH was adjusted by the addition of HCl or NaOH,
the solutions were centrifuged at 13 000 rpm for 3 min to
remove any insoluble protein. No buffers were used, and the
only electrolyte present is the counterions and a small amount
of added salt (from pH adjustment) in the case of Mb. Relevant
characteristics of the investigated protein solutions are
summarized in Table 1.
SAXS measurements were performed at the MAX-lab

synchrotron beamline I911-4, equipped with a PILATUS 1M
detector (Dectris).41 The scattering vector q range (q = 4π / λ
sinθ, where λ = 0.91 Å is the X-ray wavelength and 2θ is the
scattering angle) was calibrated with a silver behenate sample.
All measurements were performed on samples in flow-through
cells at 20 °C with an exposure time of 1 min. The effect of
radiation damage did not exceed the experimental noise.
Reported scattering profiles I(q) were obtained as the
difference of the azimuthally averaged 2D SAXS images from
protein solution and solvent (Milli-Q water).
SAXS Data Analysis. For a solution of NP protein

molecules of volume VP contained in a volume V, the scattering
intensity I(q) in the decoupling approximation, where the
orientation of a protein molecule is taken to be independent of
its position and the configuration of other protein molecules,
can be factorized as42−44

ρ= ΔI q n V P q S q( ) ( ) ( ) ( )P P
2

(1)

where nP = NP/V is the protein number density, Δρ is the
protein−solvent electron density difference (the scattering
contrast), P(q) is the form factor, and S(q) is the structure

factor. Because of the nonspherical protein shape, eq 1 should
involve an effective structure factor S ̅(q), which, however,
differs insignificantly from S(q) under the conditions of the
present study. The form factor represents the scattering from
an isolated protein molecule,
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whereas the structure factor reflects intermolecular pair
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In eqs 2 and 3, ⟨...⟩ signifies an equilibrium configurational
average.
According to eq 1, the structure factor, S(q;nP), at a protein

concentration nP can be obtained by dividing the concen-
tration-normalized intensity, I(q;nP)/nP, by the same quantity
measured at a sufficiently low concentration, nP

0, that S(q;nP
0) ≡

1. We shall refer to I(q;nP
0)/nP

0 = (VPΔρ)2P(q) as the apparent
form factor (AFF). As described in more detail elsewhere,38 the
AFF for each protein was constructed by merging concen-
tration-normalized SAXS profiles from two different protein
concentrations (the highest and the lowest in Table 1) and by
smoothing the merged profile. The low q part of the AFF,
where the SAXS profile is sensitive to protein−protein
correlations, originates from the dilute solution with S(q) ≈
1, whereas the high q part, which reflects intraprotein
correlations, is derived from a concentrated solution with
better signal-to-noise.

CGSB Interaction Model and MC Simulation. In the
CGSB interaction model, each amino acid residue (plus the
terminal amino and carboxyl groups) is represented by an
isotropic interaction site, placed at the center-of-mass of the
corresponding residue in the crystal structure of the real protein
(Figure 1). (For simplicity, we shall refer to these interaction

Table 1. Characteristics of SAXS Samples

protein
wP

(mg mL−1) CP (mM) ϕP (%)
a pH ZP

b
Csalt
(mM)

BPTI 1.99 0.305 0.143 4.0 +7.4 0
9.75 1.50 0.702 4.0 +7.4 0
39.9 6.12 2.87 4.1 +7.2 0
101 15.5 7.27 4.1 +7.2 0

Mb 1.32 0.0752 0.0979 6.8 +3.2 0.188
8.43 0.480 0.625 6.8 +3.2 1.20
29.0 1.65 2.15 6.8 +3.2 4.13

IFABP 7.77 0.501 0.567 7.0 +0.2 0
15.5 1.00 1.13 7.0 +0.2 0
31.0 2.00 2.26 7.0 +0.2 0
62.0 4.00 4.53 7.0 +0.2 0

aThe protein volume fraction was obtained as ϕP = nPVP, with nP being
the protein number density and VP the protein (partial) volume (see
text). bNet protein valency, calculated with experimental pKa values
when available (Asp, Glu, Lys, Tyr, and N- and C-termini for BPTI39

and His for Mb40) and with standard pKa values in proteins otherwise
(C-terminus, 2.5; Asp, 3.65; Glu, 4.45; His, 6.5; N-terminus, 8.0; Tyr,
10.0; Lys, 10.6; Arg, 12.5).
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sites as residues.) The effective energy of interaction between
residues i and j, separated by a distance rij, is taken to be
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The first term describes the electrostatic interaction in the
Debye−Hückel approximation. Here, λB = 0.71 nm is the
Bjerrum length for water at 20 °C, κ = (4πλB|ZP|nP)

1/2 is the
inverse Debye screening length determined by the counterions
(no added salt) of the protein with net charge valency ZP, and zi
= 0 or ±1 is the valency of residue i. The second term in eq 4, a
Lennard-Jones (LJ) potential with well depth ε and σij =
(σi+σj)/2, describes exchange repulsion and vdW attraction.
The vdW diameter σi was fixed by the residue molar mass, Mi,
according to σi = [6Mi/πρ]

1/3 with ρ = 1 g mol−1 Å−3. (Varying
the density ρ by ±20% has negligible effect on the structure
factor.) Finally, in the third term of eq 4, δij(rC) shifts the pair
potential to zero at a spherical cutoff distance rC in the range
0.1−5 κ−1 (4.8−27.2 nm). Relevant characteristics of the
simulated protein solutions are collected in Table 2.

MC simulations were performed at 293 K in the NVT
ensemble with fluctuating protein charges (constant pH) using
the Faunus framework.48 The cubic simulation box, with
periodic boundary conditions, contained NP = 500 rigid, coarse-
grained protein molecules, and the box volume was adjusted to
match the experimental protein concentrations (Table 2 and
Figure 2). Configurational space, that is, the position and

orientation of each protein molecule and the protonation state
of each ionizable group, was sampled by the conventional
Metropolis algorithm49 using the following energy function,

∑ ∑ ∑ α= + −
>

◦U u r k T K( ) ln 10 (pH p )
i j i

ij
n

n a nB ,
(5)

In the first term, u(rij) is the pair potential from eq 4 and the
double sum runs over all pairs of residues (in the same or in
different protein molecules). In the second term, which ensures
that the fluctuating charges conform to a Boltzmann
distribution,50,51 the sum runs over all ionizable residues and
αn = 1 or 0 for residues in protonated and deprotonated forms,
respectively. The intrinsic (in the absence of electrostatic
interactions) pKa,n° was taken to be 3.8 (C-terminus), 4.0 (Asp),

Figure 1. Crystal structures of BPTI (a; PDB ID 1bpi45), Mb (b;
1wla46), and IFABP (c; 1ifc47). Backbone and surface representations
are superimposed and the heme group of Mb is shown in stick
representation. The protein surfaces are colored red or blue at the
positions of Asp and Glu O-atoms and Lys and Arg N-atoms,
respectively. The figure was prepared with CueMol (http://www.
cuemol.org).

Table 2. Characteristics of Simulated Solutions

protein PDB Nres
a pH

CP
(mM) ZP

b κ−1 (nm) rCκ

BPTI 1bpi45 58 4.1 1.50 +6.3 4.37 5
6.12 +6.6 2.16 5
15.5 +7.0 1.36 5

Mb 1wla46 153 6.8 0.480 +2.0c 13.6 2
1.65 +2.1c 7.29 2

IFABP 1ifc47 131 7.0 1.00 −0.021 96.3 0.1
2.00 −0.021 68.1 0.1
4.00 −0.017 48.1 0.1

aNumber of residues per protein. The number of interaction sites is
Nres + 2. bAverage net protein valency determined from the simulation.
cThe fixed valency of the heme group in Mb was set to +1.

Figure 2. Snapshots from MC simulations. (a) 500 BPTI molecules
(30 000 interaction sites) in a cubic cell at CP = 15.5. (b−d) Side-view
of the most concentrated solution simulated for each protein (Table
2).
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4.4 (Glu), 6.3 (His), 7.5 (N-terminus), 9.6 (Tyr), 10.4 (Lys),
or 12.0 (Arg). Shifts in the apparent acid dissociation constant,
pKa,n, due to intramolecular and intermolecular electrostatic
interactions are explicitly accounted for by the first term in eq 4.
Charge fluctuations give rise to a short-ranged attractive
protein−protein interaction.52,53

During the simulation, the rigid protein molecules were
subjected to combined mass-center translations and rotations
(25 000 moves per protein molecule), while the protonation
state of all ionizable residues were alternated between
protonated and deprotonated forms (20 000 moves per protein
molecule). Each production MC run was preceded by a 10-fold
shorter equilibration run. From the MC-generated ensemble of
equilibrium configurations, we computed the average net
protein valency, ZP = ⟨Σnzn⟩ (Table 2), and the isotropically
averaged static structure factor, S(q). The latter was computed
from the Debye formula,42,43

∑ ∑= +
=

−

= +

S q
N

qR

qR
( ) 1

2 sin( )

i

N

j i

N
ij

ijP 1

1

1

P P

(6)

where the double sum runs over all unique protein mass-center
separations, Rij. The q range of the calculated S(q) is limited to
>0.5 nm−1 due to the finite size of the simulation box.
Colloidal Interaction Models. Two colloidal interaction

models were examined, both of which describe the protein as a
spherical particle. In both cases, we used analytic expressions
for S(q) obtained from approximate but accurate solutions of
the Ornstein−Zernike integral equation.17 For the hard-sphere
fluid, where excluded volume is the only interaction, we used
the PY approximation,34,35 which is virtually exact for a hard-
sphere fluid at the volume fractions of interest here. The HSY
fluid includes, in addition to hard-core repulsion, a screened
Coulomb (Yukawa) interaction between two uniformly charged
spheres. For this model, we used the MPB-RMSA,36,37 which
yields S(q) in excellent agreement with simulations (for this
model) over the full parameter space.36,37 For convenience, we
reproduce the analytic S(q) expressions for these two models in
the Supporting Information.
As in the case of the CGSB model, we did not fit any of the

parameters in the colloidal interaction models. The hard-sphere
diameter, σP, was set to 2.46, 3.46, and 3.30 nm for BPTI, Mb,
and IFABP, respectively, which reproduce the actual protein
volumes, VP, of 7.79, 21.7, and 18.8 nm3, respectively, obtained
from the molar mass and partial specific volume of these
proteins.54,55 The protein volume fraction, ϕP, and net valency,
ZP, were set to the values given in Tables 1 and 2, respectively.

■ RESULTS AND DISCUSSION

Structure Factor from SAXS. Excess (protein solution
minus water) scattering profiles, I(q), were obtained from
SAXS measurements on solutions of BPTI, Mb, and IFABP at
several concentrations. In Figure 3 we have divided I(q) by the
protein molar concentration, CP, to remove the trivial
concentration dependence (see eq 1). As expected, I(q)/CP is
independent of CP at high q, where intramolecular scattering
dominates. At lower q values, I(q)/CP decreases with increasing
CP, indicating predominantly repulsive protein−protein inter-
actions. The structure factor, S(q), in Figure 4 was obtained, as
described in Materials and Methods, by dividing I(q)/CP with
the AFF, also shown in Figure 3.

Under certain solution conditions (high pH, high salt
concentration), BPTI exists in an equilibrium between
monomeric and decameric forms.56,57 Since the pronounced
minima at q = 1.5 and 2.9 nm−1 in the decamer form factor38,56

are not evident in our SAXS profiles (Figure 3a), we conclude
that decamers are not present in our BPTI solutions. The large
intensity increase at q ≲ 0.2 nm−1 seen in all IFABP profiles
(Figure 3c) can be explained by a small fraction (∼10−5) of
protein in large aggregates (effective diameter ∼10 × σP).
Rather than treating this structural heterogeneity explicitly, we
incorporate the aggregate contribution in the AFF. To the
extent that aggregation is concentration-dependent, this
procedure may introduce artifacts in S(q) at q ≲ 0.2 nm−1.
Apart from this anomaly in the IFABP profiles, the AFFs for all
three proteins agree well with the form factors computed with
the CRYSOL program58 from the corresponding crystal
structures (Figure 1).

Structure Factor from CGSB Model. Figure 4 also shows
the structure factor predicted by the CGSB interaction model.

Figure 3. Concentration-normalized SAXS profiles from solutions of
BPTI (a), Mb (b), and IFABP (c) at different concentrations (solid
curves). Also shown is the AFF for each protein (dashed curve). The
insets show the same data in semilog format.
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This structure factor was computed from MC simulations at the
experimental temperature, pH, and protein concentrations and
with the structural model parameters determined by the protein
crystal structures (Figure 1). The only parameter that is not
fixed by the protein structure is the LJ well depth ε (see eq 4).
Nominally, this parameter measures the strength of the average
residue−residue vdW attraction across the aqueous solvent, but
in practice, it may also subsume short-range solvation-related
interactions that are not explicitly accounted for in the CGSB
model. For the CGSB calculations shown in Figure 4, we have
set ε = 0.005 kBT, corresponding to a negligibly weak apparent
vdW interaction. (We cannot set ε = 0 since this parameter also
scales the steep repulsive term in eq 4, which is essentially
determined by the vdW contact separations, σij.)
The qualitative, and in some cases semiquantitative,

agreement found, in the q range (>0.5 nm−1) accessed by the
MC simulations, between the structure factors predicted by the
CGSB model with ε = 0.005 kBT and measured by SAXS
(Figure 4), indicates that the solution structure can be fairly

well described by an interaction model that only incorporates
excluded volume and screened inter-residue Coulomb inter-
actions. In other words, the vdW attraction and other short-
range soft interactions are either individually negligibly weak or
tend to cancel out. A 10-fold increase of the vdW attraction to ε
= 0.05 kBT, as used in previous applications of the CGSB
model,28,30,59,60 has little effect on S(q) at q > 0.5 nm−1 for the
two proteins (BPTI and Mb) with a significant net charge
(Figure 5). In contrast, a large effect is seen for IFABP (Figure

5), likely because the electrostatic repulsion close to the
isoelectric pH (Table 2) is so weak that the protein molecules
come into vdW contact more frequently.
The MC simulations with the CGSB model were carried out

at constant pH. The protonation state of ionizable residues
therefore undergoes thermal fluctuations and responds to the
local electrostatic potential produced by charged residues in the
same protein molecule and in nearby protein molecules.
However, even for BPTI, which was studied at a pH where
charge fluctuations are large (close to the pKa of carboxyl
groups), the attractive electrostatic interaction produced by
charge fluctuations52,53 has negligible effect on the structure
factor (Figure 5). For Mb and IFABP, which were studied near
neutral pH where charge fluctuations are less pronounced, the
effect of charge fluctuations on S(q) should be even smaller.
In the fluctuating-charge CGSB model, the protonation state

of ionizable residues is affected by intramolecular and
intermolecular electrostatic interactions. For all three proteins,
the net protein charge, ZP, computed from this model (Table
2) is within one unit from the ZP value obtained with
experimental pKa values (Table 1). We find that ZP depends
weakly on protein concentration (Table 2). It might be
expected that |ZP| should decrease in response to the increasing
intermolecular electrostatic repulsion at a higher protein
concentration. But the opposite observed trend is due to the
more effective screening of intramolecular electrostatic
repulsion at a higher protein concentration (the Debye
screening length, κ−1, is controlled by the counterions).

Structure Factor from Colloidal Models. The preceding
analysis with the CGSB interaction model indicates that the
structure factor is governed mainly by excluded volume and
screened electrostatic interactions. To assess the importance of
the irregular shape and the inhomogeneous charge distribution
of the proteins, we consider two colloidal models where the

Figure 4. Structure factor for BPTI (a), Mb (b), and IFABP (c)
solutions at several concentrations, obtained from SAXS experiments
(solid curves), from the CGSB model without vdW attraction (dots),
and from the hard-sphere model (dashed curves). The experimental
S(q) is only shown up to q = 2 nm−1; at higher q the noise amplitude
exceeds any deviation from S(q) = 1.

Figure 5. Structure factor predicted by the CGSB model for BPTI,
Mb, and IFABP at the highest concentrations in Table 1 and with (ε =
0.05 kBT, dashed curves) or without (ε = 0.005 kBT, solid curves) vdW
attraction. Also shown is S(q) for BPTI from a simulation with fixed
charges and no vdW attraction (dots).
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protein is described as a sphere. These models are conceptually
simple and computationally convenient since S(q) can be
expressed in analytic form (see Supporting Information).
The first model is the hard-sphere fluid, where the only

interaction is the hard-core repulsion and the diameter, σP, of
the spherical protein is fixed by the requirement that the sphere
has the same volume as the real protein (see Materials and
Methods). For IFABP the structure factor predicted by the
hard-sphere model is virtually identical to that obtained with
the CGSB model in the q range accessed by the MC
simulations (Figure 4c). For Mb the agreement between the
two models is also good, although the hard-sphere S(q) is
slightly displaced to a larger q (Figure 4b). For BPTI, on the
other hand, the predictions of the two models differ markedly
(Figure 4a).
For Mb and IFABP, the agreement between the two models

indicates that shape asymmetry and charge inhomogeneity are
unimportant under the examined solution conditions. All three
proteins have similar (spheroid) aspect ratios of 1.5−1.6, but
neither this asymmetry nor the (coarse-grained) surface
roughness appears to influence S(q) significantly. In contrast
to this finding, model calculations of the osmotic second virial
coefficient, B22, for several proteins indicate that while coarse-
graining at the amino acid level (as in our CGSB model) has
little effect (compared to an all-atom description), a hard-
sphere model (with the same volume as the real protein)
underestimates B22 by ∼35%.61
The excellent agreement between the two models for IFABP

can be further rationalized by the nearly zero net charge at the
examined pH (Table 2). Thus, at least for this protein, the
inhomogeneous distribution of discrete charges appears to be
unimportant. Mb has a larger, but still small, net charge (Table
2), which may account for the slight shift of S(q) to smaller q
values (corresponding to longer distances) when the longer-
ranged electrostatic repulsion is accounted for (in the CGSB
model). For BPTI at pH 4, where ZP ≈ +7, electrostatic
repulsion suppresses S(q) more than for hard-core repulsion
alone and also shifts the onset of this suppression to smaller q
values, as expected from the longer range of the electrostatic
repulsion (Figure 4a).
In a recent SAXS study of BPTI and Mb solutions,

Goldenberg and Argyle found that the experimental structure
factor for Mb (at pH 7) can be well described by a hard-sphere
model.16 While this conforms with our findings, it should be
noted that these authors fitted both the hard-sphere diameter,
σP, and the protein volume fraction, ϕP, to the SAXS data. For
Mb, the fit yielded σP = 3.74 nm,16 slightly larger than the
experimentally based value of 3.46 nm used here. It should also
be noted that the solvent used by Goldenberg and Argyle
contained 1 M urea and 50 mM phosphate buffer.16 Also for
BPTI (at pH 7 with ZP ≈ +6), the hard-sphere model gave
reasonable fits to the SAXS data, presumably because the buffer
screened out most of the electrostatic interactions.16 But the
fitted hard-sphere diameter, σP, was found to depend strongly
on the buffer type, indicating that specific ion binding affects
the protein−protein interaction.16

While we cannot compare the two models below q = 0.5
nm−1 since the MC simulations do not access this range, we can
compare the hard-sphere model with the experimental structure
factor. For Mb the experimental S(q) is slightly smaller than
that for hard spheres (Figure 4b), consistent with a modest
contribution from electrostatic repulsion. The more pro-
nounced discrepancy seen for IFABP (Figure 4c) can hardly

be attributed to electrostatic repulsion since IFABP has a
smaller net charge than Mb. Possibly, the drop of S(q) below q
= 0.5 nm−1 is an artifact of incorporating the effect of IFABP
aggregation in the AFF (vide supra).
For the more highly charged protein BPTI, the S(q)

predicted by the hard-sphere model differs substantially from
the experimental and CGSB-based structure factors (Figure
4a). We therefore investigated another colloidal interaction
model, the HSY fluid, with a screened Coulomb repulsion in
addition to the hard-core repulsion. The HSY model thus
includes the two dominant interactions in the CGSB model,
but the protein is now described as a sphere with a uniform
surface charge density. As for the other models, we do not
optimize the model parameters: the net charge, ZP ≈ +7, and
the Debye screening length, κ−1, are taken from Table 2 and the
diameter, σP = 2.46 nm, is fixed by the protein volume (see
Materials and Methods), as in the hard-sphere model. The
structure factor for the HSY model is computed from the
analytic MPB-RMSA integral equation approximation, which
should be quantitatively accurate under our conditions.36,37

As seen from Figure 6a, the HSY model produces a too
highly structured S(q). In other words, the electrostatic

repulsion is too strong. The agreement with the experimental
S(q) can be improved by reducing the net charge (Figure 6b),
but this ad hoc modification is difficult to justify. Since the
MPB-RMSA approximation should be accurate, we conclude
that the HSY model is responsible for the discrepancy.
Specifically, we infer that the inhomogeneous charge
distribution of the real protein produces a weaker (orienta-

Figure 6. Structure factor for BPTI at three concentrations, obtained
from SAXS experiments (solid curves), from the CGSB model without
vdW attraction (dots), and from the HSY model (dashed curves). For
the latter model, the net charge, ZP, was taken from Table 2 (a) or set
to +2 (b). The experimental S(q) is only shown up to q = 2 nm−1; at
higher q the noise amplitude exceeds any deviation from S(q) = 1.
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tionally averaged) electrostatic repulsion than the same net
charge distributed uniformly on a spherical surface. Indeed, the
crystal structure of BPTI reveals a pronounced charge
asymmetry, with all the negatively charged carboxylate groups
confined to one-half of the molecule (Figure 1a). For the real
protein, the electrostatic interaction should therefore be
attractive for certain relative orientations so that the effective
orientationally averaged potential of mean force, w(r), becomes
less repulsive.62 This anisotropy of the screened electrostatic
interaction should also amplify the effect on S(q) of shape
asymmetry by favoring the close approach of two protein
molecules for relative orientations with favorable electrostatic
interaction. This coupling of excluded volume and electrostatic
interactions in the potential of mean force, w(r), may be
responsible for the observed shift of S(q) to smaller q (larger
separations) and the suppressed peak in S(q), relative to the
HSY structure factor (Figure 6). Such effects should be less
pronounced for Mb and IFABP not only because they have a
smaller net charge but also because the discrete charge
distribution is less asymmetric than that for BPTI (Figure 1).
The HSY structure factors for Mb and IFABP indeed show
good agreement with the experimental and CGSB S(q), to the
same extent as the hard-sphere model (Figure 4), at high q
(≳0.5 nm−1) where the coupling effect is expected to play an
important role (Figure S1 in Supporting Information). Not
surprisingly, the charge in the HSY model leads to highly
repulsive interactions, as in the case of BPTI (Figure 6a), and
the model diverges from the experiment at lower q for
moderately charged Mb (Figure S1).
To examine the effect of charge and shape asymmetry on the

electrostatic contribution to the potential of mean force, we
performed CGSB MC simulations with only two BPTI
molecules at fixed mass-center separation and at constant pH.
From the sampled orientational configurations, we calculated
the orientation-averaged total (residue-based) electrostatic
interaction energy between the two molecules and the
intermolecular ion−ion interaction energy (Figure 7). Note
that the CGSB model incorporates both charge and shape
asymmetry. As seen from Figure 7, the total electrostatic
repulsion is weaker than the ion−ion repulsion at short

intermolecular separations, where charge and shape asymmetry
are expected to be important (vide supra).

■ CONCLUSIONS
From SAXS experiments at multiple protein concentrations, we
have determined the structure factor for the three globular
proteins BPTI, Mb, and IFABP. Information about the
protein−protein potential of mean force, averaged over relative
protein orientations and solvent configurations, was derived
from the experimental structure factors with the aid of several
interaction models. For a structure-based interaction model
coarse-grained to the amino acid residue level, we computed
the structure factor by MC simulation. For the hard-sphere and
HSY models, the structure factor was obtained from accurate
integral equation approximations. The parameters in these
interaction models were fixed by the known properties of the
protein solutions, rather than by being optimized for agreement
with the SAXS data.
For these proteins and under the investigated solution

conditions, we find that the structure factor can be accounted
for by excluded volume and screened electrostatic interactions,
with no need to invoke other short-ranged, soft interactions,
such as vdW attraction as well as hydrophobic and other
solvent-related interactions. We cannot exclude the possibility
that the effects on the structure factor of some of these
apparently unimportant interactions tend to cancel out.
For Mb and IFABP, with a small net charge, the structure

factor is well described by a hard-sphere model, even though
these proteins are nonspherical (aspect ratio 1.5−1.6) and
contain many charged residues. For BPTI, with a larger net
charge, screened electrostatic repulsion is important, but it is
weaker than predicted by an HSY model. The reduction of the
electrostatic repulsion may be a result of the pronounced
asymmetry of the surface charge distribution for this protein,
which tends to favor protein−protein encounters with less
repulsive electrostatic interactions.
The MC simulations were performed at constant pH and

therefore allow for thermal fluctuations in the protonation state
of ionizable residues. Such charge fluctuations do not, however,
have a significant effect on the protein−protein potential of
mean force under the conditions investigated here.
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Germany, 2011.
(38) Kaieda, S.; Plivelic, T. S.; Halle, B. Structure and Kinetics of
Chemically Cross-Linked Protein Gels from Small-Angle X-ray
Scattering. Phys. Chem. Chem. Phys. 2014, 16, 4002−4011.
(39) March, K. L.; Maskalick, D. G.; England, R. D.; Friend, S. H.;
Gurd, F. R. N. Analysis of Electrostatic Interactions and Their
Relationship to Conformation and Stability of Bovine Pancreatic
Trypsin Inhibitor. Biochemistry 1982, 21, 5241−5251.
(40) Kao, Y.-H.; Fitch, C. A.; Bhattacharya, S.; Sarkisian, C. J.;
Lecomte, J. T. J.; García-Moreno E., B. Salt Effects on Ionization
Equilibria of Histidines in Myoglobin. Biophys. J. 2000, 79, 1637−
1654.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp505809v | J. Phys. Chem. B 2014, 118, 10111−1011910118



(41) Labrador, A.; Cerenius, Y.; Svensson, C.; Theodor, K.; Plivelic,
T. The Yellow Mini-Hutch for SAXS Experiments at MAX IV
Laboratory. J. Phys. Conf. Ser. 2013, 425, 072019.
(42) Guinier, A.; Fournet, G. Small-Angle Scattering of X-rays; Wiley:
New York, 1955.
(43) Small-Angle X-ray Scattering; Glatter, O., Kratky, O., Eds.;
Academic Press: London, 1982.
(44) Pedersen, J. S. Analysis of Small-Angle Scattering Data from
Colloids and Polymer Solutions: Modeling and Least-Squares Fitting.
Adv. Colloid Interface Sci. 1997, 70, 171−210.
(45) Parkin, S.; Rupp, B.; Hope, H. Structure of Bovine Pancreatic
Trypsin Inhibitor at 125 K: Definition of Carboxyl-Terminal Residues
Gly57 and Ala58. Acta Crystallogr. 1996, D52, 18−29.
(46) Maurus, R.; Overall, C. M.; Bogumil, R.; Luo, Y.; Mauk, A. G.;
Smith, M.; Brayer, G. D. A Myoglobin Variant with a Polar
Substitution in a Conserved Hydrophobic Cluster in the Heme
Binding Pocket. Biochim. Biophys. Acta 1997, 1341, 1−13.
(47) Scapin, G.; Gordon, J. I.; Sacchettini, J. C. Refinement of the
Structure of Recombinant Rat Intestinal Fatty Acid-Binding
Apoprotein at 1.2-Å Resolution. J. Biol. Chem. 1992, 267, 4253−4269.
(48) Stenqvist, B.; Thuresson, A.; Kurut, A.; Vaćha, R.; Lund, M.
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HARD-SPHERE FLUID

For a fluid of identical hard spheres of diameter σ, the pair interaction energy is

w(x) =

∞ , x < 1 ,

0 , x > 1 ,
(S1)

where x = r/σ is the reduced inter-particle separation. For this model, the pair correlation

function (PCF), g(x), obeys the exact condition

g(x) = 0 , x < 1 , (S2)

which simply expresses the impenetrability of the hard spheres.

According to the Percus–Yevick (PY) approximation,1 the direct correlation function,

c(x), is related to the PCF and the pair potential as

c(x) = g(x)

{
1− exp

[
w(x)

kBT

]}
. (S3)

For the hard-sphere model in eq S1, this implies that

c(x) =

−y(x) , x < 1 ,

0 , x > 1 ,
(S4)

where the function y(x) ≡ g(x) exp[w(x)/(kBT )] is continuous at x = 1.

For the hard-sphere fluid, the approximate PY closure in eq S4 allows the formally exact

Ornstein–Zernike (OZ) integral equation2 to be solved analytically.3 The resulting structure

factor4 is a function of the reduced wavevector Q ≡ qσ and the particle volume fraction

φ = nPπσ
3/6:

S(Q) =
1

|F (Q)|2
=

1

[ReF (Q)]2 + [ImF (Q)]2
, (S5)

with
ReF (Q) = 1− 12φ[a0(φ)Ga(Q) + b0(φ)Gb(Q)] ,

ImF (Q) = −12φ[a0(φ)Ha(Q) + b0(φ)Hb(Q)] .

(S6)

S2



Here we have defined
a0(φ) =

1 + 2φ

(1− φ)2
,

b0(φ) = − 3φ

2(1− φ)2
,

(S7)

and
Ga(Q) =

Q cosQ− sinQ

Q3
,

Gb(Q) =
cosQ− 1

Q2
,

Ha(Q) =
Q sinQ+ cosQ− 1−Q2/2

Q3
,

Hb(Q) =
sinQ−Q

Q2
.

(S8)

This analytic result is highly accurate up to volume fractions φ ≈ 0.35.
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HARD-SPHERE YUKAWA FLUID

Solutions of charged colloidal particles or proteins are often modeled as a one-component

macrofluid composed of charged hard spheres in a uniform neutralizing background medium.

Apart from their excluded volume, the particles are taken to interact with a screened

Coulomb (Yukawa) potential, so that

w(x)

kBT
=


∞ , x < 1 ,

γ
e−kx

x
, x > 1 ,

(S9)

where x ≡ r/σ. Furthermore, γ is a dimensionless coupling constant and k is a dimensionless

screening parameter. These are given by

γ ≡ λB
σ

ek

(1 + k/2)2
Z2 , (S10)

k2 ≡ (κσ)2 = 4πλBσ
2(nP|Z|+ 2nS) =

λB
σ

(
24φ|Z|+ 8πnSσ

3
)
, (S11)

where Z is the net protein charge (in units of e), nP is the protein number density, φ =

nPπσ
3/6 is the protein volume fraction, and nS is the number density of monovalent salt.

The number density of counterions, also assumed monovalent, is nP|Z|. Finally, λB =

e2/(4πε0εrkBT ) is the Bjerrum length.

For the hard-sphere Yukawa (HSY) model in eq S9, the OZ equation can be solved

analytically in the mean spherical approximation (MSA),5,6 defined by

c(x) = −w(x)

kBT
, x > 1 , (S12)

along with eq S2. Various forms of the lengthy analytic solution for the structure factor, S(q),

and other quantities have been published. All involve the solution of a quartic equation, but

different formulations have been presented where the quartic equation takes different forms.

The results of Hayter and Penfold7 are free from misprints, but they do not provide an

analytic solution of the quartic equation. Moreover, the physical root (among the four

S4



possible roots) is identified by showing that it leads to g(x) = 0 for x < 1 and this requires

a numerical Fourier transform. For analysis of SAXS data, it is more convenient to use the

completely analytic formulation presented by Cummings et al.8–11

In this so-called Wiener–Hopf factorization approach, a complex-valued function F (Q) is

defined such that

1− nPĉ(Q) = F (Q)F (−Q) = |F (Q)|2 = [ReF (Q)]2 + [ImF (Q)]2 , (S13)

where Q ≡ qσ and F (−Q) = [F (Q)]∗ for real Q. The structure factor, S(Q), can then be

expressed on the form of eq S5. The function F (Q) is related to the Fourier transform of

another function F (x):

F (Q) = 1− 2πnPσ
3

∫ ∞
−∞

dx eiQxF (x) = 1− 12φ

∫ ∞
−∞

dx eiQxF (x) . (S14)

For the HSY model in the MSA approximation, the function F (x) is given by10 (but Cum-

mings’ earlier papers8,9 give this function incorrectly)

F (x) =


0 , x < 0 ,

F0(x) + βe−k(x−1) , 0 ≤ x < 1 ,

βe−k(x−1) , x ≥ 1 ,

(S15)

where k is defined by eq S11 and

F0(x) =
a

2

(
x2 − 1

)
+ b(x− 1) + dβ

[
1− e−k(x−1)

]
. (S16)

The quantities a, b, d, and β are functions of the system parameters γ, k, and φ.

Combining eqs S14–S16 and performing the integral, one obtains

ReF (q) = 1− 12φ

[
aGa(Q) + bGb(Q) +

βU(Q)

(k2 +Q2)

]
,

ImF (q) = −12φ

[
aHa(Q) + bHb(Q) +

βV (Q)

(k2 +Q2)

]
,

(S17)
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where the functions Ga(Q), Gb(Q), Ha(Q), and Hb(Q) are given by eq S8 and

U(Q) = dk

[
cosQ+ k

sinQ

Q

]
− (d− 1)kek ,

V (Q) = dk

[
sinQ− k (cosQ− 1)

Q

]
+Q

[
d− (d− 1)ek

]
.

(S18)

The quantities a and b are given by8,9,11

a = a0 +
12φβ

k(1− φ)2
[3dφk − ωτ ] , (S19)

b = b0 +
12φβ

k(1− φ)2

[
(1− 4φ)

kd

2
+ ωρ

]
, (S20)

with a0 and b0 as defined in eq S7, and

ω = d(1 + k)− (d− 1)ek , (S21)

τ = 1 + 2φ− 6φ

k
, (S22)

ρ =
3φ

2
+

(1− 4φ)

k
. (S23)

The dependence on the coupling constant γ enters via the quantity

d =
(βD +K)e−k + β2E

β2F
, (S24)

which involves the additional quantities

D = k − a0P − b0T , (S25)

E = −6φ+ δ(τP − ρT ) , (S26)

F = −6φ
(
1− e−k

)2
+ Pδ

[
µτ + 3φke−k

]
− Tδ

[
µρ− 1

2
(1− 4φ)ke−k

]
, (S27)

where

δ =
12φ

k(1− φ)2
, (S28)
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µ = 1− (1 + k)e−k , (S29)

P = 12φ

(
µ

k2
− 1

2

)
, (S30)

T =
12φ

k

(
1− k − e−k

)
, (S31)

and the (non-negative) coupling strength parameter

K = γe−k . (S32)

Finally, β is one of the four roots of the quartic equation

36φ2β4 − 6φXβ3 − 12φKβ2 +KY β +K2 = 0 , (S33)

where
X = ke−k − 6φ

(1− φ)k2
[
2− 2k −

(
2− k2

)
e−k
]
−W ,

Y = k − 6φ

(1− φ)k2
[
2− k2 − 2(1 + k)e−k

]
−W ,

W =
18φ2

(1− φ)2k2

[
2− k − (2 + k)e−k

]
.

(S34)

The desired root reduces to the PY solution in the limit K → 0 and in the limit φ → 0 it

yields8,9

β = −K
k

[1 +O(φ)] . (S35)
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We obtain the following analytic expression for the desired root:

β =
X

24φ
+

√
B2 −

√
B1

2
,

B1 = Γ + Λ ,

B2 = 2Γ− Λ− 1

18φ2
√
B1

[
K(X − Y ) +

X3

48φ

]
,

Γ =

[
X

12φ

]2
+

2K

9φ
,

Λ =
R

(6φ)2
+ C ,

C =
K(32Kφ+XY )

18φR
,

R =

{
2Kφ2

[
M −

(
KL

φ

)1/2]}1/3
,

M = (16K)2φ+ 3K
(
3X2 + 3Y 2 − 2XY

)
,

L = 2[48Kφ(X − Y )]2 − 2(XY )3

+ 3Kφ
[
2(XY )2 + 9

(
3X4 − 4X3Y − 4XY 3 + 3Y 4

)]
.

(S36)

Apart from the errors8,9 in F (x) noted above, the literature contains several other mis-

prints in the analytic MSA result. Cummings & Smith in their Molecular Physics paper8

have a sign error inW (their Eq. (6a)), defined here in eq S34, and in their Chemical Physics

paper9 they omit a factor exp(k) in the definition of b (their Eq. (9b)). Marco Heinen in

his PhD thesis11 (Appendix A) has misprints in the second lines of his Eqs. (A.2) and (A.3)

(which define ReF (q) and ImF (q)), where b appears in place of k. Heinen also introduces

a quantity f , which is unnecessary since f = (1− d) exp(k). Furthermore, all other authors

define K with the opposite sign to that in eq S32.

The MSA solution of the HSY model is accurate (as compared to Monte Carlo simulations

of the same model) for weakly charged macroions at relatively high volume fractions. But

for highly charged macroions and/or at low volume fractions, the MSA produces unphysical
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results. Specifically the contact PCF, g(σ), becomes negative. Various schemes have been

proposed to improve the MSA. The basic idea is that, under the conditions where the MSA

fails, the macroions are almost always so far apart (because the volume fraction is low and/or

because of strong electrostatic repulsion) that the actual hard-sphere diameter σ has no effect

on S(q). It is therefore possible to increase σ to a larger value σ′ so that g(σ) remains non-

negative. Specifically, σ′ is chosen so that g(σ′;φ′) = 0, where φ′ = φ(σ′/σ)3 is the rescaled

volume fraction. (The volume fraction increases because the particle size is increased at

constant particle number density nP.) This approach is called the rescaled MSA (RMSA).12

Comparison with computer simulations shows that even the RMSA is not accurate for

strongly repulsive macroions (high charge and/or low salt concentration). In particular, the

RMSA tends to underestimate the local ordering by yielding a too small principal peak in

S(q) (and in g(r)) and a too large osmotic compressibility, S(0). It was shown that the

accuracy of the RMSA can be further improved by redefining the model parameters γ and

k to correct for the fact that the counterions are treated in the one-component macrofluid

model (of which the HSY model is a special case) as a uniform background medium that

penetrates the macroion and therefore reduces its effective charge. This scheme is called the

penetrating-background corrected RMSA (PB-RMSA).13 A further improvement, yielding

a structure factor, S(q), in excellent agreement with Monte Carlo simulations in the full

parameter space, was obtained with a modified PB-RMSA (MPB-RMSA) scheme.14 This

MPB-RMSA scheme involves the following steps:14

(1) Specify the true model parameters σ, φ, γ, and k, with γ given by eq S10 and k by the

following modified version of eq S11:

k2 =
λB

σ(1− φ)

(
24φ|Z|+ 8πnSσ

3
)
. (S37)

(2) Compute the modified parameters:

kmod = k(1− φ)1/2 ,

γmod = γ exp(kmod − k)

(
1 + k/2

1 + kmod/2

)2
.

(S38)

S9



(3) Assign the further modified parameters:

k∗ = kmod − 2φ1/3 ln(1− φ) ,

γ∗ =
γmod

(1− φ)2
.

(S39)

(4) The contact PCF is given by11

g0 ≡ g(σ) =a(1 + βP ) + b(1 + βT )−K + βk(d− 1)

− 6φβ2
[
2d(cosh k − 1)− ek

]
.

(S40)

Using this result, compute g0(φ, γ∗, k∗), that is, the contact PCF with modified Yukawa

parameters. If g0 < 0, assign an initial rescaling parameter s = 0.99 and go to step 5.

If g0 ≥ 0, set σ∗ = σ and φ∗ = φ and go to step 7.

(5) Compute the rescaled parameters:

σ∗ =
σ

s
,

φ∗ =
φ

s3
,

γ∗ =
γmods

(1− φ∗)2
,

k∗ =
kmod

s
− 2(φ∗)1/3 ln(1− φ∗) .

(S41)

(6) Using eq S40, compute g0(s) ≡ g0(φ
∗, γ∗, k∗), that is, the contact PCF with rescaling

parameter s. If |g0(s)| < tol, go to step 7. Here tol is a tolerance parameter with

default value 10−6. If |g0(s)| ≥ tol, compute a new rescaling parameter s′ that yields

a g0(s′) closer to 0. This is accomplished by iteratively solving the equation g0(s′) = 0

with the Newton–Raphson algorithm:

s′ = s− g0(s)
[

dg0(s)

ds

]−1
. (S42)

Then set s = s′ and go to step 5.

S10



(7) Compute the structure factor, S(q), in the desired q range by using eqs S5, S7, S8,

S17–S32, and S36 and the input parameters Q∗ = qσ∗, φ∗, γ∗, and k∗.
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Figure S1. Structure factor for Mb (a) and IFABP (b) solutions at multiple concentrations,
obtained from SAXS experiments (solid curves), from the CGSB model without vdW attraction
(dots), and from the HSY model (dashed curves). For the HSY model, the net charge, ZP, was
taken from Table 2. The experimental S(q) is only shown up to q = 2 nm−1; at higher q the noise
amplitude exceeds any deviation from S(q) = 1.
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