


Wear Estimation for Devices with eMMC Flash Memory



# WITH YOU TODAY...

- Joined Toradex 2011
- Spearheaded Embedded Linux Adoption
- Introduced Upstream First Policy
- Top 10 U-Boot Contributor
- Top 10 Linux Kernel ARM SoC Contributor
- Industrial Embedded Linux Platform Torizon Fully Based on Mainline Technology
  - Mainline U-Boot with Distroboot
  - KMS/DRM Graphics with Etnaviv & Nouveau
  - OTA with OSTree
  - Docker



# Marcel Ziswiler Platform Manager Embedded Linux marcel.ziswiler@toradex.com Toradex AG



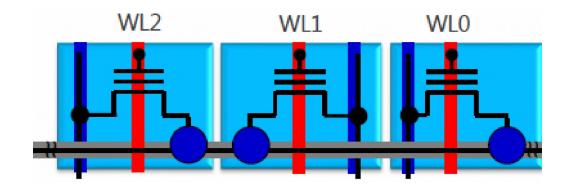
WHAT WE'LL COVER TODAY

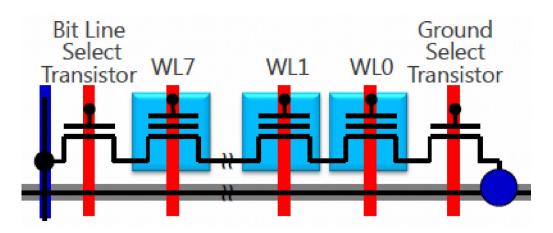
- A Technology Overview
- eMMC
- Flash Health
- I/O Tracking
- Lifespan Estimation
- Flash Analytics Tool
- Conclusion





# Flash – Non-Volatile Memory of Choice





### In Embedded Systems

- Decreased Size
- Increased Robustness
- No Moving Parts
- Reduced Power Consumption
- Keep Redundant Data On-Site
- For Intermittent Connectivity Reasons



### NOR vs. NAND





- Difference at Transistor Level How to Store Bits
- NOR and NAND Logic Gates

- Simpler Principle of Operation
- Higher Reliability
- Higher Pin-Count
- Lower Density in Silicon
- Bigger Size
- More Expensive
- Only for Specific Applications
- Highly Critical Industrial-Grade



### **NAND Structure**

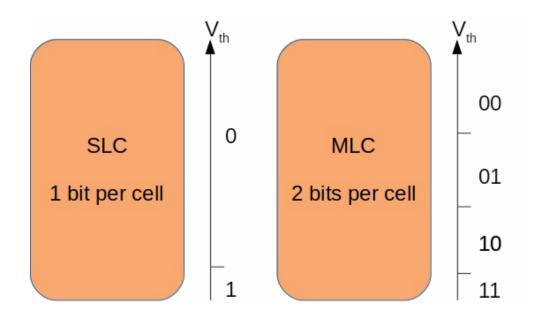
### Cell

- Smallest Entity
- Storing Data at Bit-Level

# Blocks

### Page

- Smallest Array of Cells
- Addressable for Read/Write Operations
- Flipping Bits from 1 to 0
- Page Size: Range of Kilobytes e.g. 4 kB


### (Erase-)Block

- Smallest Array of Pages
- Pages Addressable for Erase Operation
  - Return Logic State of Bits from 0 Back to 1
  - Block Size: Range of Megabytes e.g. 4 MB
  - Erase Operation is Slow
  - Wears out Flash over Time
  - Develops Bad Blocks
  - Block Erase Count

### NAND: SLC vs. MLC

### Cell

- How Many Bits Stored
- Depends on Voltage Level Thresholds



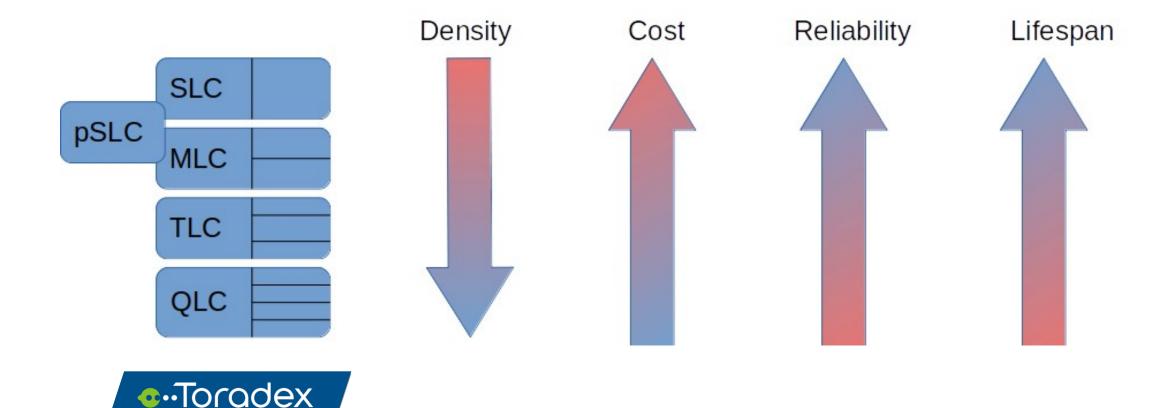


### SLC

- Single-Level Cell
- Stores 1 Bit per Cell

### pSLC

- Pseudo-SLC
- MLC Operating in SLC Mode
- Stores 1 Bit per Cell


### MLC

- Multi-Level Cell
- Stores 2 Bits per Cell

### TLC, QLC, ...

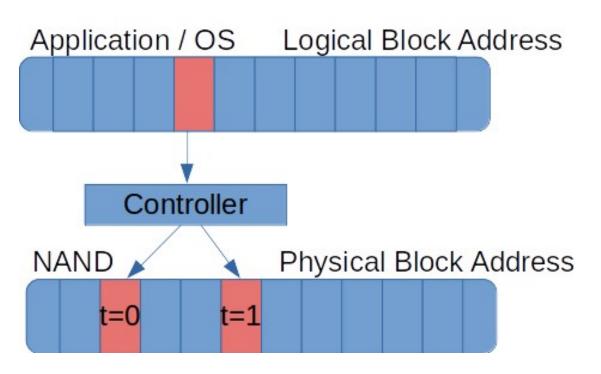
You Get the Idea...

# Trade-Off Between Density and Cost vs. Reliability and Lifespan



### **ECC** and Bad Blocks

### **Error Correction Code Algorithms**


- Adding Redundancy
- Allow Correcting resp. Detecting Certain Bit Errors
- Random Bit Flips Even in Healthy Blocks

### **Bad Blocks**

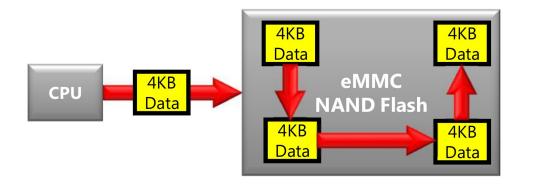
- Over Time Probability of Bit-Flips Increases
- Blocks Wear out Becoming Bad
- Factory Bad Blocks
- Spare Blocks



# Wear-Leveling and Garbage Collection



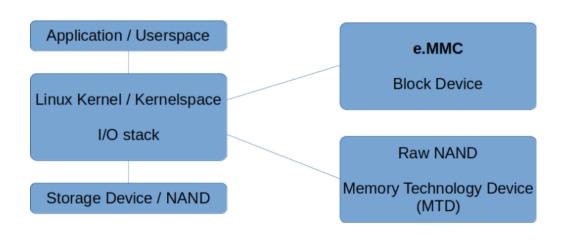
### Wear-Leveling


- Same Physical Pages/Blocks Used for e.g. File Update
- Increased Wear out Causing Premature Bad Blocks
- Using Blocks Evenly
- Moving Data Around
- Dynamic vs. Static

### Garbage Collection

- Slow Erase Operation
- Avoid Immediate Erasure
- Just Marking Blocks Dirty
- Erase Later e.g. Idle Time




# Write Amplification Factor (WAF)

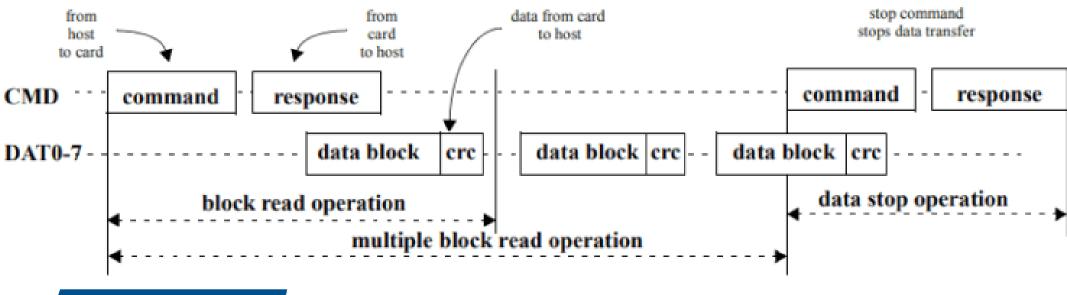


- Actual Data Written to NAND Flash Cells vs.
- Data Sent from Host to Memory
- Difference Between Programm and Erase Size
- Data Needs Erasing Before (Re-)Writing
- Memory Management Features:
  - Wear-Leveling
  - Garbage Collection
- Typical WAF in eMMC: Good Average is 4
- Depends on Usage Scenario
- Select Optimal Data Size Related to Page Size



# Embedded MultiMediaCard (eMMC)




### Managed NAND

- Raw NAND Die & Accompanying NAND Controller
- Abstracting Large Part of Management SW-Stack
- Latest JEDEC Standard 5.1
- Allows for Regular Block Device Operations
- Using Regular File Systems e.g. EXT4
- Example eMMC
  - Micron MTFC4GACAJCN-1M-WT
  - 4 GB MLC
  - 1024 Blocks of 4 KB Size
  - Lifespan 3000 Write/Erase Cycles
  - 15 nm Process



## **MMC Protocol**

- Bus: Command, Clock and 7 Data Lines
- CMD: Serial Command/Response Channel
- DAT0-7: Parallel Read/Write Data plus CRC
- Single or Multiple Block Read/Write Operations





# **MMC Registers**

| Name | Width<br>(bytes) | Description                                                                                                                               |  |
|------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| CID  | 16               | Unique Card/Device Identifier.                                                                                                            |  |
| RCA  | 2                | Relative Card/Device Address: device's system address, dynamically assigned by the host during initialization.                            |  |
| DSR  | 2                | Driver Stage Register: to configure the device's output drivers.                                                                          |  |
| CSD  | 16               | Card/Device Specific Data: information about the device's operation conditions.                                                           |  |
| OCR  | 4                | Operation Conditions Register: used by a special broadcast command to identify the voltage type of the device.                            |  |
|      |                  | Extended Card/Device Specific Data: contains information about the device's capabilities and selected modes. Introduced in standard v4.0. |  |

# JEDEC Standard Health Reporting

- Device Life Time Estimation Type A:
  - Health Status in Increments of 10 %
  - Refers to pSLC Blocks in our eMMC
- Device Life Time Estimation Type B:
  - Health Status in Increments of 10 %
  - Refers to MLC Blocks in our eMMC
- Pre-EOL Information:
  - Normal: Up to 80 % of Reserved Blocks Consumed
  - Warning: More than 80 % Consumed
  - Urgent: More than 90 % Consumed
- Introduced with Standard v5.0
- Low Resolution Requiring Very Long Benchmark Runs



# Micron Proprietary Health Report

- TN-FC-32: e.MMC Device Health Report
- Bad Block Counters and Information:
  - Factory Bad Block Count
  - Run-Time Bad Block Count
  - Remaining Spare Block Count
  - Per Block Failed Erase vs. Program Operations with Page Addresses
- Block Erase Counters:
  - Minimum, Maximum and Average Among all Blocks
  - Per Block Erase Count
- Block Configuration:
  - Physical Address of Each Block
  - pSLC vs. MLC Configuration
- Accessed by General Command (GEN\_CMD) aka CMD56



### Flash Health

Percentage of Capacity Already Worn Out

endurance = number of blocks · average block lifespan endurance =  $1024 \cdot 3000 = 3.072.000$  block erases

or

endurance = block size · blocks · average block lifespan

 $endurance = 4 MB \cdot 1024 \cdot 3000 = 12 TB written$ 



# **Monitoring Flash Health in Linux**

```
1 root@colibri-imx6:~# mmc
2 Usage:
3
4 mmc extcsd read <device>
5 Print extcsd data from <device>.
6
7 mmc extcsd dump <device>
8 Print raw extcsd data from <device>.
```

### mmc-utils

- Software to Extracts Meaningful Information From eMMC Devices
- Reading Data From Extended Card/Device Specific Data (EXT\_CSD)
- Includes Device Lifespan Defined by JEDEC eMMC 5.0 Standard

```
1  root@colibri-imx6:~# mmc extcsd read /dev/mmcblk1 | grep LIFE
2  Device life time estimation type B [DEVICE_LIFE_TIME_EST_TYP_B: 0x01]
3  Device life time estimation type A [DEVICE_LIFE_TIME_EST_TYP_A: 0x01]
4  eMMC Life Time Estimation A [EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A]: 0x01
5  eMMC Life Time Estimation B [EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B]: 0x01
6  root@colibri-imx6-05097264:~# mmc extcsd read /dev/mmcblk1 | grep EOL
8  Pre EOL information [PRE_EOL_INFO: 0x01]
9  eMMC Pre EOL information [EXT_CSD_PRE_EOL_INFO]: 0x01
```



# Vendor Proprietary Health Report

```
int do_bad_block_count(int nargs, char **argv);
int do_bad_block_info(int nargs, char **argv);
int do_block_erase_count(int nargs, char **argv);
int do_block_erase_info(int nargs, char **argv);
int do_block_addr_type_info(int nargs, char **argv);
```

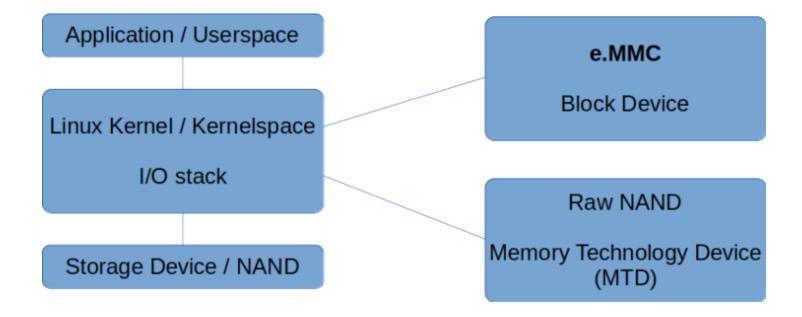


# Vendor Proprietary Health Report 2nd

- Vendor-Specific Tool
- Micron's emmcparm
- Provides Consolidated Lifespan Report
- More Granular Parameters

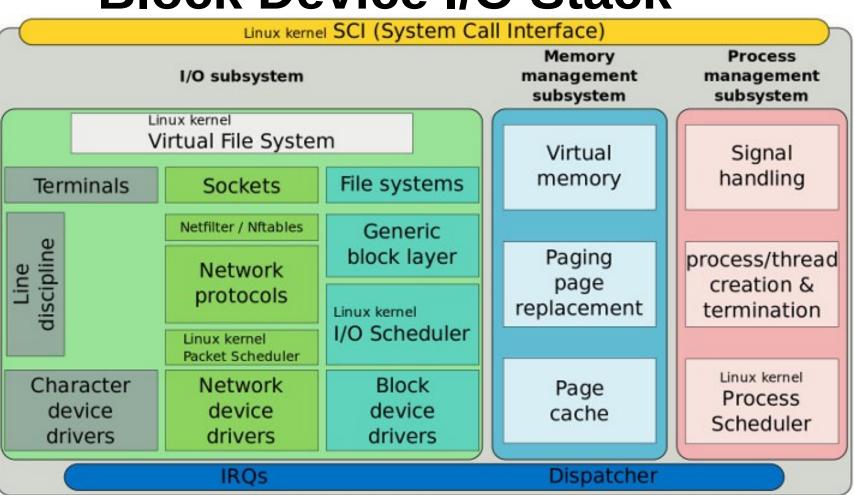
```
1 root@colibri-imx6:~# emmcparm_arm
2 --spare_block
3 --bad_block
4 --erase_count
5 --sect_count
```




# I/O Tracking

- Useful Indicator that Flash Wears out Quickly
- Debug Indicator Showing What Applications Write too Much Data
- Generates Input Data for Wear Estimation Model
- Independent of JEDEC Standards or eMMC Vendor Health Reports
- Applicable to any NAND Flash Based Storage Technology



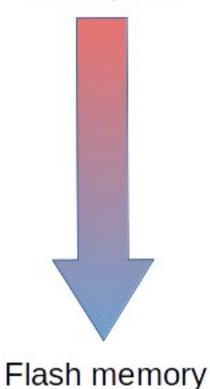

### **Linux I/O Stack for eMMC and Raw NAND**

- Userspace File Operations at Application-Level
- System Calls into Kernelspace
- Ends up in Linux I/O Stack
- Finally Sending Data to Low-Level Device Driver





## **Block Device I/O Stack**




- VFS Abstracting Userspace API
- FS File Concept
- Gen Block Layer Handling Block IO
- IO Scheduler Queuing IO Requests
- Max. Block IO Performance
- Why Not Monitor Userspace?
- Not Very Accurate
- Layers of Caches

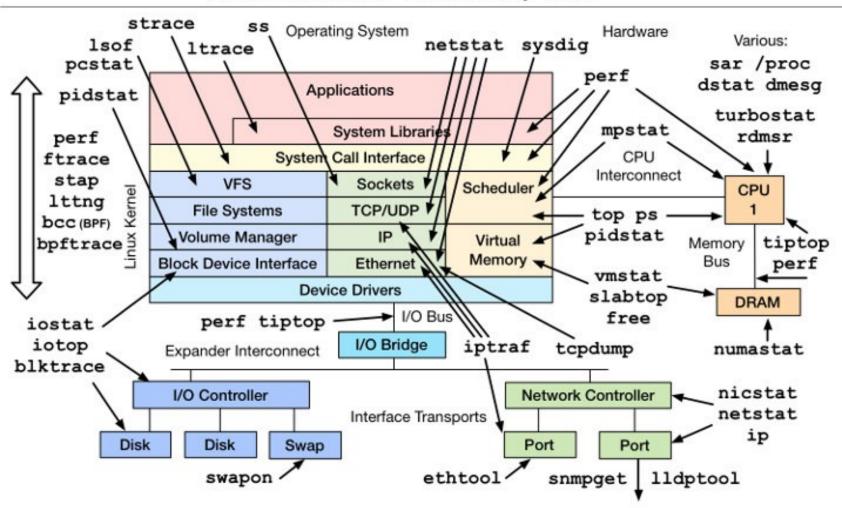


# Caches, Buffers, Queues and Syncs

### Userspace



- Page cache
- Write-back cache
- Write-buffers
- I/O merges
- I/O queues


### Sync data

- Files x global
- Data x metadata
- Only when you need to
- Power-cut tolerance
- Atomic file update



# **Measuring I/O Writes**

Linux Performance Observability Tools



- Monitoring Writes That Actually Hit the Flash
- Where Exactly in the Linux I/O Stack to Measure?
- How to Measure (e.g. What Tool to Use)?

# iotop

- Tracking Userspace Operations
- Easy to Use

```
1 root@colibri-imx6:~# iotop -help
2 Options:
3 -o, --only only show processes or threads actually doing I/O
4 -b, --batch non-interactive mode
5 -a, --accumulated show accumulated I/O instead of bandwidth
6 -k, --kilobytes use kilobytes instead of a human friendly unit
7 -t, --time add a timestamp on each line (implies -batch)
8 -q, --quiet suppress some lines of header (implies --batch)
```

```
root@colibri-imx6:~# dd if=/dev/urandom bs=4k count=100000 | pv -L 25k > testfile
3 root@colibri-imx6:~# iotop --only --batch --accumulated --kilobytes --time -quiet
4 TIME
             TID
                         PRI0
                                 USER
                                            DISK READ DISK WRITE SWAPIN
                                                                               I0
                                                                                     COMMAND
5 2019-08-02 03:11:19
                         50 be/4 root
                                                          24.00 K -0.00 % -0.00 % pv -L 25k
                         50 be/4 root
                                                          52.00 K -0.00 % -0.00 % pv -L 25k
6 2019-08-02 03:11:20
                                               0.00 K
  2019-08-02 03:11:21
                                               0.00 K
                                                          80.00 K -0.00 % -0.00 % pv -L 25k
                         50 be/4 root
8 2019-08-02 03:11:22
                                               0.00 K
                                                         104.00 K -0.00 % -0.00 % pv -L 25k
                         50 be/4 root
9 2019-08-02 03:11:23
                         50 be/4 root
                                               0.00 K
                                                         128.00 K -0.00 % -0.00 % pv -L 25k
```



# blktrace/blkparse

- Overwhelming Amount of Output
- Make use of Filters
- Goal: Tracking Userspace PID Once Write to Flash is Confirmed
- C (Complete): Request Completed (Details Sector, Request Size and Success/Failure)
- I (Inserted): Request Sent to I/O Scheduler for Addition to Internal Queue

| 1 | root@co | olibri- | imx6:~# b | lktrace -o - /a | lev/mm | cbl | lk1   blkparse -i -                          |
|---|---------|---------|-----------|-----------------|--------|-----|----------------------------------------------|
| 2 | 179,0   | 0       | 26        | 0.000114661     | 304    | Α   | WS 4509800 + 8 <- (179,2) 4468840            |
| 3 | 179,0   | 0       | 27        | 0.000117328     | 304    | Q   | WS 4509800 + 8 [jbd2/mmcblk1p2-]             |
| 4 | 179,0   | 0       | 28        | 0.000119661     | 304    | М   | WS 4509800 + 8 [jbd2/mmcblk1p2-]             |
| 5 | 179,0   | 0       | 29        | 0.000127328     | 304    | U   | N [jbd2/mmcblk1p2-] 1                        |
| 6 | 179,0   | 0       | 30        | 0.000131661     | 304    | Ι   | <pre>WS 4509736 + 72 [jbd2/mmcblk1p2-]</pre> |
| 7 | 179,0   | 0       | 31        | 0.008860277     | 279    | D   | WS 4509736 + 72 [kworker/0:3H]               |
| 8 | 179,0   | 0       | 32        | 0.012586780     | 279    | C   | WS 4509736 + 72 [0]                          |

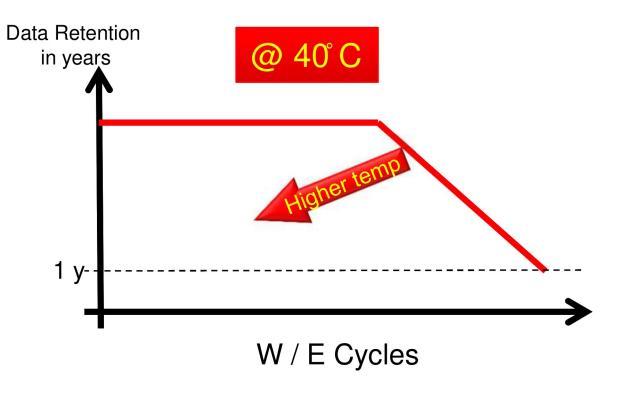
| barrier  | barrier attribute     |
|----------|-----------------------|
| complete | completed by driver   |
| fs       | FS requests           |
| issue    | issued to driver      |
| рс       | packet command events |
| queue    | queue operations      |
| read     | read traces           |
| requeue  | requeue operations    |
| sync     | synchronous attribute |
| write    | write traces          |
| notify   | notify trace messages |
|          |                       |

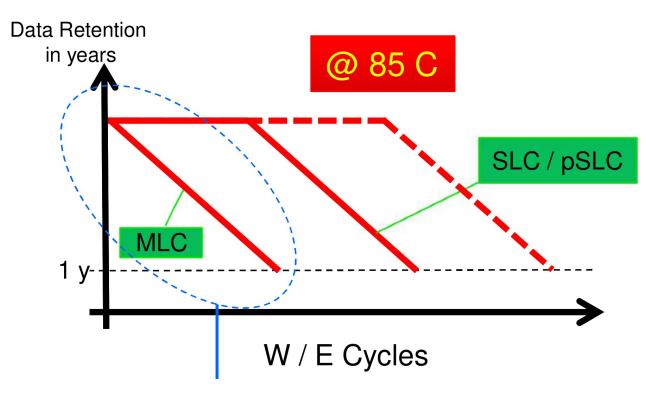


# **Lifespan Estimation**

- Logging Flash Health and I/O Tracking
- Storing in Local Database
- Correlations:
  - Flash Health Over Time

$$lifespan in seconds = \frac{endurance}{average global block erase count}$$


Flash Health Dependent on Write Rate


$$lifespan = \frac{endurance}{adjusted average write rate}$$



## **Remark on Wear Estimation**

Temperature Strongly Affects Flash Lifespan!







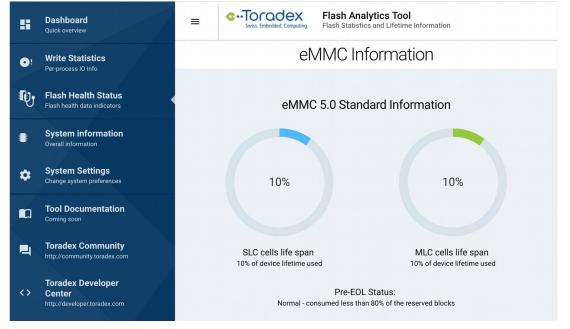
# **Flash Analytics Tool**

- Under Development at Toradex Labs
- Abstracting Away Complexity of Wear Estimation
- Targeting Application Developers
- Current Prediction Model Implemented Using Linear Regression














# **Live Demo**







## Conclusion

# Estimation lifespan ≈ blocks·capacity·erasecycles write rate

### Production / In-field

- · Models for precise EOL
- · Live monitors and alarms

### Challenges

- Write rate of application
- OS contribution
- What actually hits flash
- Write merges
- Health Status
- · Partitioning accounting
- PSLC mode
- Write amplification
- · Manufacturer info

### Measurement and Modeling

- Accuracy
- Validation

### Product Development

- · Benchmark tests
- Estimation from models



# Questions 2



### References

- Toradex Labs https://labs.toradex.com
- Flash Analytics Tool <a href="https://labs.toradex.com/projects/flash-analytics-tool">https://labs.toradex.com/projects/flash-analytics-tool</a>
- Toradex blog What you should know about Flash storage <a href="https://www.toradex.com/pt-br/blog/what-you-should-know-about-flash-storage">https://www.toradex.com/pt-br/blog/what-you-should-know-about-flash-storage</a>
- Flash Memory Wikipedia <a href="https://en.wikipedia.org/wiki/Flash\_memory">https://en.wikipedia.org/wiki/Flash\_memory</a>
- Micron NOR | NAND Flash Guide
- Micron Choosing the Right NAND <a href="https://www.micron.com/products/nand-flash/choosing-the-right-nand-">https://www.micron.com/products/nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash/choosing-the-right-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nand-flash-nan
- Flash 101: NAND Flash vs NOR Flash https://www.embedded.com/design/prototyping-and-development/4460910/Flash-101--NAND-Flash-vs-NOR-Flash
- Cactus Technologies White Paper CTWP016: An Overview of Pseudo-SLC NAND -<a href="https://www.cactus-tech.com/files/cactus-tech.com/documents/whitepapers/An%20Overview%20of%20Pseudo-SLC%20NAND.pdf">https://www.cactus-tech.com/files/cactus-tech.com/documents/whitepapers/An%20Overview%20of%20Pseudo-SLC%20NAND.pdf</a>
- Cactus Technologies SLC, pSLC, MLC and TLC Differences Does Your Flash Storage SSD Make the Grade? -<a href="https://www.cactus-tech.com/resources/blog/details/slc-pslc-mlc-and-tlc-differences-does-your-flash-storage-ssd-make-the-grade">https://www.cactus-tech.com/resources/blog/details/slc-pslc-mlc-and-tlc-differences-does-your-flash-storage-ssd-make-the-grade</a>
- 11 Myths About NAND Flash <a href="https://www.electronicdesign.com/memory/11-myths-about-nand-flash">https://www.electronicdesign.com/memory/11-myths-about-nand-flash</a>
- How NAND flash degrades and what vendors do to increase SSD endurance -<a href="https://searchstorage.techtarget.com/podcast/How-NAND-flash-degrades-and-what-vendors-do-to-increase-SSD-endurance">https://searchstorage.techtarget.com/podcast/How-NAND-flash-degrades-and-what-vendors-do-to-increase-SSD-endurance</a>
- Micron TN-29-42 Wear-Leveling Techniques in NAND Flash Devices
- Wear Leveling Wikipedia <a href="https://en.wikipedia.org/wiki/Wear leveling">https://en.wikipedia.org/wiki/Wear leveling</a>
- Micron TN-2960: Garbage Collection in SLC NAND Flash Memory
- MultiMediaCard Wikipedia <a href="https://en.wikipedia.org/wiki/MultiMediaCard">https://en.wikipedia.org/wiki/MultiMediaCard</a>
- Embedded Multi-Media Card (e.MMC) Electrical Standard (5.0) <a href="https://www.jedec.org/sites/default/files/docs/JESD84-B50.pdf">https://www.jedec.org/sites/default/files/docs/JESD84-B50.pdf</a>
- Macronix Application Note Managing Unexpected NAND Flash Power Loss in Embedded Systems http://www.macronix.com/Lists/ApplicationNote/Attachments/1924/AN0363V1%20-%20Managing%20Unexpected%20NAND%20Flash%20Power%20Loss%20In%20Embedded%20Systems.pdf
- Micron TN-FC-32: e.MMC Device Health Report
- Toshiba NAND Flash Memory Solutions <a href="http://igexact.org/storage/legacy/uploads/files/FG\_ENG/20170329/Toshiba%20NAND%20Flash%20Memory%20Solutions%20-%20Product%20Introduction%20-%20Exact%20Event%20March%202017.pdf">http://igexact.org/storage/legacy/uploads/files/FG\_ENG/20170329/Toshiba%20NAND%20Flash%20Memory%20Solutions%20-%20Product%20Introduction%20-%20Exact%20Event%20March%202017.pdf</a>



## **References Continued**

- The Linux IO Stack unveiled Thomas Schöbel-Theuer http://www.linuxtag.org/2013/fileadmin/www.linuxtag.org/slides/Thomas Schoebel-Theuer Der Linux I O-Stack.e201.pdf
- Linux block I/O tracing Gabriel Krisman Bertazi https://www.collabora.com/news-and-blog/blog/2017/03/28/linux-block-io-tracing/
- Budget Fair Queueing (BFQ) Storage-I/O Scheduler <a href="http://algo.ing.unimo.it/people/paolo/disk\_sched/">http://algo.ing.unimo.it/people/paolo/disk\_sched/</a>
- Deadline scheduler Wikipedia https://en.wikipedia.org/wiki/Deadline scheduler
- Noop scheduler Wikipedia <a href="https://en.wikipedia.org/wiki/Noop">https://en.wikipedia.org/wiki/Noop</a> scheduler
- The Linux Kernel/Storage Wikibooks <a href="https://en.wikibooks.org/wiki/The Linux Kernel/Storage">https://en.wikibooks.org/wiki/The Linux Kernel/Storage</a>
- I/O Scheduling Wikipedia https://en.wikipedia.org/wiki/I/O scheduling
- An Introduction to Linux Block I/O Avishay Traeger <a href="https://researcher.watson.ibm.com/researcher/files/il-AVISHAY/01-block\_io-v1.3.pdf">https://researcher.watson.ibm.com/researcher/files/il-AVISHAY/01-block\_io-v1.3.pdf</a>
- Understand your NAND and drive it within Linux Miquèl Raynal https://archive.fosdem.org/2018/schedule/event/nand\_on\_linux/attachr
- https://archive.fosdem.org/2018/schedule/event/nand\_on\_linux/attachments/slides/2576/export/events/attachments/nand\_on\_linux/slides/2576/raynal\_drive\_your\_nand\_within\_linux.pdf
- MTD stack documentation <a href="http://www.linux-mtd.infradead.org/doc/general.html">http://www.linux-mtd.infradead.org/doc/general.html</a>
- UBI Unsorted Block Images http://www.dubeiko.com/development/FileSystems/UBI/ubidesign.pdf
- UBI headers http://www.linux-mtd.infradead.org/doc/ubi.html#L\_ubi\_headers
- UBIFS FAQ and HOWTO <a href="http://www.linux-mtd.infradead.org/fag/ubifs.html">http://www.linux-mtd.infradead.org/fag/ubifs.html</a>
- UBIFS UBI File-System http://www.linux-mtd.infradead.org/doc/ubifs.html
- Linux Page Cache Basics <a href="https://www.thomas-krenn.com/en/wiki/Linux">https://www.thomas-krenn.com/en/wiki/Linux</a> Page Cache Basics
- Don't fear the fsync <a href="http://thunk.org/tytso/blog/2009/03/15/dont-fear-the-fsync/">http://thunk.org/tytso/blog/2009/03/15/dont-fear-the-fsync/</a>
- The future of the page cache <a href="https://lwn.net/Articles/712467/">https://lwn.net/Articles/712467/</a>
- Micron TN-FC-25: Understanding Linux Driver Support for e.MMC
- Linux Tracing Technologies <a href="https://www.kernel.org/doc/html/latest/trace/index.html">https://www.kernel.org/doc/html/latest/trace/index.html</a>#
- Using the Linux Kernel Tracepoints https://www.kernel.org/doc/html/latest/trace/tracepoints.html
- Block I/O Layer Tracing: blktrace Alan D. Brunelle https://www.mimuw.edu.pl/~lichota/09-10/Optymalizacja-open-source/Materialy/10%20-%20Dysk/gelato\_ICE06apr\_blktrace\_brunelle\_hp.pdf
- blktrace User Guide Alan D. Brunelle <a href="http://www.fis.unipr.it/doc/blktrace-1.0.1/blktrace.pdf">http://www.fis.unipr.it/doc/blktrace-1.0.1/blktrace.pdf</a>





### THANK YOU FOR YOUR INTEREST.