
W
eb A

nim
ation using JavaScript

Julian Shapiro
Foreword by David DeSandro, Founder of Metafizzy; Author/Developer of Masonry and Isotope

DEVELOP AND DESIGN

Web Animation
using JavaScript

DEVELOP AND DESIGN

Web Animation
using JavaScript

Julian Shapiro

PEACHPIT PRESS
WWW.PEACHPIT.COM

http://WWW.PEACHPIT.COM

Web Animation using JavaScript: Develop and Design
Julian Shapiro

Peachpit Press
www.peachpit.com

To report errors, please send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Copyright 2015 by Julian Shapiro

Editor: Victor Gavenda
Development editor: Margaret S. Anderson
Project manager: Margaret S. Anderson
Technical editor: Jay Blanchard
Copyeditor: Gretchen Dykstra
Production editor: David Van Ness
Proofreader: Patricia Pane
Compositor: Danielle Foster
Indexer: Jack Lewis
Cover design: Aren Straiger
Interior design: Mimi Heft

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting
permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in
the preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by the
computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear as requested
by the owner of the trademark. All other product names and services identified throughout this book are used in editorial
fashion only and for the benefit of such companies with no intention of infringement of the trademark. No such use, or the
use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-134-09666-7
ISBN-10: 0-134-09666-5

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.peachpit.com
mailto:errata@peachpit.com
mailto:permissions@peachpit.com

I dedicate this book to people who play Counter-Strike.
And to people who like the show Rick and Morty.

This page intentionally left blank

ACKNOWLEDGEMENTS
I would like to thank Yehonatan Daniv for providing support to Velocity’s users on

GitHub, Anand Sharma for regularly inspiring me with his motion design work, and

David DeSandro for writing this book’s foreword. I’d also like to thank Mat Vogels,

Harrison Shoff, Adam Singer, David Caplan, and Murat Ayfer for reviewing drafts of

this book.

Acknowledgements v

This page intentionally left blank

CONTENTS
Foreword . xii

Introduction . xiv

Chapter 1 ADVANTAGES OF JAVASCRIPT ANIMATION . 2

JavaScript vs. CSS animation . 4

Great performance . 6

Features . 7

Page scrolling . 7

Animation reversal . 7

Physics-based motion . 8

Maintainable workflows . 9

Wrapping up . 10

Chapter 2 ANIMATING WITH VELOCITY .JS . 12

Types of JavaScript animation libraries . 14

Installing jQuery and Velocity . 15

Using Velocity: Basics . 16

Velocity and jQuery . 16

Arguments . 16

Properties . 18

Values . 19

Chaining . 20

Using Velocity: Options . 21

Duration . 21

Easing . 21

Begin and Complete . 24

Loop . 25

Delay . 26

Display and Visibility . 27

Using Velocity: Additional features . 30

Reverse Command . 30

Scrolling . 30

Colors . 31

contents vii

Transforms . 32

Using Velocity: Without jQuery (intermediate) 33

Wrapping up . 35

Chapter 3 MOTION DESIGN THEORY . 36

Motion design improves the user experience 38

Utility . 41

Borrow conventions . 41

Preview outcomes . 41

Distraction over boredom . 42

Leverage primal instincts . 42

Make interactions visceral . 43

Reflect gravitas . 43

Reduce concurrency . 43

Reduce variety . 44

Mirror animations . 44

Limit durations . 45

Limit animations . 45

Elegance . 47

Don’t be frivolous . 47

Your one opportunity to be frivolous . 47

Consider personality . 47

Go beyond opacity . 48

Break animations into steps . 48

Stagger animations . 49

Flow from the triggering element . 49

Use graphics . 50

Wrapping up . 53

Chapter 4 ANIMATION WORKFLOW . 54

CSS animation workflow . 56

Issues with CSS . 56

When CSS makes sense . 57

Code technique: Separate styling from logic 59

Standard approach . 59

Optimized approach . 60

viii contents

Code technique: Organize sequenced animations 65

Standard approach . 65

Optimized approach . 66

Code technique: Package your effects . 69

Standard approach . 69

Optimized approach . 70

Design techniques . 73

Timing multipliers . 73

Use Velocity Motion Designer . 74

Wrapping up . 77

Chapter 5 ANIMATING TEXT . 78

The standard approach to text animation . 80

Preparing text elements for animation with Blast.js 82

How Blast .js works . 83

Installation . 84

Option: Delimiter . 85

Option: customClass . 85

Option: generateValueClass . 86

Option: Tag . 87

Command: Reverse . 88

Transitioning text into or out of view . 90

Replacing existing text . 90

Staggering . 91

Transitioning text out of view . 91

Transitioning individual text parts . 94

Transitioning text fancifully . 96

Textual flourishes . 97

Wrapping up . 100

Chapter 6 SCALABLE VECTOR GRAPHICS PRIMER . 102

Creating images through code . 104

SVG markup . 105

SVG styling . 107

Support for SVG . 108

SVG animation . 109

contents ix

Passing in properties . 109

Presentational attributes . 110

Positional attributes vs . transforms . 110

Implementation example: Animated logos . 112

Wrapping up . 114

Chapter 7 ANIMATION PERFORMANCE . 116

The reality of web performance . 118

Technique: Remove layout thrashing . 121

Problem . 121

Solution . 122

jQuery Element Objects . 123

Force-feeding . 124

Technique: Batch DOM additions . 126

Problem . 126

Solution . 127

Technique: Avoid affecting neighboring elements 130

Problem . 130

Solution . 130

Technique: Reduce concurrent load . 133

Problem . 133

Solution . 133

Technique: Don’t continuously react to scroll
and resize events . 135

Problem . 135

Solution . 135

Technique: Reduce image rendering . 137

Problem . 137

Solution . 137

Sneaky images . 138

Technique: Degrade animations on older browsers 139

Problem . 139

Solution . 139

Find your performance threshold early on . 141

Wrapping up . 145

x contents

Chapter 8 ANIMATION DEMO . 146

Behavior . 148

Code structure . 150

Code section: Animation setup . 153

Code section: Circle creation . 155

Code section: Container animation . 156

3D CSS primer . 156

Properties . 157

Options . 159

Code section: Circle animation . 160

Value functions . 161

Opacity animation . 161

Translation animation . 162

Reverse command . 163

Wrapping up . 165

Index . 167

contents xi

FOREWORD
It’s a special time when a developer first discovers jQuery’s .animate(). I remember

trying to animate any part of the page that wasn’t bolted to the main content. I cre-

ated accordions, fly-out menus, hover effects, scroll transitions, magical reveals, and

parallax sliders. Turning my websites from cold, static documents into moving, visual

experiences felt like I was reaching another level as a web designer. But it was just bells

and whistles. I realize now that for all the animation I added, I hadn’t actually improved

the user experience of my websites.

All the same, it was thrilling. So what makes animation so exciting?

My apartment looks over downtown Brooklyn. I see people walk down the street.

Plumes from smokestacks billow up. Pigeons flutter to perch on a ledge. A construction

crane raises a section of a building. A single, heart-shaped balloon floats up into the

Brooklyn sky (corny, I know, but I literally saw this happen twice). Cars drive over the

Williamsburg Bridge. Clouds pass overhead.

The world is in motion.

This is how you expect the universe to work. Things move. Like the movements

outside my window, each one is a one-sentence story. Together they tell the larger story

of what is happening.

Yet this isn’t how digital interfaces work. Those little stories are missing. When

things change, you have to fill in the story for yourself. When you press the Next button

at an ATM, the screen suddenly changes. Did it move forward successfully? Was there

an error? You have to read the screen again to interpret the results of your action. Utiliz-

ing motion removes this leap of understanding between interactions. Motion inherently

communicates what has changed. It’s like writing tiny stories between states.

When a slide transition takes you to the next screen, animation helps you better

understand what just happened. Wielding this power is what makes animation so thrill-

ing. Like layout, color, and typography, animation helps you shape and direct the user

experience. Animation is more than just making things move. It’s designing more effec-

tively, and doing it thoughtfully.

Unfortunately, in the history of web animation, thoughtfulness hasn’t always been

the highest priority. As developers, we’ve used Flash, animated GIFs, Java applets, mar-

quee tags, and, more recently, CSS, JavaScript, and SVG to create animation that’s been,

at best, a level of polish or, at worst, a gimmick. The idea of creating animation that’s

both high-performance and user-friendly is relatively new.

xii Foreword

So it’s a good thing you have this book in front of you. Julian Shapiro is one of the

principal experts on animation on the web. In creating and supporting Velocity.js, he

has developed an intimate knowledge of all the quirks and advantages of using motion

on websites. Web Animation using JavaScript will give you not only the technical know-

how required to implement animation in your websites, but, more importantly, the

insights you’ll need to use animation effectively and craft compelling user experiences.

Animation libraries and technologies have made motion design more accessible

than ever. But not every developer abides by best practices. The past couple of years

have seen several trendy anti-patterns come and go. Scroll behavior has been hijacked.

Mobile navigation has been pushed into menus accessible only via gestures. While add-

ing animation is within the grasp of anyone who stumbles across .animate(), utilizing

it to improve the user experience is one of the hallmarks of a dedicated developer. This

book will help you become one of them.

David DeSandro

February 2015

Brooklyn, New York

David DeSandro is the founder of Metafizzy

and author/developer of Masonry and Isotope .

Foreword xiii

INTRODUCTION
In the early days of the web, animation was primarily used by novice developers as

a last-ditch effort to call attention to important parts of a page. And even if they wanted

animation to transcend its niche, it couldn’t: browsers (and computers) were simply too

slow to deliver smooth web-based animation.

We’ve come a long way since the days of flashing banner ads, scrolling news

tickers, and Flash intro videos. Today, the stunning motion design of iOS and Android

dramatically improves the user experience—instead of detracting from it. Developers

of the best sites and apps leverage animation to improve the feel and intuitiveness of

their user interfaces. Animation’s rise to relevancy isn’t just a by-product of improved

processing power; it reflects a better appreciation for best practices within the web

development community. The tools you use to make a website are now considered less

important than the quality of the resulting user experience. As obvious as this seems,

it wasn’t always the case.

So, what makes animation in particular so useful? Whether it’s transitioning

between chunks of content, designing intricate loading sequences, or alerting the

user what to do next, animation complements text and layout to reinforce your site’s

intended behavior, personality, and visual sophistication. Does your content bounce

into view in a friendly way, or does it whip across the screen? This is the domain of

motion design, and the decisions you make will establish the transcendent feeling

of your app.

When users recommend your app to others, they’ll often try to describe it with

words like “sleek” or “polished.” What they don’t realize is that they’re mostly referring

to the motion design work that’s gone into the interface. This inability of the layman

to make the distinction is precisely what great user interface (UI) designers strive for:

animations that reinforce the interface’s objectives but don’t otherwise divert the

user’s attention.

This book provides you with the foundation necessary to implement animation

confidently and in a way that’s both technically maintainable and visually impactful.

Throughout, it considers the balance between enriching a page with motion design and

avoiding unnecessary flourishes.

xiv IntroductIon

Why is all of this so important? Why is it worth your time to perfect your transitions

and easing combinations? For the same reason that designers spend hours perfecting

their font and color combinations: refined products simply feel superior. They leave

users whispering to themselves, “Wow, this is cool,” right before they turn to a friend

and exclaim, “You gotta see this!”

NOTE: If you’re unfamiliar with basic CSS properties, you should pick up
an introductory HTML and CSS book before reading this one.

IntroductIon xv

CHAPTER 4

Animation
Workflow

The animation code found on most sites is nothing short of a

mess. If there’s one thing experienced motion designers miss

about the old, ugly days of Flash, it’s a structured approach to

motion design.

The contemporary approach to structuring animation

code is twofold: leverage the workflow features of an animation

engine (in this case, Velocity.js) to make your code more terse and

expressive, and use code organization best practices so that it’s

easy to modify your work later.

Say goodbye to deep-nesting JavaScript callbacks and to

dirtying your stylesheets with unwieldy CSS animations. It’s

time to up your web animation game.

55

CSS ANIMATION WORKFLOW
In an attempt to better manage UI animation workflow, developers sometimes switch

from JavaScript to CSS. Unfortunately, once animations reach a medium level of com-

plexity, CSS animations typically result in a significantly worse workflow.

ISSUES WITH CSS
While CSS transitions are convenient when used sparingly in a stylesheet, they’re

unmanageable in complex animations sequences (for example, when all elements

sequentially load into view upon page load).

CSS tries to address this issue with a keyframes feature, which lets you separate

animation logic into discrete time ranges:

@keyframes myAnimation {

 0% { opacity: 0; transform: scale(0, 0); }

 25% { opacity: 1; transform: scale(1, 1); }

 50% { transform: translate(100px, 0); }

 100% { transform: translate(100px, 100px); }

}

#box { animation: myAnimation 2.75s; }

This specifies separate points within an animation’s timeline at which particular

property values should be reached. It then assigns the animation to an element with

an ID of #box, and specifies the duration of the keyframe sequence to complete within.

Don’t worry if you don’t fully grasp the syntax above—you won’t be using it in this

book. But before moving on, consider this: what happens when a client asks you to

make the opacity animation one second longer, but keep the rest of the properties

animating at their current durations? Fulfilling this request requires redoing the math

so the percentage values properly align with a 1-second increase. Doing this isn’t trivial,

and it certainly isn’t manageable at scale.

56 CHapTer 4 AnImAtIon workFlow

WHEN CSS MAKES SENSE
It’s important to point out a situation in which you should be using CSS rather than

JavaScript for UI animation: when you’re animating simple style changes triggered by

a user hovering over an element. CSS transitions lend themselves beautifully to these

types of micro-interactions, allowing you to accomplish the task in just a few lines of

very maintainable code.

Working in CSS, you first define a transition on the target element so that changes

in the specified CSS properties animate over a predetermined duration:

/* When this div’s color property is modified, animate its change over

p a duration of 200ms */

div {

 transition: color 200ms:

}

You then specify the value that each particular CSS property should change toward,

per the transition rule. In the case of the hover example, the div’s text color will

change to blue when the user hovers over it:

div:hover {

 color: blue;

}

That’s it. In only a few lines of code, CSS handles interaction state for you: when

the user hovers away from the div, CSS will animate the change from blue back to the

preexisting text color over a duration of 200ms.

WHAT DOES GOOD CODE LOOK LIKE?

Good code is expressive, meaning that its purpose is easy to grasp. This is crucial not
only for coworkers attempting to integrate your foreign code, but also for yourself
in the future, once you’ve forgotten your original approach. Good code is also terse,
meaning that it accomplishes what it needs to in as few lines as possible; every line
serves an important purpose, and it can’t be rewritten away. Lastly, good code is also
maintainable, meaning that its individual parts can be updated without fear of com-
promising the integrity of the whole.

css AnImAtIon workFlow 57

In contrast, coding this same effect in jQuery would entail the following:

$div

 // Register a mouseover event on this div, which calls an animation

 p function

 .on(“mouseover”, function() {

 $(this).animate({ color: “blue” }, 200);

 })

 // When the user hovers off the element, animate the text color back

 p to black

 .on(“mouseout”, function() {

 // Note: We have to remember what the original property value

 p was (black)

 $(this).animate({ color: “black” }, 200);

 });

This might not look so bad, but the code isn’t taking advantage of the fact that

JavaScript provides an infinite amount of logical control. It goes out of its way to do

something that CSS is designed for: triggering logicless animations that occur on the

same element that the user is interacting with. Above, you’re doing in JavaScript what

you could have done in fewer, more expressive, and more maintainable lines of CSS.

Even worse, you’re not getting any additional feature benefits by implementing this

functionality in JavaScript.

In short, if you can easily use CSS transitions to animate an element that’s never

being animated by JavaScript (meaning there’s no potential for conflict), then you

should code that animation in CSS. For all other UI animation tasks—multi-element

and multistep sequences, interactive drag animations, and much more—JavaScript

animation is the superior solution.

Let’s explore the fantastic workflow techniques JavaScript provides.

58 CHapTer 4 AnImAtIon workFlow

CODE TECHNIQUE: SEPARATE STYLING
FROM LOGIC
The first technique has profound workflow benefits, especially for teams.

STANDARD APPROACH

In jQuery animation, it’s common to animate CSS classes onto elements using the UI

add-on plugin (jQueryUI.com). When the module is loaded, jQuery’s addClass() and

removeClass() functions are upgraded with animation support. For example, let’s say

you have a CSS class defined in a stylesheet as follows:

.fadeInAndMove {

 opacity: 1;

 top: 50px;

}

You can then animate the CSS properties of that class (opacity and top in this case)

onto the target element along with a specified duration:

// Animate the properties of the .fadeInAndMove class over a

p 1000ms duration

$element.addClass(“fadeInAndMove”, 1000);

The more common implementation of jQuery animation consists of inlining the

desired animation properties within an $.animate() call, which uses the syntax

demonstrated in Chapter 1, “Advantages of JavaScript Animation”:

$element.animate({ opacity: 1, top: 50 }, 1000);

Both implementations produce the same result. The difference is their separation of

logic: The first implementation delegates the styling rules to a CSS stylesheet, where the

rest of the page’s styling rules reside. The second mixes styling rules with the JavaScript

logic responsible for triggering them.

The first approach is preferable due to the organizational cleanliness and flexibility

gained by knowing where to look to make the appropriate style or logic changes to your

code. CSS stylesheets exist for a reason; seasoned developers do not inline CSS into

their HTML. That would conflate the purposes of HTML (structure) and CSS (styling),

and make a site considerably more difficult to maintain.

code technIQue: sepArAte stylIng From logIc 59

The value of logic separation is further pronounced when working in a team

environment, in which it’s common for developers and designers to bump heads

while trying to edit the same file at the same time.

OPTIMIZED APPROACH
With the review of standard methods out of the way, let’s look at the optimized

approach. It’s just as beneficial—and often the best methodology for JavaScript-centric

animation workflows—to shift animation styling logic into a dedicated JavaScript file

(for example, a style .js) rather than a dedicated CSS stylesheet. Sounds weird, right?

Perhaps, but it works brilliantly. This technique leverages plain old JavaScript objects

to help you organize your animation code.

For example, your style .js file might look like this:

// This object is a parallel to the CSS class defined in the previous

p code example

var fadeIn = {

 opacity: 1,

 top: “50px”

 };

In your script .js, which is the primary JavaScript file that controls animation logic,

you would then have:

// Pass our named properties object into Velocity

$element.velocity(fadeIn, 1000);

To recap, in your style .js, you’ve defined a JavaScript object that’s populated with

the CSS properties you want to animate. This is the same object that’s then passed

into Velocity as a first argument. You’re not doing anything fancy here—just saving

objects to named variables, then passing those variables into Velocity instead of the

raw objects themselves.

NOTE: This technique works equally well with jQuery’s
animate() function.

60 CHapTer 4 AnImAtIon workFlow

a
pain-free
workflow
is
vital.

code technIQue: sepArAte stylIng From logIc 61

The benefit of switching from CSS to JavaScript to segregate logic is that your

style .js file is uniquely capable of defining animation options—not just animation

properties. There are many ways to specify an option: one is to assign two member

properties to a parent animation object to which you assign an expressive name.

The first property on the object defines the animation’s properties; the second

defines its options.

In this case, your style .js file would look like this:

var fadeIn = {

 // p is for “properties”

 p: {

 opacity: 1,

 top: “50px”

 },

 // o is for “options”

 o: {

 duration: 1000,

 easing: “linear”

 }

 };

In the script .js file, you’d have:

// Pass in our clean and re-usable animation objects

$element.velocity(fadeIn.p, fadeIn.o);

Pretty and clean, right? Someone skimming it would understand its purpose,

and would know where to look to modify its properties—the style .js file. Further, the

purpose of this animation is immediately evident: because you’ve named the anima-

tion object appropriately, you know that the code serves to fade an object into view.

You no longer have to mentally parse animation properties to assess the purpose of

the animation.

This approach discourages you from arbitrarily setting options for each individual

animation on a page since there’s now a bank of premade animation objects you

can easily pull from. This results in leaner code and more consistent motion design.

Consistency, as you learned in the previous chapter, is a key component of great UX.

62 CHapTer 4 AnImAtIon workFlow

But the best part is that this approach lends itself perfectly to organizing your

animation variations together. For example, if you typically fade button elements

into view with a duration of 1000ms, but you fade modal windows into view with a

duration of 3000ms, you can simply split your options object into two appropriately

named variations:

var fadeIn = {

 p: {

 opacity: 1,

 top: “50px”

 },

 // Options object variation #1 uses a fast duration

 oFast: {

 duration: 1000,

 easing: “linear”

 },

 // Variation #2 uses a slower duration

 oSlow: {

 duration: 3000,

 easing: “linear”

 }

 };

// Animate using the fast duration.

$button.velocity(fadeIn.p, fadeIn.oFast);

/* Animate using the slow duration. */

$modal.velocity(fadeIn.p, fadeIn.oSlow);

code technIQue: sepArAte stylIng From logIc 63

Alternatively, you could nest “fast” and “slow” objects as children of a singular

o options object. The choice of which implementation to use is based on your

personal preference:

var fadeIn = {

 p: {

 opacity: 1,

 top: “50px”

 },

 o: {

 fast: {

 duration: 1000,

 easing: “linear”

 },

 slow: {

 duration: 3000,

 easing: “linear”

 }

 }

 };

// Animate using the fast duration.

$button.velocity(fadeIn.p, fadeIn.o.fast);

/* Animate using the slow duration. */

$modal.velocity(fadeIn.p, fadeIn.o.slow);

If this seems like too much overhead, and if you have few enough lines of JavaScript

to justify simply inlining all your animation logic, then don’t feel like a bad developer

for skipping this approach altogether. You should always use whichever degree of

abstraction best suits the scope of your project. The takeaway here is simply that

animation workflow best practices do exist if you find yourself needing them.

64 CHapTer 4 AnImAtIon workFlow

CODE TECHNIQUE: ORGANIZE
SEQUENCED ANIMATIONS
Velocity has a small add-on plugin called the UI pack (get it at VelocityJS.org/#uiPack).

It enhances Velocity with features that greatly improve the UI animation workflow.

Many of the techniques in this chapter, including the one discussed below, make

use of it.

To install the UI pack, simply include a <script> tag for it after Velocity and before

the ending </body> tag of your page:

<script src=”velocity.js”></script>

<script src=”velocity.ui.js”></script>

The specific UI pack feature discussed in this section is called sequence running.

It will forever change your animation workflow. It is the solution to messily nested

animation code.

STANDARD APPROACH
Without the UI pack, the standard approach to consecutively animating separate

elements is as follows:

// Animate element1 followed by element2 followed by element3

$element1.velocity({ translateX: 100, opacity: 1 }, 1000, function() {

 $element2.velocity({ translateX: 200, opacity: 1 }, 1000, function() {

 $element3.velocity({ translateX: 300, opacity: 1 }, 1000);

 });

});

Don’t let this simple example fool you: in real-world production code, animation

sequences include many more properties, many more options, and many more levels of

nesting than are demonstrated here. Code like this most commonly appears in loading

sequences (when a page or a subsection first loads in) that consist of multiple elements

animating into place.

code technIQue: orgAnIze seQuenced AnImAtIons 65

Note that the code shown above is different from chaining multiple animations onto

the same element, which is hassle-free and doesn’t require nesting:

// Chain multiple animations onto the same element

$element1

 .velocity({ translateX: 100 })

 .velocity({ translateY: 100 })

 .velocity({ translateZ: 100 });

So what’s wrong with first code sample (the one with different elements)? Here are

the main issues:

 J The code bloats horizontally very quickly with each level of nesting, making it
increasingly difficult to modify the code within your IDE.

 J You can’t easily rearrange the order of calls in the overall sequence (doing so requires
very delicate copying and pasting).

 J You can’t easily indicate that certain calls should run parallel to one another. Let’s
say that halfway through the overall sequence you want two images to slide into
view from different origin points. When coding this in, it wouldn’t be obvious how
to nest animations that occur after this parallel mini-sequence such that the overall
sequence doesn’t become even more difficult to maintain than it already is.

OPTIMIZED APPROACH
Before you learn about the beautiful solution to this ugly problem, it’s important to

understand two simple features of Velocity. First, know that Velocity accepts multiple

argument syntaxes: the most common, when Velocity is invoked on a jQuery element

object (like all the code examples shown so far), consists of a properties object followed

by an options object:

// The argument syntax used thus far

$element.velocity({ opacity: 1, top: “50px” }, { duration: 1000,

p easing: “linear” });

An alternative syntax pairs with Velocity’s utility function, which is the fancy name

given to animating elements using the base Velocity object instead of chaining off of a

jQuery element object. Here’s what animating off the base Velocity object looks like:

// Velocity registers itself on jQuery’s $ object, which you leverage here

$.Velocity({ e: $element, p: { opacity: 1, scale: 1 },

p o: { duration: 1000, easing: “linear” } });

66 CHapTer 4 AnImAtIon workFlow

As shown above, this alternative syntax consists of passing Velocity a single object

that contains member objects that map to each of the standard Velocity arguments

(elements, properties, and options). For the sake of brevity, the member object names are

truncated to the first letter of their associated objects (e for elements, p for properties,

and o for options).

Further, note that you’re now passing the target element in as an argument to Veloc-

ity since you’re no longer invoking Velocity directly on the element. The net effect is

exactly the same as the syntax you used earlier.

As you can see, the new syntax isn’t much bulkier, but it’s equally—if not more—

expressive. Armed with this new syntax, you’re ready to learn how the UI pack’s

sequence-running feature works: you simply create an array of Velocity calls, with each

call defined using the single-object syntax just demonstrated. You then pass the entire

array into a special Velocity function that fires the sequence’s calls successively. When

one Velocity call is completed, the next runs—even if the individual calls are targeting

different elements:

// Create the array of Velocity calls

var loadingSequence = [

 { e: $element1, p: { translateX: 100, opacity: 1 },

 p o: { duration: 1000 } },

 { e: $element2, p: { translateX: 200, opacity: 1 },

 p o: { duration: 1000 } },

 { e: $element3, p: { translateX: 300, opacity: 1 },

 p o: { duration: 1000 } }

];

// Pass the array into $.Velocity.RunSequence to kick off the sequence

$.Velocity.RunSequence(loadingSequence);

The benefits here are clear:

 J You can easily reorder animations in the overall sequence without fear of breaking
nested code.

 J You can quickly eyeball the difference between properties and options objects across
the calls.

 J Your code is highly legible and expressive to others.

code technIQue: orgAnIze seQuenced AnImAtIons 67

If you combine this technique with the previous technique (turning CSS classes into

JavaScript objects), your animation code starts to look remarkably elegant:

$.Velocity.RunSequence([

 { e: $element1, p: { translateX: 100, opacity: 1 }, o: slideIn.o },

 { e: $element2, p: { translateX: 200, opacity: 1 }, o: slideIn.o },

 { e: $element3, p: { translateX: 300, opacity: 1 }, o: slideIn.o }

]);

Expressiveness and maintainability aren’t the only benefits to sequence running:

you also gain the ability to run individual calls in parallel using a special sequenceQueue

option which, when set to false, forces the associated call to run parallel to the call that

came before it. This lets you have multiple elements animate into view simultaneously,

giving a single Velocity sequence the power to intricately control timing that would

normally have to be orchestrated through messy callback nesting. Refer to the inlined

comments below for details:

$.Velocity.RunSequence([

 { elements: $element1, properties: { translateX: 100 },

 p options: { duration: 1000 } },

 // The following call will start at the same time as the first

 p call since it uses the `sequenceQueue: false` option

 { elements: $element2, properties: { translateX: 200 },

 p options: { duration: 1000, sequenceQueue: false },

 // As normal, the call below will run once the second call has completed

 { elements: $element3, properties: { translateX: 300 },

 p options: { duration: 1000 }

];

68 CHapTer 4 AnImAtIon workFlow

CODE TECHNIQUE: PACKAGE YOUR EFFECTS
One of the most common uses of motion design is fading content in and out of view.

This type of animation often consists of a series of individual animation calls that are

chained together to deliver a nuanced, multistage effect.

STANDARD APPROACH
Instead of simply animating the opacity of an element toward 1, you might simultane-

ously animate its scale property so that the element appears to both fade in and grow

into place. Once the element is fully in view, you might choose to animate its border

thickness to 1rem as a finishing touch. If this animation were to happen multiple times

across a page, and on many different elements, it would make sense to avoid code rep-

etition by turning it into a standalone function. Otherwise, you’d have to repeat this

non-expressive code throughout your script .js:

$element

 .velocity({ opacity: 1, scale: 1 }, { duration: 500,

 p easing: “ease-in-out” })

 .velocity({ borderWidth: “1rem” }, { delay: 200,

 p easing: “spring”, duration: 400 });

Unlike the sequencing technique discussed in the previous section, the code above

consists of multiple animations that all occur on the same element. Chained animations

on a singular element constitute an effect. If you were to improve this effect by imple-

menting the first technique in this chapter (turning CSS classes into JavaScript objects),

you’d have to go out of your way to uniquely name each argument object for each stage

in the overall animation. Not only is it possible that these objects wouldn’t be used by

other portions of the animation code due to the uniqueness of this particular sequence,

but you’d have to deal with appending integers to each animation call’s respective

objects to delineate them from one another. This could get messy, and could neutralize

the organizational benefit and brevity of turning CSS classes into JavaScript objects.

Another problem with effects such as the one above is that the code isn’t very self-

descriptive—its purpose isn’t immediately clear. Why are there two animation calls

instead of one? What is the reasoning behind the choice of properties and options for

each of these individual calls? The answers to these questions are irrelevant to the code

that triggers the animation, and should consequently be tucked away.

code technIQue: pAckAge your eFFects 69

OPTIMIZED APPROACH
Velocity’s UI pack lets you register effects that you can subsequently reuse across a

site. Once an effect is registered, you can call it by passing its name into Velocity as

its first parameter:

// Assume we registered our effect under the name “growIn”

$element.velocity(“growIn”);

That’s a lot more expressive, isn’t it? You quickly understand the code’s purpose:

An element will grow into view. The code remains terse and maintainable.

What’s more, a registered effect behaves identically to a standard Velocity call;

you can pass in an options object as normal and chain other Velocity calls onto it:

$element

 // Scroll the element into view

 .velocity(“scroll”)

 // Then trigger the “growIn” effect on it, with the following settings

 .velocity(“growIn”, { duration: 1000, delay: 200 })

If the UI pack is loaded onto your page, an effect such as this is registered using the

following syntax:

$.Velocity.RegisterEffect(name, {

 // Default duration value if one isn’t passed into the call

 defaultDuration: duration,

 // The following Velocity calls occur one after another,

 p with each taking up

 a predefined percentage of the effect’s total duration

 calls: [

 [propertiesObject, durationPercentage, optionsObject] ,

 [propertiesObject, durationPercentage, optionsObject]

],

 reset: resetPropertiesObject

});

70 CHapTer 4 AnImAtIon workFlow

Let’s break down this template step by step:

1. The first argument is the name of the effect. If the effect is responsible for bringing
an element into view (as in, it fades an element’s opacity from 0 to 1), it’s important
to suffix the effect with “In”.

2. The second argument is an object that defines the effect’s behavior. The first prop-
erty in this object is defaultDuration, which lets you specify the duration the full
effect should take if one is not passed into the Velocity call that triggers the effect.

3. The next property in the object is the calls array, which consists of the Velocity calls
that constitute the effect (in the order that they should occur). Each of these array
items is an array itself, which consists of the call’s properties object, followed by the
optional percentage of the total duration which that call should consume (a decimal
value that defaults to 1.00), followed by an optional options object for that specific
call. Note that Velocity calls specified within the calls array accept only the easing
and delay options.

4. Finally, you have the option of passing in a reset object. The reset object is
specified using the same syntax as a standard Velocity properties map object, but it
is used to enact an immediate value change upon completion of the full effect. This
is useful when you’re animating the opacity and scale properties of an element
down to 0 (out of view), but want to return the element’s scale property to 1 after
the element is hidden so that subsequent effects needn’t worry about the properties
beyond opacity they must reset on the element for their calls to properly take effect.
In other words, you can leverage the reset properties map to make effects self-
contained, such that they leave no clean up duties on the target elements.

In addition to the reset object, another powerful workflow bonus of the UI pack’s

effect registration is automatic display property toggling. When an element begins

animating into view, you want to ensure its display value is set to a value other than

“none” so the element is visible throughout the course of its animation. (Remember,

display: none removes an element from the page’s flow.) Conversely, when fading an

element out, you often want to ensure its display value is switched to “none” once its

opacity hits 0. This way, you remove all traces of the element when you’re done using it.

Using jQuery, display toggling is accomplished by chaining the show() and hide()

helper functions onto animations (oftentimes messily buried within nested callbacks).

With Velocity’s UI pack, however, this logic is taken care of automatically when you suf-

fix your effect names with “In” and “Out” as appropriate.

code technIQue: pAckAge your eFFects 71

Let’s register two UI pack effects—one for the “In” direction and one for the “Out”

direction—and call the element “shadowIn” since it consists of fading and scaling an

element into view, then expanding its boxShadow property outward:

$.Velocity

 .RegisterEffect(“shadowIn”, {

 defaultDuration: 1000,

 calls: [

 [{ opacity: 1, scale: 1 }, 0.4] ,

 [{ boxShadowBlur: 50 }, 0.6]

]

 })

 .RegisterEffect(“shadowOut”, {

 defaultDuration: 800,

 calls: [

 // We reverse the order to mirror the “In” direction

 [{ boxShadowBlur: 50 }, 0.2],

 [{ opacity: 0, scale: 0 }, 0.8]

]

 });

If your effect’s name ends with “Out”, Velocity will automatically set the element’s

display property to “none” once the animation is complete. Conversely, if your effect’s

name ends with “In”, Velocity will automatically set the element’s display property

to the default value associated with the element’s tag type (for example, “inline” for

anchors, “block” for div and p). If your effect’s name does not contain one of these

special suffixes, the UI pack will not perform automatic display setting.

Registering effects not only improves your code, but also makes it highly portable

between projects and among fellow developers. When you’ve designed an effect you

love, now it’s painless to share the effect’s registration code with others so they can use

it too. Pretty neat!

72 CHapTer 4 AnImAtIon workFlow

DESIGN TECHNIQUES
The techniques discussed so far in this chapter will improve your workflow during the

coding phase of motion design. The techniques covered in this section focus on the

design phase, where you’re still experimenting to find the perfect animation that fits

your UI. This phase requires a lot of creativity and a lot of repetition, and is accordingly

ripe for workflow improvements.

TIMING MULTIPLIERS
The first design technique is to use a global timing multiplier. This consists of sprin-

kling in a multiplier constant against all of your animations’ delay and duration values.

Start by defining your global timing multiplier (arbitrarily designated as M

for multiplier):

var M = 1;

Then, bake the multiplier into the duration and delay option values within each

animation call:

$element1.animate({ opacity: 1 }, { duration: 1000 * M });

$element2.velocity({ opacity: 1 }, { delay: 250 * M });

Embedding a multiplier constant will help you quickly modify the M constant in one

location (presumably at the top of your style .js) in order to quickly speed up or slow

down all of the animations across your page. Benefits of such timing control include:

 J Slowing down animations to perfect the timing of individual animation calls
within a complex animation sequence. When you’re constantly refreshing your
page in order to tweak a multi-element animation sequence to perfection, seeing
the sequence in slow motion makes it significantly easier to assess how individual
elements interact with one another.

NOTE: if you use SaSS or LeSS, which provide support for variable usage
within stylesheets, this technique applies equally to CSS animations!

desIgn technIQues 73

 J Speeding up animations when you’re performing repetitive UI testing. When you’re
testing a site for purposes other than animation, evaluating the end state of UI ani-
mations (how elements wind up) is more important than testing the animations’
motion. In these situations, it saves time and reduces headaches to speed up all the
animations across your page so you’re not repeatedly waiting for your animations to
play out on each page refresh.

Velocity has a handy implementation of this functionality called mock, which

functions as a behind-the-scenes global multiplier so you don’t have to sprinkle in the

M constant by hand. Like the example shown above, mock multiplies both the duration

and the delay values. To turn mock on, temporarily set $.Velocity.mock to the

multiplier value you want to use:

// Multiply all animation timing by 5

$.Velocity.mock = 5;

// All animations are now time-adjusted

// The duration below effectively becomes 5000ms

$element.velocity({ opacity: 1 }, { duration: 1000 });

Velocity’s mock feature also accepts a Boolean value: setting mock to true sets all

durations and delays to 0ms, which forces all animations to complete within a single

browser timing tick, which occurs every few milliseconds. This is a powerful shortcut

for quickly turning off all animations when they’re getting in the way of your UI

development and testing.

USE VELOCITY MOTION DESIGNER
Velocity Motion Designer (VMD) was crafted with the sole purpose of helping

developers streamline the creation phase of motion design. VMD is a bookmarklet that

you load onto a page in order to design animations in real time. It allows you to double-

click elements to open a modal that lets you specify animation properties and options

for that element. You then hit Enter on your keyboard to watch the animation play out

immediately—without a page refresh.

NOTE: Get Velocity Motion Designer at http://velocityjs.org/#vmd.

74 CHapTer 4 AnImAtIon workFlow

http://velocityjs.org/#vmd

make
motion
design
fun.

desIgn technIQues 75

Once you’ve designed all your element animations exactly the way you want them, you

can export your work into one-for-one Velocity code, which you can place immediately

into an IDE for use in production. (The resulting code is also fully compatible with jQuery.)

Ultimately, VMD saves countless hours of development time by preventing constant

IDE and browser tab switching and repeated UI state retriggering. Further, it streamlines

the designer-to-developer workflow by allowing the two teams to work alongside one

another in real time: with VMD, designers can implement motion design without hav-

ing to familiarize themselves with a site’s JavaScript or CSS. They can simply hand off the

exported Velocity code to the developers to integrate into the codebase at their discretion.

VMD is a highly visual tool—visit VelocityJS.org/#vmd to see the walkthrough video.

76 CHapTer 4 AnImAtIon workFlow

WRAPPING UP
As you implement animation workflow techniques, you’ll notice the intimidating black

box of motion design beginning to unfold. The beautifully intricate loading sequences

found on cutting-edge sites like Stripe.com and Webflow.com will start to make sense

to you. You’ll gain confidence in your ability to code animation sequences, and this

newfound skill will reduce friction in your development routine, making it not only

easier but also significantly more fun to accomplish your motion design goals.

wrAppIng up 77

INDEX

Symbols and Numbers
$.animate() 13

3D

CSS primer on 156

transforms 96

A
Adobe After Effect, animating text

and 80

Adobe Photoshop, SVG and 104

Alerts, leveraging user response 42–43

Android

purchasing older devices from
eBay 144

realities of web performance 118

Animation demo

behaviors 148–149

code section for animation
setup 153–154

code section for circle
animation 160–164

code section for circle creation
154–155

code section for container
animation 156–159

code structure 150–152

overview of 147

review 165

Animation libraries

bypassing jQuery 6

page scrolling functions 7

SVG support 108

types of 14

Animation reversal, performance features of
JavaScript 7–8

Animations. See also Motion design

breaking into steps 48–49

effects on neighboring elements 130

limiting in motion design 45

mirroring 44

older browsers problem 139

older browsers solutions 139–140

optimized coding approach to organizing
sequenced animations 66–68

performance. See Performance

reducing concurrency 43

reducing variety 44

staggering 49

standard coding approach to
organizing sequenced
animations 65–66

of text. See Text animation

workflows. See Workflows

Animations, with SVG

animated logo example 112–113

overview of 109

passing properties 109

positional attributes vs.
transforms 110–111

presentational attributes 110

Arguments, Velocity 16–18

Attributes, SVG markup 105–106

Index 167

B
backgroundColor property, Velocity support

for CSS color properties 31–32

backwards option, benefits in text
animation 92–93

Baselines, load testing and 120

Batching DOM additions

code section for circle creation 155

problem 126–127

solutions 127–128

begin option, Velocity 24

Bézier curves, easing values in Velocity 22

Blast.js

customClass option 85–86

delimiter option 85

generateValueClass option 86–87

how it works 83–84

installing on pages 84–85

preparing text elements using 82–83

reverse option 88–89

tag option 87–88

Blue, Velocity support for CSS color
properties 31–32

body tag, installing Blast and 84

Bold text, tag option in Blast and 88

Boolean values, generateValueClass option
in Blast 86–87

borderColor property, Velocity support for
CSS color properties 31–32

border-radius set property, in behavior of
animation demo 148

Bottlenecks

problem 133

solutions 133–134

Bottom line, performance affecting 117

box-shadow property, CSS

in behavior of animation demo 148

overview of 138

Browsers

animations on older browsers
problem 139

animations on older browsers
solution 139–140

bottlenecks and 133

finding performance threshold early
on 141–143

positional attributes vs. transforms
and 110

realities of web performance 118

support for older versions 4

BrowserStack.com, testing browsers on 142

Buttons, uses of SVG 109

C
Callback functions, begin and complete

options in Velocity 24

Chaining

effects and 69

using Velocity with jQuery and 16

in Velocity 20

character delimiter, Blast.js 82, 85

Chrome, realities of web performance 118

circle element

in behavior of animation demo 148

code section for circle
animation 160–164

code section for circle creation 154–155

code structure for animation
demo 153–154

SVG presentational attributes 106

SVG styling 106

Classes

customClass option in Blast 85–86

generateValueClass option in
Blast 86–87

168 Index

Code/coding techniques

code section for animation
setup 153–154

code section for circle
animation 160–164

code section for circle creation 154–155

code section for container
animation 156–159

code structure for animation
demo 150–152

creating images through code in
SVG 104

optimized approach to organizing
sequenced animations 66–68

optimized approach to packaging
effects 70–72

optimized approach to separating styling
from logic 60–65

standard approach to organizing
sequenced animations 65–66

standard approach to packaging
effects 69

standard approach to separating styling
from logic 59–60

what good code looks like 57

color property, Velocity support for CSS color
properties 31–32

Colors

performance benefits of using opacity
instead of 132

Velocity options 31–32

complete option, Velocity 24

Compression, SVG and 104

Concurrency

problem 133

reducing in motion design 43

solutions 133–134

Consistency, pattern recognition and
understanding and 44

Containers

code section for container
animation 156–159

code structure for animation
demo 153–154

SVG (<svg>) 105

text elements 80

Conventions, in making design choices 41

CSS

3D primer 156

animation effects on neighboring
elements 130–131

appropriate uses of CSS workflow 57–58

benefit of switching to JavaScript for
segregation of logic 62

comparing SVG positional attributes with
CSS transforms 110

comparing Velocity display and
visibility options with 27–29

comparing Velocity properties with CSS
properties 18–19

comparing Velocity values with CSS
values 20

easing values in Velocity 22

fine-grained control of Blast
elements 94

issues with CSS workflow 56–57

JavaScript compared with 4–9

perspective properties 156–157

separating styling from logic 59–60

sneaky images and 138

SVG styling compared with 107

Velocity arguments corresponding to 16

Velocity support for CSS transform
property 32

customClass option, Blast.js 85–86

Index 169

D
Data transfer indicators, preview options in

motion design 41

Debouncing, event handlers 135–136

delay option, Velocity 26

Delay values

staggering durations and 91

timing multipliers and 73

Delimiters, Blast.js 82, 85

Design techniques. See also Motion design

page scrolling in Web design 7

timing multipliers 73–74

VMD (Velocity Motion Designer) 74–76

Device Lab 142

display option, Velocity 27–28

div

in behavior of animation demo 148

Blast.js 82

HTML elements 83

tag option in Blast 88

DOM (Document Object Model)

batching DOM additions for improved
performance 126–128, 155

layout thrashing problem 121–122

layout thrashing solution 122–123

retrieving raw DOM elements 33–34

SVG elements as DOM elements 104

duration option, Velocity 21

Durations

limiting in motion design 45

staggering 91

timing multipliers and 73

E
Easing options, Velocity 21–23

eBay, purchasing older devices from 144

Effects

fade effect in UI pack 91

fanciful effects in text 96

flourishes in text 97–98

optimized coding approach to
packaging 70–72

standard coding approach to
packaging 69

transition.fadeOut effect in UI
pack 92

Elegance aspects, of motion design

breaking animation into steps 48–49

flowing from triggering elements 49

graphics use 50

not being frivolous 47

opacity use 48

overview of 39–40

staggering animations 49

using appropriate personality
features 47–48

Element nodes, HTML 83

Elements

animation effects on neighboring
elements 130–132

circle element. See circle element

fine-grained control of Blast
elements 94

flowing from triggering elements 49

HTML element manipulation 148

image rendering problems 137

image rendering solutions 137–138

JEOs (jQuery element objects) 123–124,
126–128

preparing text elements for animation
using Blast.js 82–83

retrieving raw DOM elements 33–34

span elements 87–88

SVG elements compared with HTML
elements 104

text elements 80

170 Index

eq() function, jQuery 94

Event handlers, debouncing 135–136

Experimentation, benefits of repeatedly
experimenting 51–52

F
Fade effect, in UI pack 91

Familiarity, use of conventions in making
design choices 41

fill, SVG

presentational attributes 105

styling 107

Flags, leveraging user response 42–43

Flourishes, in text 97–98

Flow, creating from triggering elements 49

Force-feeding feature (Velocity),
for avoiding layout thrashing
problem 124–125

Frivolous design, uses and abuses of 47

G
generateValueClass option,

Blast.js 86–87

gets

JEOs as culprit in layout
thrashing 123–124

layout thrashing and 121–122

Global timing multipliers 73–74

Gradients, CSS 138

Graphics

in elegant motion design 50

SVG and 104, 109

Green, Velocity support for CSS color
properties 31–32

GSAP animation library 14

H
Height, SVG presentational attributes 105

Hidden setting, display and visibility
options 28

Hover state animations, uses of CSS
6, 57–58

HTML

coding web pages 80

element manipulation 148

element nodes 83

SVG elements compared with HTML
elements 104

I
Images

creating through code in SVG 104

rendering problems 137

rendering solutions 137–138

sneaky image problems 139

sneaky image solutions 139–140

img element 138

Incentives, visceral nature of interactions
and 43

Infinite looping, in Velocity 25–26

See also Loops

Inkscape 104

Inline status indication, engaging users in
tasks 42

In-progress indicators, preview options in
motion design 41–42

Internet Explorer

animations on older browsers
problem 139

finding performance threshold early
on 141–143

positional attributes vs. transforms
and 110

realities of web performance 118

Index 171

iOS, purchasing older devices from
eBay 144

Irreversible actions, indicators for 43

J
Janks (stutters), layout thrashing and 121

JavaScript vs. CSS

animation reversal feature in
JavaScript 7–8

overview of 4

page scrolling feature in JavaScript 7

performance benefits 6

physics-based motion in JavaScript 8

review 10

workflow maintenance 9

JEOs (jQuery element objects)

batching DOM additions for improved
performance 126–128

as culprit in layout thrashing 123–124

jQuery

easing options 22–23

fine-grained control of Blast
elements 94

installing 15

JavaScript animation libraries that
bypass 6

required by Blast 84–85

slowness of animation features in 4

standard coding approach to separating
styling from logic 59

using Velocity with 16

using Velocity without 33–34

Velocity compared with 13

jQuery element objects. See JEOs (jQuery
element objects)

L
Latency, search engine performance

and 117

Layout thrashing

force-feeding feature in Velocity for
avoiding 124–125

JEOs (jQuery element objects) as
culprit in 123–124

problem 121–122

solutions 122–123

Load testing, realities of web performance
and 120

Logic

optimized coding approach to separating
from styling 59–60

standard coding approach to separating
from styling 59

Logos

animated logo example in SVG 112–113

uses of SVG 109

loop option, Velocity 25–26

Loops

code section for container
animation 159

layout thrashing and 121–122

M
Maintenance, of workflows 9

Markup, SVG 105–106

Max values, code section for animation
setup 154

Min values, code section for animation
setup 154

Mock feature, Velocity 74

Motion design

alerts and flags for leveraging user
response 42–43

172 Index

appropriate personality features 47–48

breaking animation into steps 48–49

conventions in making design
choices 41

engaging users in tasks 42

experimenting repeatedly 51–52

flowing from triggering elements 49

graphics use 50

indicators of severity of irreversible
actions 43

limiting animations 45

limiting durations 45

mirroring animations 44

not being frivolous 47

opacity use 48

overview of 37

previewing outcomes 41

reducing concurrency 43

reducing variety 44

review 53

staggering animations 49

utility and elegance of 39–40

UX (user experience) improved by 38

visceral nature of interactions 43

Mozilla Developer Network, directory of SVG
elements 114

Multi-animation sequences, solutions to
concurrency issues 134

Multipliers, timing multipliers as design
technique 73–74

O
Opacity

animation of 161

flourishes in text 97–98

going beyond overuse of 48

performance benefits of using instead of
color 132

opacity property 161

outlineColor property, Velocity support for
CSS color properties 31–32

P
Page scrolling, performance features of

JavaScript 7

See also scroll command

Performance

animation effects on neighboring elements
problem 130

animation effects on neighboring elements
solution 131–132

animations on older browsers
problem 139

animations on older browsers
solution 139–140

batch DOM additions problem 126–127

batch DOM additions solutions 127–128

bottleneck concurrency problems 133

bottleneck concurrency
solutions 133–134

features of JavaScript 6

finding performance threshold early
on 141–143

force-feeding feature in Velocity for
avoiding layout thrashing 124–125

image rendering problems 137

image rendering solutions 137–138

JEOs (jQuery element objects)
and 123–124

layout thrashing problem 121–122

layout thrashing solution 122–123

overview of 117

realities of web performance 118–120

Index 173

Performance (continued)

review 145

scroll and resize event problems 135

scroll and resize event
solutions 135–136

sneaky image problems 139

sneaky image solutions 139–140

Personality, using appropriate personality
features in motion design 47–48

Perspective properties, CSS 156–157

Physics-based motion, performance features
of JavaScript 8

Pixels, image rendering problems 137

Positional attributes, SVG 110–111

Presentational attributes, SVG 105, 110

Previews, previewing outcomes in motion
design 41

Properties

in behavior of animation demo 148

CSS perspective properties 156–157

CSS shadow properties 138

passing properties in SVG
animations 109

Velocity 18–19

Velocity support for CSS color
properties 31–32

px, as default unit in Velocity 19–20

R
Random numbers, code section for animation

setup 153

Red, Velocity support for CSS color
properties 31–32

resize events

performance problems 135

performance solutions 135–136

reverse command

animation reversal feature in
JavaScript 7–8

code section for circle
animation 163–164

in Velocity 30

reverse option, Blast.js 88–89

RGB (red, green, blue), Velocity support for
CSS color properties 31–32

Rotation, CSS transform property 32

S
Safari, realities of web performance 118

Scalable vector graphics. See SVG (scalable
vector graphics)

Scale, CSS transform property 32

scroll command

overview of 30–31

Velocity page scrolling 7

scroll events

performance problems 135

performance solutions 135–136

Scrolling, page animation and 137

Search engines, latency and 117

sentence delimiter, Blast options 84–85

Sequence running, in UI pack 65

Sequenced animations

optimized coding approach to
organizing 66–68

standard coding approach to
organizing 65–66

sets, layout thrashing and 121–122

setup

code section for animation
setup 153–154

code structure for animation demo 150

Shadow properties, CSS 138

174 Index

Shorthand features, in Velocity 20

Sketch program 104

Smartphones

animations on older browsers and 139

purchasing from eBay 144

realities of web performance 118

Sneaky images, performance
issues 139–140

Span elements

animating text and 80

tag option in Blast 87–88

Spring physics, easing values in Velocity 23

stagger feature, in UI pack 133–134

Staggering

animations 49

solutions to concurrency issues 133–134

solutions to image rendering issues 138

text animation and 91

Status indicators

data transfer indicators 41

loading text and 97

uses of SVG 109

Stutters (janks), layout thrashing and 121

Style sheets, JavaScript vs. CSS 4

See also CSS

Styling

optimized coding approach to separating
from logic 60–65

standard coding approach to separating
from logic 59–60

SVG 107

SVG (scalable vector graphics)

animated logo example 112–113

animating graphic components 50

animations 109

creating images through code 104

going beyond rectangles 111

markup 105–106

overview of 103

passing properties 109

positional attributes vs.
transforms 110–111

presentational attributes 110

review 112–113

styling 107

support for 108

SVG Pocket Guide (Trythall) 114

Syntax

arguments in Velocity 17–18

SVG markup 105–106

T
Tables, HTML elements 83

tag option, Blast.js 87–88

Text animation

customClass option in Blast 85–86

delimiter option in Blast 85

flourishes in text 97–98

generateValueClass option in
Blast 86–87

how Blast.js works 83–84

installing Blast on page 84–85

overview of 79

preparing text elements using
Blast.js 82–83

replacing existing text 90

reverse option in Blast 88–89

review 100

staggering option 91

standard approach to 80

tag option in Blast 87–88

transitioning individual text
parts 94–95

transitioning text out of view 91–93

transitioning text using fanciful
effects 96

Index 175

Text nodes 80

text-shadow property, CSS 138

Thresholds, finding performance threshold
early 141–143

Timing control

delay option 26

JavaScript vs. CSS 4

Timing multipliers, as design
technique 73–74

transform property, Velocity 31–32

Transforms

3D CSS primer 156

3D transforms 96

animation effects on neighboring elements
and 131

comparing SVG positional attributes with
CSS transforms 110–111

transition.fadeOut effect, in UI pack 92

transition.perspectiveDown effect, in UI
pack 96

Transitions

individual text parts 94–95

limiting durations 45

replacing existing text 90

staggering durations 91

text out of view 91–93

text using fanciful effects 96

text visibility 80

Translations

3D CSS primer 156

animation effects on neighboring elements
and 131

animation of 162–163

code section for circle animation 160

CSS transform property 32

mirroring and 44

Triggers, flowing from triggering
elements 49

Trigonometric easings, easing values in
Velocity 22

U
UI (user interface)

conventions in making design
choices 41

motion design improving user
experience 38

UI animation libraries 14

UI animation workflow 65

UI pack

fade effect in 91

getting and installing 65

optimized coding approach to packaging
effects 70–72

stagger feature in 133–134

transition.fadeOut effect 92

transitioning text fancifully 96

Unit types, values in Velocity 19–20

User experience. See UX (user experience)

User interface. See UI (user interface)

Utility aspects, of motion design

alerts and flags for leveraging user
response 42–43

conventions in making design
choices 41

engaging users in tasks 42

indicators of severity of irreversible
actions 43

limiting animations 45

limiting durations 45

mirroring animations 44

overview of 39–40

176 Index

previewing outcomes 41

reducing concurrency 43

reducing variety 44

visceral nature of interactions 43

Utility function, Velocity 66

UX (user experience)

motion design improving 38

performance affecting 117

physics-based motion in JavaScript
enhancing 8

V
Values

code section for animation setup 154

value functions 161

Velocity 19–20

Variety, reducing in motion design 44

Velocity

animation demo. See Animation demo

arguments 16–18

begin and complete options 24

chaining 20

color options 31–32

compared with jQuery 13

containing animation logic within 29

delay option 26

display and visibility options 27–28

downloading and installing 15

duration option 21

easing options 21–23

force-feeding feature for avoiding layout
thrashing 124–125

loop option 25–26

mock feature 74

optimized coding approach to organizing
sequenced animations 66–68

page scrolling functions 7

passing properties in SVG
animations 109

physics-based motion 8

properties 18–19

resource for SVG attributes and styling
properties 114

reverse command 30

review 33–34

scroll command 30–31

transform property 31–32

types of animation libraries 14

UI pack 65

using with jQuery 16

using without jQuery 33–34

values 19–20

Velocity Motion Designer (VMD) 74–76

Video. See also Images

image rendering problems 137

image rendering solutions 137–138

Visibility

replacing existing text 90

transitioning text out of view 91–93

transitioning text visibility 80

visibility option, Velocity 27–28

Visual processing, leveraging primal
instincts in motion design 42–43

VMD (Velocity Motion Designer) 74–76

W
Web design, use of page scrolling in 7

Web performance, realities of 118–120

Width, SVG presentational attributes 105

Index 177

word delimiter, Blast options 85

Workflows

CSS appropriate uses 57–58

CSS issues 56–57

maintainability of 9

optimized coding approach to organizing
sequenced animations 66–68

optimized coding approach to packaging
effects 70–72

optimized coding approach to separating
styling from logic 60–65

overview of 55

review 77

standard coding approach to organizing
sequenced animations 65–66

standard coding approach to packaging
effects 69

standard coding approach to separating
styling from logic 59–60

timing multipliers as design
technique 73–74

VMD (Velocity Motion Designer) 74–76

X
x value, SVG presentational attributes 105

Y
y value, SVG presentational attributes 105

178 Index

	Contents
	Foreword
	Introduction
	Chapter 4 ANIMATION WORKFLOW
	CSS animation workflow
	Issues with CSS
	When CSS makes sense

	Code technique: Separate styling from logic
	Standard approach
	Optimized approach

	Code technique: Organize sequenced animations
	Standard approach
	Optimized approach

	Code technique: Package your effects
	Standard approach
	Optimized approach
	Design techniques
	Timing multipliers
	Use Velocity Motion Designer

	Wrapping up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

