

Web Application Firewall Documentation
for Developers and Testers of Applications

on the Web DMZ

US COURTS NATIONAL WEB DMZ INFRASTUCTURE

Prepared by:

Office of Information Technology

Information Technology Security Office

(OIT-ITSO)

i

Effective Date:

Revisions:
Version 1.0 September 22, 2011 Initial Draft.
Version 1.1 October 20, 2011 Revisions and addition of diagrams
Version 1.2 October 25, 2011 Revisions and addition of diagrams
Version 1.3 December 5, 2011 Revisions
Version 1.4 March 26, 2012 Revisions and updates

ii

Table of Contents
1.0 Audience ... 1

2.0 Scope ... 1

3.0 Introduction .. 1

4.0 Role of Web Application Firewalls .. 2

4.1 Threats that WAFs May Counter... 2

4.2 Web Application Firewall Operation Model ... 3

5.0 Function of the Web Application Firewall in the National Web DMZ Infrastructure 4

5.1 Deployment Architecture ... 5

6.0 Imperva SecureSphere Web Application Firewall .. 7

6.3 SecureSphere Application Behavioral Modeling... 9

6.4 SecureSphere Web Application Profiles ... 9

6.5 SecureSphere Security Policy Types .. 15

6.6 Web Error Page Responses ... 18

6.7 URL Rewrites and URL Redirection ... 19

6.8 Name-based Virtual Hosting ... 19

6.9 Session Tracking .. 20

6.10 Blocking of Attacks .. 20

7.0 Web Profile Creation and Tuning Procedures .. 21

8.0 References .. 24

Appendix A: Predefined Security Policies ... 25

A1: Stream Signature .. 25

A2: HTTP Protocol Validation .. 25

A3: HTTP Protocol Signatures ... 26

A4: Web Service Custom ... 27

A5: Web Service Correlated Validation ... 28

A6: Web Profile Policy ... 28

A7: Security Policy Rule Parameters ... 29

Appendix B: Web Server Configuration .. 30

iii

List of Figures
Figure 1: Example of An Inline Kernel Reverse Proxy Configuration. ... 5

Figure 3: SecureSphere OSI Protection Model. .. 7

Figure 4: SecureSphere Security Engine Operations. ... 8

Figure 6: SecureSphere WAF application Web Profile Format. .. 11

Figure 7: Web Profile Creation and Tuning Process Flow. .. 21

List of Tables
Table 1: WASC Threat Classification of Attacks .. 2

Table 2: WAF Usage Comparison. ... 4

Table 3: Policy Type Descriptions. .. 16

Table 4: Web Profile Policy Rules. ... 18

Table 5: Stream Signature ... 25

Table 6: HTTP Protocol Validation .. 26

Table 7: HTTP Protocol Signatures .. 26

Table 8: Web Service Correlated Validation ... 28

Table 9: Web Profile Policy ... 28

Table 10: Security Policy Rule Parameters .. 29

1

1.0 Audience

This document provides information to application owners, web application testers and web application
developers for applications deployed on the National Web DMZ Infrastructure.

2.0 Scope

This document provides application owners, developers and testers with useful information to facilitate
a better understating of the operations and functionality of the Web Application Firewall (WAF) security
control component of the National Web DMZ Infrastructure; and the Information Technology Security
Office (ITSO) procedures associated with the deployment of web applications to enhance the secure
deployment of Judiciary national applications.

3.0 Introduction

Traditional firewalls (network firewall), while serving an important function, do not address certain
issues as they relate to data security. Network firewalls provide comprehensive network security, and in
some cases basic application awareness, however, they lack the ability to understand or protect the
application or its data.

A Web Application Firewall (WAF) is "an intermediary device, sitting between a web-client and a web
server, analyzing OSI Layer-7 messages for violations in the programmed security policy. A web
application firewall is used as a security device protecting the web server from attack"
(http://www.webappsec.org/glossary.html#WebApplicationFirewall)

WAFs provide protection above and beyond what network firewalls and intrusion detections systems
are capable of.

3

4.2 Web Application Firewall Operation Model

WAFs operate based on either, or a combination, of two operation models namely Positive Security
Model and Negative Security Model.

1. Positive Security Model (PSM)

Enforcing a security model that denies all but the normal and expected Universal Resource Locator
(URL) sequences is known as a “positive" security model or a "whitelist" security model. A positive
security model denies all transactions by default, but uses rules to allow only those transactions that
are known to be valid or safe. While secure, a positive security model can be more difficult to
maintain if the web application changes frequently. In addition, composition of rules that only allow
a white list of acceptable URL sequences can be difficult without a detailed understanding of each
application.

WAF products attempt to reduce the burden of rule development by providing automatic learning
modes where “normal” patterns are statistically learned resulting in the “automatic” production of
rules or what is termed the "web application profile". Such learning modes are good but a deep
understanding of what and how the WAF determines as “normal” is necessary. Application
developers and operations personnel should review the produced rules in detail to determine the
appropriateness of the rules for the application and its suspected vulnerabilities.

2. Negative Security Model (NSM)

In contrast to the positive security model is the "negative" security model or "blacklist" security
model where all known malicious URL requests and payload patterns matching a defined policy set
is denied. The WAF knows what URL requests constitutes an attack and permits all other requests
to go through to the protected web application. In order to determine malicious requests,
signatures which form rule sets are required. Signatures match against known malicious patterns. As
data is passed through negative security policy, it is evaluated against individual signatures. If there
is a match, the data is rejected; otherwise it is allowed to pass through. The negative security policy
does not take into account the functionality of the protected application and denies requests to the
application once that request violates any enabled signature. Other caveats of this approach are
that this model is only as good as the signatures, NSM is highly dependent on signature updates and
is not very accurate. On the other hand, the advantages of NSM are the simple and straightforward
deployment, out-of-the-box protection and non-requirement for customization.

4

5.0 Function of the Web Application Firewall in the National Web DMZ Infrastructure

As a security control on the National Web DMZ Infrastructure, the Imperva WAF serves the following
purposes:

1. Provides defense-in-depth: An approach employed as part of the National Web DMZ Infrastructure
design is to have layers of protection to provide a comprehensive defense system against potential
attacks. The WAF provides protection at the application layer against attacks targeted against
vulnerabilities in the application logic and code.

2. Acts as a compensating control for the lack of visibility into HTTP data encrypted over SSL/TLS: Most
applications on the Web DMZ, due to user authentication and content privacy requirements, require
encrypted logins and sessions. At present, the intrusion detection and prevention mechanisms
deployed on the infrastructure do not decrypt traffic in order to inspect packets. The WAF provides
SSL/TLS termination and decryption which facilitates content inspection performed by the WAF.

3. Acts as a secondary layer of protection for web applications: The primary layer of protection for web
applications is secure code practices. The WAF is not a substitute for developing secure code for
web applications.

4. Provide detection of application abnormalities: broken links, web pages.

The following is a summary of what the WAF provides and does not provide from a usage standpoint:

What the WAF Does What the WAF Does Not Do
1. Model legitimate Web application usage.
2. Alert or block access requests that:

a. Deviate from normal application and data
usage

b. Attempt to exploit known and unknown
vulnerabilities

c. Originate from malicious sources
d. Violate corporate policies
e. Are part of a sophisticated multi-stage attack

3. Update Web defenses with research-driven intelligence
on current threats.

4. Virtually patch application vulnerabilities through
integration with Web application vulnerability
scanners, reducing the window of exposure and impact
of ad-hoc application fixes.

1. Provide anti-virus inspection of
uploaded files or content.

2. Provide web application load
balancing.

3. Perform web server health status
monitoring.

4. Make coffee .

Table 2: WAF Usage Comparison.

5

5.1 Deployment Architecture

The WAF is deployed in an inline kernel reverse proxy as shown in the diagram below.

Figure 1: Example of An Inline Kernel Reverse Proxy Configuration.

Traffic flows as described.

Figure 2: National Web DMZ System Architecture.

6

Implications

As a result of this design, by default, the source IP address seen in host web server logs is always that of
the WAF and not that of the initiating client and as such configuration is required on web servers to log
the IP address of actual clients. Please see Appendix B for details.

7

6.0 Imperva SecureSphere Web Application Firewall

This section will discuss in detail the Imperva SecureSphere WAF and its operation as it relates to
modeling application usage and providing protection.

6.1 SecureSphere OSI Protection

The SecureSphere system's protection operates in layers that approximate to the OSI 7-layer model. The
firewall corresponds to OSI layers 2 thru 4, Protocol Validation and Application Layer Signatures
approximate to OSI layer 7, etc. as shown in the figure below. However, several of SecureSphere's
advanced protection processes (such as Profile Evaluation, Web/DB Correlation, and Correlated Attack
Detection) operate on the behavior of the application and thus represent an effective layer 8 - not
defined in the OSI model.

Figure 3: SecureSphere OSI Protection Model.

8

6.2 SecureSphere Security Engine

Figure 4: SecureSphere Security Engine Operations.

During the time the profile is being created, the application is protected from generic and known attacks
by the SecureSphere ADC content (and user-defined policies) and SecureSphere does not learn behavior
which violates existing policies. For example, SecureSphere does not learn a client request which
includes abnormal HTTP behavior or which SecureSphere identifies as containing a worm.

Figure 5: SecureSphere Security Engine Protection

9

6.3 SecureSphere Application Behavioral Modeling

The Imperva SecureSphere system provides protection against such threats that require a higher level of
protection, at what it calls the application behavioral layer. SecureSphere's Dynamic Profiling technology
automatically examines web application traffic to create a comprehensive profile of their structure and
behavior. Dynamic profiling overcomes the biggest drawback of other application security and
compliance solutions – manual creation and maintenance of audit controls and security policies. Valid
application changes are automatically recognized and incorporated into the profile over time, ensuring
that SecureSphere detects potentially malicious exceptional activity. The automatically generated profile
can be manually tuned and controlled at any time.

SecureSphere begins creating an application’s profile the first time it sees traffic for the application.
Over time, SecureSphere sees more traffic and refines the profile accordingly. Eventually SecureSphere
builds an accurate model of the application and begins to enforce the profile. All of this happens
automatically, though at every stage the profile can be tuned manually to improve its accuracy.

6.4 SecureSphere Web Application Profiles

A Web profile is a model of a Web application, specifying how the application’s URLs and cookies are
normally accessed. The profile is built up over time automatically by SecureSphere as it learns the
application, and then refined by the administrator. Once the learning period is over, SecureSphere starts
protecting the application by identifying profile deviations, that is, HTTP requests which do not conform
to the profile, and taking the action specified in the policy associated with the profile. Profiles represent
the “whitelist” security model, what is allowed, in contrast to SecureSphere Application Defense Center
(ADC) signatures, for example, which represent the “blacklist” model, what is not allowed.

A web application profile is built around URLs and cookies, and SecureSphere begins creating the
application’s profile the first time it sees traffic for the application. A SecureSphere Web Application
profile consists of the following components:

1. URLs List: SecureSphere learns the application URLs based on the traffic to the application,
collecting the following information:

o URLs, their HTTP methods, parameters and their attributes
o cookies
o host names
o login URLs
o correlation information

2. URL Patterns
3. Cookies List
4. Learned Hosts
5. Web Application User Tracking

10

Each application has an associated "web profile" policy, which defines what SecureSphere does when a
profile deviation is detected. In addition to the profile policy, an application can have any number of
other policies associated with it.

6.4.1 Web Profile URL Modes

During the time the profile is being created, the application is protected from generic and known attacks
by the SecureSphere ADC content (and user-defined policies) and SecureSphere does not learn behavior
which violates existing policies. For example, SecureSphere does not learn a client request which
includes abnormal HTTP behavior or which SecureSphere identifies as containing a worm. Each URL can
be in one of the following modes:

• Learning mode: SecureSphere is not enforcing the profile policy for this URL, because it is still
learning how the URL is accessed.

• Protect mode: SecureSphere is enforcing the profile policy.

6.4.2 Protect Mode

For URLs in Protect mode, SecureSphere inspects client requests and server responses, detecting
violations and enforcing the profile policy. The profile can be tuned by modifying the parameters of a
URL in Protect mode. For example, WAF administrators can remove false positives or make updates to
attribute settings on a URL’s parameters. All of a URL’s parameters, except for correlation data, can be
manually modified.

Developers and Testers: For production application instances, all web profile URLs will always be in
protect mode so as to enforce the web profile policy and detect violations. For non-production web
application instances , the web application web profile URLs will be in protect mode only during the web
profile tuning phase. This facilitates the detection of possible false-positives and the tuning of the web
profile.

6.4.3 Learning Mode

The SecureSphere WAF builds web profiles for each defined web application. At first, each web profile
URL is in learning mode, during which time SecureSphere builds a list of its parameters based on client
requests and application/server responses. While in Learning mode, SecureSphere does not enforce the
profile policy for the URL. In addition to URLs which SecureSphere process learns automatically, URLs
can manually be added to the profile. To avoid learning redundant URLs, SecureSphere can be
configured to group URLs based on patterns. The Web Profile policy creates a list of URLs (with and
without parameters). For URLs without parameters it monitors the HTTP Methods and for URLs with
parameters it monitors the HTTP methods along with the parameter arguments and values. The web
profiler stores the names of the arguments with their respective types, minimum and maximum lengths,
and whether they are required and/or read only.

11

In summary, The URL profiles include the following information:

o A list of URLs used by this server group
o HTTP methods used by each URL
o A list of parameters included in each URL
o A set of attributes for each parameter:

o Value type
o Minimum length
o Maximum length
o Whether or not it is required or optional
o Whether or not it is a read-only parameter
o Whether or not it is a parameter prefix

Figure 6: SecureSphere WAF application Web Profile Format.

When web profiling is enabled any detected URL is in learning mode until it is determined that enough
has been learned about the URL and moves the URL is moved to “protect” mode.

12

SecureSphere determines when to move a URL to protect mode based on number of occurrences
and/or elapsed time. A URL can be switched to protect in two ways:

1. SecureSphere learned it well enough and decided that it converged.
2. Enough time has passed for SecureSphere to decide to switch it to protect anyway. This decision

is time triggered, i.e. from time to time we check the existing URL's and move the old ones to
protect.

The default settings for moving URLs to protect (there is a separation between URLs that have
parameters in them and URLs with no parameters) are as follows:

URLs with no parameters will behave as follows:

A. When 3 hours passed since SecureSphere first saw the URL, the number of occurrences will be
checked. If it has at least 50 occurrences it will move to protect.

B. When 72 hours passed since SecureSphere first saw the URL, the number of occurrences will be
checked. If it has at least 7 occurrences it will move to protect.

C. When 96 hours passed since SecureSphere first saw the URL, the number of occurrences will be
checked. If it has less than 10 occurrences it will move to protect.

D. When 240 hours passed since SecureSphere first saw the URL the URL will be moved to protect
no matter how many occurrences it had.

URLs with parameters will behave as follows:

E. When 96 hours passed since SecureSphere first saw the URL, the number of occurrences will be
checked. If it has less than 10 occurrences it will move to protect.

F. When 240 hours passed since SecureSphere first saw the URL, the URL will be moved to protect
no matter how many occurrences it had.

** If a URL with parameters has more than 100,000 occurrences it will move to protect no matter
when SecureSphere first saw it.

The default setting for duration required to switch all URLs to protect mode can be changed from the
management web interface. A URL can be manually moved to protect mode and vice-versa. A URL or
web directory can also be “locked”. This prevents any further learning or manual modification of learned
methods or parameters for that URL, and at the root or sub-directory level, any other new URLs from
being learnt and added to the web profile.

When a URL is moved to protect mode, it begins triggering events for activity seen to a protect-enabled
URL that does not match the built web profile. SecureSphere web application behavior profiling
implements incremental learning. As such even when URLs have been moved to protect mode, the
profile can be updated when a false-positive event occurs by manually clicking on the “Add to profile”
button.

13

Testers: The quality of completeness of the learned web profile is a function of the comprehensiveness of
the data set observed by SecureSphere during learning mode i.e. it should be ensured that:

o All possible URLs and their parameters are hit.
o All possible language character sets are hit.
o All possible character sets for individual parameters are hit.
o All possible minimum and maximum parameter values are hit.

Application functional testers should endeavor to perform tests that are comprehensive. A
comprehensive functional test will include requests to all URLs and all URL parameters within the
application, use the maximum possible parameter length and all possible allowed character values as
supported by the application. Automated functional testing using scripts or testing software is
encouraged as this provides the advantage of manageability as the tested application goes through
version update iterations.

6.4.4 URL Patterns

URL patterns enable you to reduce the number of URLs in the profile when a large number of URLs can
be handled in the same way.

URL patterns describe a group of URLs which SecureSphere does not treat as distinct, different URLs but
rather as repeated instances of the same URL. For example, if a site creates a folder for each of its users
and all these folders contain files with the same name, the administrator can define a prefix or a suffix. A
new URL which matches the pattern is not considered a new URL but another occurrence of the same
URL pattern. All URLs which match the pattern are protected in the same way, for example, they share
the same HTTP methods.

URL patterns are not learned automatically but are defined manually, and they are always in Protect
mode.

Prefix patterns are suitable for folders which contain a large number of files of the same type. For
example, if the folder /public/calculators/ contains many files with the same parameters and the same
behavior, you can define /public/calculators/ as a URL prefix and any file in the directory which matches
the pattern is handled by SecureSphere in the same way.

Suffix patterns are suitable for:

o File types – (for example aspx)
o Specific files – (for example order.asp)
o A file name and part of its path – (for example /public/print.asp matches both

/scripts/public/print.asp and /home/public/print.asp)

14

6.4.5 Dynamic Parameters

Some applications generate dynamic parameters. This has the effect of growing the profile to a very
large size. A parameter prefix that matches all dynamic parameters can be added to the profile to
consolidate the number of parameters and reduce the profile size. It should be noted that SecureSphere
automatically generates parameter prefixes for parameters which start with letters and end with
numbers.

Developers: Application developers should provide details on dynamic parameters.

6.4.6 Web Application User Tracking

This feature enables the identification and classification of successful and failed logins for a web
application. This enables user logon information association with generated events. Web Application
User Tracking (WAUT) learns the Web application’s login URLs as part of the process of building the Web
application profile. When a Web application user successfully authenticates to the application,
SecureSphere associates the Web application user name with an HTTP session and IP address, and tracks
the user throughout the duration of the session. Web Application User Tracking supports both form-
based and certificate-based user authentication. The former, at present, is more predominant for
Judiciary national applications and will be discussed in further detail.

Note: SecureSphere does not authenticate application users, but only tracks successful logins.

6.4.6.1 Form-Based User Authentication

Action URLs are URLs of the forms in which users login to the web application. SecureSphere learns the
action URLs and the rules which determine whether the login was successful, based on what the
application does after the attempted login.

Login Attempts Decision Rules specify the behavior of Action URL, that is, what SecureSphere has
observed happening when the user name field is entered.

The learned Login Result is used as follows:

o If Login Result is Successful, the username is tracked throughout the HTTP session.
o If Login Result is Failed, the username is not tracked through the remainder of the HTTP session.

A policy can be defined to alert on login failures, or on brute force attacks that are characterized by
a large number of login failures in a short period of time. (Such a rule has been created for Brute
Force Login Attempts and is implemented in production and non-production environments).

o If Login Result is Can’t Tell, the username is not tracked through the remainder of the HTTP
session.

The login attempt result is determined by either the response code value or the redirect response
value. For example, an application with a login URL of /login.asp may return a response code of 302

15

and redirect to /home.asp if the login is successful and return a response code 200 if unsuccessful.
In this case the rule for a successful login can be based on the response code value of 302 or the
redirect value of /home.asp, while the rule for a failed login can be based on the response code
value of 200.

Although this behavior is learned, it can happen that not enough information is available for
SecureSphere to correctly model the behavior. For example, if the web application returns a
response code of 200 for both successful and unsuccessful logins, SecureSphere would be unable to
distinguish between the two results. As another example, if the field names of the user name or
other identifying fields were non-standard (typically in the case of a custom application), then
SecureSphere would be unable to know which of the form’s fields represents the user name and so
on.

Developers and Testers: In this case action URLs for the web application need to be created manually
along with login attempts decision rules. For new applications, developers should provide details of
login URLs along with login behavior for both successful and unsuccessful login attempts to facilitate
this process. Application testers should endeavor to perform login authentication tests for failed and
successful login attempts in coordination with ITSO to confirm the functionality and determine the
accuracy of created login rules.

6.5 SecureSphere Security Policy Types

A SecureSphere security policy is a set of definitions that characterize security violations and actions that
SecureSphere must take in response to them. A security policy is a set of rules that are grouped together
based on security feature that they represent. Most of the security policies consist of rules that are
building blocks of that policy. Each rule includes 2 main parts, a description of the violation against
which the rule protects and a definition of the reaction to that violation.

A summary of security policy types is provided in the tables below:

Policy Type Description
Server Group Level Network Policy Types
Firewall Policy Defines the services is used to access the protected servers.
Network Protocol Validation Validates a proper use of the TCP/IP protocol according to the RFC

standard, preventing attacks that are based on TCP/IP protocol
vulnerabilities.

Stream Signature Identifies well known attacks for generic services.
Service Level Web Security Policy Types
HTTP Protocol Validation Validates a proper use of the HTTP protocol according to the RFC

standard.
Web Service Correlated
Validation

Protects against multi-stage web application attacks.

Cookie Signing Validation When SecureSphere operates in the Kernel Reverse Proxy mode,
this policy enables cookie signing and verification.

HTTP Protocol Signatures Protects against known protocol attacks using signatures.

16

Web Service Custom Enables creating user-defined web service level policies based on
various combinations of the match criteria.

Application Level Web Security Policy Types
Web Profile Alerts on and prevents the application user behavior that deviates

from the Application Profile, as defined in SecureSphere.
Web Worm Provides protection for zero day web worms based on Imperva

unique technology.
Web Application Signatures Protects against known application attacks using signatures.
Web Application Custom Enables creating of user-defined web application level policies

based on various combinations of the match criteria.
Table 3: Policy Type Descriptions.

Security policies have four main configuration option settings: Enabled, Severity, Action, and Followed
Action.

Please see Appendix A for details on these security policies and their configured settings.

6.5.1 SecureSphere Web Profile Policy Rules

A Web Profile Policy alerts on and prevents the application user behavior that deviates from the
Application Profile, as defined in SecureSphere. A Profile contains application profile definitions learned
by SecureSphere. By comparing HTTP requests/responses to the profile, SecureSphere can detect
abnormal behavior and prevent malicious activity with pinpoint precision. Each Web application has a
single web profile and profile policy associated with it, which is applied only to the profile URLs and
cookies in the Protect mode.

The table below lists all and with descriptions on their operation:

Policy Rules Descriptions
Cookie Injection SecureSphere learns which cookies should be protected

and which should be ignored. A protected cookie is a
cookie where SecureSphere can always trace the value
that the Web application assigns to it. The value of a
protected cookie must remain fixed and should not be
altered by the user's browser. SecureSphere will trace
and remember all protected cookies assigned by the
Web application to each session. If a browser sends to
the Web application a protected cookie which was not
assigned to it by the Web application, then
SecureSphere invokes the Cookie Injection violation.

Cookie Tampering SecureSphere learns which cookies should be protected
and which should be ignored. A protected cookie is a
cookie where SecureSphere can always trace the value
that the Web application assigns to it. The value of a
protected cookie must remain fixed and should not be
altered by the user's browser. For protected cookies
SecureSphere will trace them and store the values
assigned to them by the Web application during the
entire user session. If a browser sends a protected

17

cookie to the Web application with a different value
than that was assigned by the Web application then
SecureSphere invokes the Cookie Tampering violation.

Non- SOAP Access to a SOAP Only URL When an HTTP request does not include a SOAP
message and the URL was profiled as accessed through
SOAP, SecureSphere invokes this violation.

Parameter Read Only Violation SecureSphere learns which parameters are hidden
parameters or embedded links whose values are set by
the Web server and should not be changed manually by
the user. During Protect Mode, SecureSphere traces the
values that were set by the Web server and if the user
manually altered a value, SecureSphere invokes this
violation. The Parameter Read Only Violation must be
enabled during learn mode in order for SecureSphere
to learn which parameters are read-only.

Parameter Type Violation For each parameter SecureSphere learns the type of
the parameter. For example, SecureSphere can learn
that a certain parameter's values consist only of
numbers. During protect mode, if a certain parameter
value doesn't match the learned types, SecureSphere
invokes this violation.

Parameter Value Length Violation For each parameter SecureSphere learns, using
statistical algorithms, the minimum and maximum
length of the parameter. During Protect Mode,
SecureSphere checks all parameter values against the
learned profile. If the parameter length exceeds the
learned lengths, SecureSphere invokes this violation.

Required Parameter Not Found SecureSphere learns the names of all parameters used
by each URL. For each parameter, SecureSphere learns
whether it's required or not (i.e. must be included or
optional). During Protect Mode, if a required parameter
is missing, SecureSphere invokes this violation.

Required XML Element Not Found For each XML-based URL, SecureSphere learns and
builds a profile of XML elements that have values in
them. For each XML element or attribute, SecureSphere
learns whether it's mandatory or optional). During
Protect mode, if a mandatory XML element or attribute
is missing, SecureSphere invokes this violation.

Reuse of Expired Session's Cookie This violation is invoked if after receiving a new session
identifier the user's browser continues to send
protected cookies and protected cookies' values that
were assigned to an expired session.

SOAP Access to a Non-SOAP URL If an HTTP request includes a SOAP message but the
URL was not profiled as a SOAP-enabled URL,
SecureSphere invokes this violation.

SOAP Element Value Length Violation For each XML-based URL, SecureSphere learns and
builds a profile of XML elements that have values in
them. For each value SecureSphere learns, using
statistical algorithms, the minimum and maximum
length of the value. During Protect mode, SecureSphere
checks all XML values against the learned profile. If the
value length exceeds the learned lengths, SecureSphere

18

invokes this violation.
SOAP Element Value Type Violation For each XML-based URL, SecureSphere learns and

builds a profile of XML elements that have values in
them. For each value SecureSphere learns the type of
the value. For example, SecureSphere can learn that a
certain XML value consists of numbers only. During
Protect mode, if a certain XML value doesn't match the
learned types, SecureSphere invokes this violation.

Unauthorized Method for Known URL SecureSphere builds a profile of all allowed URLs. For
each allowed URL the profile includes the allowed
methods with that URL (e.g. GET, POST, HEAD).
SecureSphere invokes this violation if, during Protect
Mode, a known URL is sent with an unknown method.

Unauthorized SOAP Action SecureSphere learns and builds a profile of all allowed
SOAP actions for each URL. SecureSphere invokes this
violation if the URL is accessed with a SOAP action not
listed in its profile.

Unauthorized URL Access It is possible for the SecureSphere administrator to lock
directories in the Web profile (by right-clicking on a
directory). SecureSphere invokes this violation when
someone tries to access a URL which is not listed in the
profile and is part of a locked directory.

Unknown Parameter SecureSphere learns the names of all parameters used
by each URL. During Protect Mode, SecureSphere
checks that each URL includes only the learned
parameter names. If a URL includes a parameter name
which is not part of the profile, SecureSphere invokes
this violation.

Unknown SOAP Element For each XML-based URL, SecureSphere learns and
builds a profile of XML elements that have values in
them. During Protect mode, SecureSphere checks that
each URL includes only the learned XML value names. If
a URL includes a value name which is not part of the
profile, SecureSphere invokes this violation.

Table 4: Web Profile Policy Rules.

6.6 Web Error Page Responses

6.6.1 Default Error Page

The Default Error Page is a generic error page that is displayed to users when they try to access a
forbidden page (i.e. trigger a policy violation). This provides the ability to display a meaningful error
page and prevent internal server information data leakage. The Default Error Page response can be set
to either of two options: a redirect to a URL page or a custom page with a custom HTTP response code.

o Redirect: The WAF redirects to a specified URL. This could be an error page on the application
web site.

o Page: WAF produces custom error pages. (by default, the error page is shown with an
automatically generated event ID. If there is no event ID, it means that the WAF was not able to
reach the application).

19

A third option, HTTP Response Code, works with either of the above and is used to configure the
response code which is provided to users with the Default Error Page. Response codes must
conform to RFC2616.

6.6.2 Web Error Page Policies

Web Error Page Policies are policies that are used to determine what web error page is displayed as the
result of a specific set of circumstances. Web Error Page policies consist of rules based on a set of
criteria and the Web Error Page to display when these set of circumstances are met.

Web Error Pages (just like the Default Error Page) are displayed to users when they try to access a
forbidden page (i.e. trigger a policy violation) and provide a means to supply a meaningful error page
and prevent data leakage of internal server information. Web error pages can be customized using html
and placeholders, or can alternatively be a redirect which points users to an existing error page. Error
pages need to be small enough to fit into a single packet. Placeholders that can be incorporated into the
error pages include $(SESSION_ID), $(HOST) and $(EVENT_ID).

Web Error Page Policy rules can be configured based on criteria such as source IP address , host name,
response code, policy violation etc. An example of the usefulness of this feature, in the context of
applications on the US Courts Web DMZ, is the ability to present a different error page to users on the
DCN from users on the Internet.

Application Owners: Application owners should provide requirements for web error page responses.

6.7 URL Rewrites and URL Redirection

URL Rewrites provide content modification for URL headers only and not web page content in server
page responses. URL Redirection is used for SSL redirection of client requests from HTTP.

SecureSphere’s URL Rewrite feature can be used in two situations:

o To rewrite host name and/or path in Web traffic URLs and headers. In this case the web client is
unaware that the traffic is being diverted.

o To redirect Web traffic to another server. In this case, response code 302 is sent to the Web
client, which then accesses the new URL in a new request.

The second situation is used for applications that require forcing web clients to use HTTPS when
accessing a URL via HTTP.

Application Owners: Application owners should provide requirements for URL Rewrites and URL
Redirection.

6.8 Name-based Virtual Hosting

The WAF can listen for applications and create profiles based on hostnames and URL paths. Name-based
virtual hosts can be defined at the web application level by restricting monitoring to a defined host

20

header name. Host to web application mapping is defined to map an application host header name to a
web application profile. Rules are then created to forward requests based on the host header name to a
protected web application server.

Application Owners: Application owners should provide requirements for application host names.

6.9 Session Tracking

Session tracking enables SecureSphere to track sessions by using token names. Session identifiers are
pieces of data used to identify a session. SecureSphere uses session identifiers as an alternative to IP
addresses to identify users when monitoring and blocking traffic. They are also used to track session
related violations such as read only parameter, cookie protection, web data base correlation, and more.
It is important the SecureSphere have the correct sessions to ensure that operations is properly
conducted such as profiling of session related elements.

SecureSphere is automatically installed with a list of standard session identifiers for most major
applications. In order to get SecureSphere to properly identify all relevant traffic for web applications
that use custom identifiers, these identifiers need to be added. These custom session identifiers (token
names) need to be added for the WAF to accurately track user sessions.

Developers: Application developers should provide details of custom session identifiers for each
application.

6.10 Blocking of Attacks

The SecureSphere® system supports the following blocking methods: TCP Reset and Inline Blocking. As
the SecureSphere WAF is deployed in inline mode, inline blocking is used to block for violations to
certain policies. Inline blocking means that the gateway will not pass the request to the designated
server (i.e., drops the packet).

21

7.0 Web Profile Creation and Tuning Procedures

A web application profile will be created for each application on the WAF. During the learning phase,
the WAF builds a baseline profile of normal application traffic. During the functional testing phase, the
WAF enforces this positive security model based on the learned profile. False-positives will be detected
and appropriate changes to the WAF application profile and policy will be made before going into
production.

Figure 7: Web Profile Creation and Tuning Process Flow.

22

Procedures

1. Provision of Web Application Documentation: Web application documentation showing character
values and minimum and maximum parameter lengths and application behavior is provided by web
application developers.

2. Web Profile Creation: A new web profile is created for every new application. In the case of a
version update of an existing application, the existing web profile of the previous version of the
application is exported from production and imported for use as starting baseline.

3. Web Profile Building: Web application testers perform functional testing to build profile. During this
step, ITSO moves the application web profile (the application's URLs) into protect learning mode for
the period of testing. The WAF uses the client requests and the application/server responses from
functional tests to build the application profile.

4. Web Profile Tuning: The following steps are performed as part of the web profile tuning process to
eliminate out false-positives and achieve an accurate as possible web profile policy for the
application.

a. A web application profile report is generated and exported by ITSO for review by application
developers after the creation of web profile during functional tests.

b. ITSO makes modifications to the application web profile based on feedback from application
developers after the review of submitted web profile report and on application
documentation.

c. Functional tests are performed again but this time with the web profile in protect mode.
d. False-positive reports are generated and provided to web developers for review.
e. ITSO makes further modifications to the application web profile based on feedback from

application developers after the review of submitted false positive and web profile export
reports.

f. Functional tests are preformed again with the web profile in protect mode.
g. If further changes are made to the application code, application developers are advised to

notify ITSO with change details so that the web profile can be updated manually. Application
developers or testers will need to test this specific functionality for the application once this
changes have been made.

23

Notification List Creation: Developers are included on a notification list for web profile violations related
to their applications. Application owners provide notification mailing list and ITSO adds action to send
web profile violation alerts to notification list.

Access to Alerts: Developers are granted access to the SecureSphere web console to view violation alerts
related to their applications. ITSO creates account.

24

8.0 References

1. The Web Application Security Consortium (webappsec.org)
2. Imperva SecureSphere Administration Guide version 8.5
3. Imperva SecureSphere User Guide version 8.5
4. Imperva Evaluation v0.3 - ITSO
5. WAF Evaluation Requirements - ITSO

25

Appendix A: Predefined Security Policies

Predefined Security Policies on the Imperva SecureSphere with their common configuration settings.

A1: Stream Signature

Policy Rules Enabled Severity Action Followed Action
Recommended Policy for General Applications – Legacy

Recommended for Blocking for General
Applications – Legacy

Yes High Block Syslog

Recommended for Detection for General
Applications - Legacy

Yes Low Block Syslog

Worm and Critical Vulnerabilities for General
Applications

Yes High Block Syslog

Recommended Signatures Policy for General Applications
Recommended for Blocking for General
Applications

Yes High Block Syslog

Recommended for Detection for General
Applications

Yes Low Block Syslog

Worm and Critical Vulnerabilities for General
Applications

Yes High Block Syslog

Table 5: Stream Signature

A2: HTTP Protocol Validation

Policy Rules Enabled Severity Action Followed Action
Web Protocol Policy
Abnormally Long Header Line Yes Low None Syslog
Abnormally Long Request Yes Low Block Syslog
Double URL Encoding Yes Low None Syslog
Extremely Long HTTP Request Yes High Block Syslog
Extremely Long Parameter Yes Low None Syslog
Illegal Byte Code Character in Header Name Yes High Block Syslog
Illegal Byte Code Character in Header Value Yes Medium None Syslog
Illegal Byte Code Character in Method Yes High Block Syslog
Illegal Byte Code Character in Parameter Name Yes High Block Syslog
Illegal Byte Code Character in Parameter Value Yes Medium None Syslog
Illegal Byte Code Character in Query String Yes High Block Syslog
Illegal Byte Code Character in URL Yes High Block Syslog
Illegal Chunk Size Yes Low None Syslog
Illegal Content Length Yes High Block Syslog
Illegal Content Type Yes Low None Syslog
Illegal HTTP Version Yes High Block Syslog
Illegal Host Name Yes High Block Syslog
Illegal Parameter Encoding Yes Low Block Syslog
Illegal Response Code Yes Low None Syslog
Illegal URL Path Encoding Yes Low None Syslog
Malformed HTTP Header Line Yes Low None Syslog
Malformed SOAP Message Yes Medium None Syslog

26

Malformed URL Yes Low None Syslog
NULL Character in Header Name Yes Low None Syslog
NULL Character in Header Value Yes Low None Syslog
NULL Character in Method Yes Low None Syslog
NULL Character in Parameter Name Yes Low Block Syslog
NULL Character in Parameter Value Yes Low None Syslog
NULL Character in Query String Yes Low None Syslog
NULL Character in Url Yes Low None Syslog
Post Request - Missing Content Type No Medium None Syslog
Redundant HTTP Headers Yes Medium None Syslog
Redundant UTF-8 Encoding Yes High Block Syslog
Too Many Cookies in a Request Yes Info None Syslog
Too Many Headers per Request Yes Low None Syslog
Too Many Headers per Response Yes Medium None Syslog
Too Many URL Parameters Yes High Block Syslog
URL is Above Root Directory Yes High Block Syslog
Unauthorized Request Content Type Yes Medium None Syslog
Unknown HTTP Request Method Yes High Block Syslog

Table 6: HTTP Protocol Validation

A3: HTTP Protocol Signatures

Policy Rules Enabled Severity Action Followed Action
Recommended Policy for Web Applications – Legacy

Recommended for Blocking for Web Applications –
Legacy

Yes High Block Syslog

Recommended for Detection for Web Applications
- Legacy

Yes Low Block Syslog

Worm and Critical Vulnerabilities for Web
Applications

Yes High Block Syslog

Recommended Signatures Policy for Web Applications
Fullwidth/Halfwidth Unicode Encoding on URL
Parameter

Yes No Alert None

IIS Code Upload Yes No Alert None
MSSQL Data Retrieval with Implicit Conversion
Errors

Yes No Alert None

Recommended for Blocking for Web Applications Yes High Block Syslog
Recommended for Detection for Web Applications Yes Low Block Syslog
Worm and Critical Vulnerabilities for Web
Applications

Yes High Block Syslog

Table 7: HTTP Protocol Signatures

27

A4: Web Service Custom

Policy Rules Enabled Severity Action Followed Action
Anti Google Hacking Yes High Block Syslog
Apache Expect Header XSS Yes High Block Syslog
Automated Site Reconnaissance/Access Yes High None Syslog
Automated Vulnerability Scanning Yes High None Syslog
CVE-2010-2227-Apache-Tomcat-invalid-TE Yes Medium None Syslog
CVE-2010-3332 ASP Parameter Padding Oracle Brute Force Yes High Block Syslog
CVE-2010-3332 ASP URL Padding Oracle Brute Force Yes High Block Syslog
Cross Site Request Forgery Yes High Block Syslog
Data Leakage - American Express Credit Card Numbers Yes High Block Syslog
Data Leakage - Application Source Code Yes High Block Syslog
Data Leakage - Developer Comments Yes High Block Syslog
Data Leakage - Diner's Club / Carte Blanche Credit Card
Numbers

Yes High Block Syslog

Data Leakage - Discover Credit Card Numbers Yes High Block Syslog
Data Leakage - JCB Credit Card Numbers Yes High Block Syslog
Data Leakage - MasterCard Credit Card Numbers Yes High Block Syslog
Data Leakage - U.S Social Security Number Yes High Block Syslog
Data Leakage - Visa, Long Credit Card Numbers Yes High Block Syslog
Data Leakage - Visa, Short Credit Card Numbers Yes High Block Syslog
Data Leakage - enRoute Credit Card Numbers Yes High Block Syslog
Directory Browsing Detection Yes High Block Syslog
Directory Traversal (In Cookies/Parameters Value) Yes High Block Syslog
Directory Traversal (In URL) Yes High Block Syslog
Directory Traversal (In URL) - Basic Rule Yes Medium None Syslog
File Download Injection Yes High Block Syslog
Fullwidth/Halfwidth Unicode Decoding Yes High Block Syslog
HTTP Response Splitting Vulnerability Yes High Block Syslog
Hazardous HTTP request methods Yes Medium None Syslog
IE Discussion Bar- Access to Internal Information Yes Low None Syslog
ISS Code Upload Yes High Block Syslog
MSSQL Data Retrieval with Conversion Errors Yes High Block Syslog
Malformed HTTP Attack (Non compatible HTTP Results Error
code)

Yes High None Syslog

OS Command Injection Yes High Block Syslog
Plain Vanilla Scanner Detection Yes High Block Syslog
Privacy Violation - Credit Card Number Insertion Yes High Block Syslog
Privacy Violation - Credit Card Number Insertion by Internal
IP Address

Yes High Block Syslog

Privacy Violation - Credit Card Number Insertion by non
Internal IP Address

Yes High Block Syslog

Sensitive Error Messages Leakage Yes High Block Syslog
Suspected parameter tampering - Deprecated Yes High None Syslog
Suspicious Response Code No Medium None Syslog
System32 Access Yes High Block Syslog
ThreatRadar - Anonymous Proxies No High None Syslog
ThreatRadar - Malicious IPs No High None Syslog
ThreatRadar - Phishing URLs No High None Syslog
ThreatRadar - TOR IPs No High None Syslog

28

Unsuccessful Directory Browsing Yes Low None Syslog
WEB MISC Unauthorized File Access Yes High None Syslog
WEB-FRONTPAGE- Access to Internal Information Yes Low None Syslog
WEB-FRONTPAGE- External Access to Internal Information Yes Low None Syslog
WEB-FRONTPAGE-Access to Sensitive Internal Information Yes High Block Syslog
Webdav Method Detection Yes Medium None Syslog
eMail Hoarding Yes High Block Syslog

A5: Web Service Correlated Validation

Policy Rules Enabled Severity Action Followed Action
Web Correlation Policy
Cross-site scripting Yes High Block Syslog
Forceful Browsing Yes Medium None Syslog
SQL Injection Yes High Block Syslog
Session Attribute Changes* Yes Info None Syslog
Too Many of the Same Response Code Yes Low None Syslog

Table 8: Web Service Correlated Validation

*Blocking is not enabled for Session Attribute Changes as this policy has not been evaluated yet.

A6: Web Profile Policy

Policy Rules Enabled Severity Action Followed Action
Cookie Injection Yes Medium None Syslog
Cookie Tampering Yes Medium None Syslog
Non- SOAP Access to a SOAP Only URL Yes Medium None Syslog
Parameter Read Only Violation Yes Info None Syslog

Issue Anomaly For Correlated Parameter
Tampering

Yes Syslog

Issue Anomaly For Requests Without Session No None Syslog
Issue Anomaly For Response Evasion Yes None Syslog

Parameter Type Violation Yes Medium None Syslog
Parameter Value Length Violation Yes Info None Syslog
Required Parameter Not Found Yes Info None Syslog
Required XML Element Not Found Yes Info None Syslog
Reuse of Expired Session's Cookie Yes Info None Syslog
SOAP Access to a Non-SOAP URL Yes Medium None Syslog
SOAP Element Value Length Violation Yes Info None Syslog
SOAP Element Value Type Violation Yes Medium None Syslog
Unauthorized Method for Known URL Yes Info None Syslog
Unauthorized SOAP Action Yes High None Syslog
Unauthorized URL Access Yes High Block Syslog
Unknown Parameter Yes Info Block Syslog
Unknown SOAP Element Yes Info None Syslog

Table 9: Web Profile Policy

29

A7: Security Policy Rule Parameters

Enabled Enables the rule, meaning that this rule participates in protection provided
by the policy.
If Enabled is not selected, the rule is not applied.

Severity Sets the severity of the rules of the selected policies. The following severity
levels can be configured for each rule:
• No Alert: No alert is generated for the violation by this policy.
• Informative: Informative violations are not displayed in the dashboard.
• Low
• Medium
• High
Note: When setting the severity to No Alert, followed actions are removed.

Action The immediate action that is taken when there is a match on the policy rule:
• None: SecureSphere takes no action, and only generates violations and

alerts, reporting about the security event.
• Block: SecureSphere blocks the traffic that caused this violation and

generates violations and alerts, reporting about the security event.
Default: None.

Followed Action The action that is taken by SecureSphere in addition to the action defined by
the Action parameter. The additional action is taken from the pre-configured
list of actions defined in Action Sets. The Followed Action is taken even when
the Action is set to None. Defined action sets include: email, syslog, IP block,
user block, session block etc.
Example: once the violation is blocked, you want SecureSphere to send
email to different people in the organization, notifying them about blocking
of this specific violation.

Display Web Response Page Determines whether or not to include the web response page shown to
users in alerts for the selected policies.
Note: This option is only available with web based policies.

Table 10: Security Policy Rule Parameters

30

Appendix B: Web Server Configuration

The WAF is configured to add the X-Forwarded-For HTTP header field in forwarded requests to the
protected web server. The X-Forwarded-For field contains the originating IP address of the client making
the request. On web servers, X-Forwarded-For configuration for web server logs is required for the web
server to log the actual originating client IP address, rather than that of the WAF.

The following are links to resources that provide details on ways to add the "X-Forwarded-For" field for
web server logs for two common web server products:

Microsoft Internet Information Services (IIS):

o http://blogs.iis.net/anilr/archive/2009/03/03/client-ip-not-logged-on-content-server-when-
using-arr.aspx

o http://www.iis.net/download/ApplicationRequestRouting

Apache:

o http://devcentral.f5.com/weblogs/macvittie/archive/2008/06/02/3323.aspx
o http://httpd.apache.org/docs/2.3/mod/mod_remoteip.html

