
Web Applications With Django

Django is a modern Python web framework that redefined web development in the Python

world. A full-stack approach, pragmatic design, and superb documentation are some of the

reasons for its success. If fast web development using the Python language sounds good to

you, then fast web development using the Python language while being integrated with the

whole Java world (which has a strong presence on the enterprise web space) sounds even

better. Running Django on Jython allows you to do just that. And for the Java world, having

Django as an option to quickly build web applications while still having the chance to use the

existing Java APIs and technologies is very attractive. In this chapter we will start with a quick

introduction to allow you to have Django running with your Jython installation in a few steps.

Then we will build a simple web application so you can get a feeling of the framework. In the

second half of the chapter, we will take a look at the many opportunities of integration between

Django web applications and the JavaEE world.

Getting Django

Strictly speaking, to use Django with Jython you only need to have Django itself, and nothing

more. But, without third-party libraries, you won? be able to connect to any database, because

the built-in Django database backends depend on libraries written in C, which aren? available

on Jython. In practice, you will need at least two packages: Django itself and ?jango-

jython,?which, as you can imagine, is a collection of Django add-ons that can be quite useful if

you happen to be running Django on top of Jython. In particular it includes database backends.

Because the process of getting these two libraries slightly varies depending on your platform,

and because it? a manual, boring task, we will use a utility to automatically grab and install

these libraries. The utility is called setuptools. The catch is that we need to manually install

setuptools, of course, but this is quite straightforward. If you haven? installed setuptools before,

please take a look at Appendix A for more details. After you have setuptools installed, the

easy_install command will be available. Note that if you are on a Windows platform you may

need to type easy_install.py instead of just easy_install. Armed with this, we proceed to install

Django.

$ easy_install Django

Note

Note We?e assuming that the bin directory of the Jython installation is on the front of your

PATH. If it? not, you will have to explicitly type that path preceding each command like jython or

easy_install with that path (so you will need to type something like

/path/to/jython/bin/easy_install instead of just easy_install).

By reading the output of easy_install you can see how it is doing all the tedious work of locating

the right package, downloading, and installing it. See Listing 14-1.

Listing 14-1. Output from Easy_install Command

Searching for Django

Reading http://pypi.python.org/simple/Django/

Reading http://www.djangoproject.com/

Reading http://www.djangoproject.com/download/1.1.1/tarball/

Best match: Django 1.1.1

Downloading http://media.djangoproject.com/releases/1.1.1/Django-1.1.1.tar.gz

Processing Django-1.1.1.tar.gz

Running Django-1.1.1/setup.py -q bdist_egg --dist-dir

/tmp/easy_install-nTnmlU/Django-1.1.1/egg-dist-tmp-L-pq4s

zip_safe flag not set; analyzing archive contents...

Unable to analyze compiled code on this platform.

Please ask the author to include a 'zip_safe' setting (either True or False)

in the package's setup.py

Adding Django 1.1.1 to easy-install.pth file

Installing django-admin.py script to /home/lsoto/jython2.5.0/bin

Installed /home/lsoto/jython2.5.0/Lib/site-packages/Django-1.1.1-py2.5.egg

Processing dependencies for Django==1.1.1

Finished processing dependencies for Django==1.1.1

Then we install django-jython:

$ easy_install django-jython

Again, you will get an output similar to what you?e seen in the previous case. Once this is

finished, you are ready. If you want to look behind the scenes, take a look at the Lib/site-

packages subdirectory inside your Jython installation and you will entries for the libraries we just

installed. Those entries are also listed on the easy-install.pth file, making them part of sys.path

by default. Just to make sure that everything went fine, start jython and try the statements

shown in Listing 14-2, which import the top-level packages of Django and django-jython.

Listing 14-2. Import Django Packages

>>> import django

>>> import doj

If you don? get any error printed out on the screen, then everything is okay. Let? start our first

application.

A Quick Tour of Django

Django is a full-stack framework. That means that its features cover everything from

communication to databases, and from URL processing and to web page templating. As you

may know, there are complete books that cover Django in detail. We aren? going to go into

much detail, but we are going to touch many of the features included in the framework, so you

can get a good feeling of its strengths in case you haven? had the chance to know or try Django

in the past. That way you will know when Django is the right tool for a job.

Note

If you are already familiar with Django, you won? find anything especially new in the rest of this

section. Feel free to jump to the section ?2EE Deployment and Integration?to look at what?

really special if you run Django on Jython.

The only way to take a broad view of such a featureful framework like Django is to build

something really simple, and then gradually augment it as we look into what the framework

offers. So, we will start following roughly what the official Django tutorial uses (a simple site for

polls) to extend it later to touch most of the framework features. In other words: most of the code

you will see in this section comes directly from the great Django tutorial you can find

onhttp://docs.djangoproject.com/en/1.0/intro/tutorial01/. However, we?e extended the code to

show more Django features and adapted the material to fit into this section. Now, as we said on

the previous paragraph, Django handles communications with the database. Right now, the

most solid backend in existence for Django/Jython is the one for PostgreSQL. So we encourage

you to install PostgreSQL on your machine and set up a user and an empty database to use it in

the course of this tour.

Starting a Project (and an ?pp?

Django projects, which are usually meant to be web sites (or ?ub-sites?on a bigger portal) are

composed of a settings file, a URL mappings file, and a set of ?pps?that provide the actual

features of the web site. As you surely have realized, many web sites share a lot of features:

administration interfaces, user authentication/registration, commenting systems, news feeds,

contact forms, and the like. That? why Django decouples the actual site features in the

?pp?concept: apps are meant to be reusable between different projects (sites).

As we will start small, our project will consist of only one app at first. We will call our project

?ollsite.?So, let? create a clean new directory for what we will build in this section, move to that

directory and run:

$ django-admin.py startproject pollsite

And a Python package named ?ollsite?will be created under the directory you created

previously. At this point, the most important change we need to make to the default settings of

our shiny new project is to fill in information enabling Django to talk to the database we created

for this tour. So, open the file pollsite/settings.py with your text editor of choice and change lines

starting with DATABASE with something like Listing 14-3.

Listing 14-3. Django Database Settings

http://docs.djangoproject.com/en/1.0/intro/tutorial01/

DATABASE_ENGINE = 'doj.backends.zxjdbc.postgresql'

DATABASE_NAME = '<the name of the empty database you created>'

DATABASE_USER = '<the name of the user with R/W access to that database>'

DATABASE_PASSWORD = '<the password of that user>'

With this, you are telling Django to use the PostgreSQL driver provided by the doj package

(which, if you remember from the Getting Django section, was the package name of the django-

jython project) and to connect with the given credentials. This backend requires the PostgreSQL

JDBC driver, which you can download at http://jdbc.postgresql.org/download.html.

Once you download the JDBC driver, you need to add it to the Java CLASSPATH. Another way

to do it in Linux/Unix/MacOSX for the current session is:

$ export CLASSPATH=$CLASSPATH:/path/to/postgresql-jdbc.jar

If you are on Windows, the command is different:

$ set CLASSPATH=%CLASSPATH%:\path\to\postgresql-jdbc.jar

After you have done that, you will create the single app which will be the core of our project.

Make sure you are in the pollsite directory and run:

$ jython manage.py startapp polls

This will create the basic structure of a Django app. A Django app is a ?lice?of features of a web

site. For example, Django comes with a comments app that includes all the bits to let you attach

comments to every object of your system. It also has the admin app for providing an

administrative frontend to the web site database. We will cover those two specific apps soon,

but right now the main idea is to know that your Django project (web site) will consist of many

Django apps, one for each major feature. We are starting with the polls app that will handle all

the logic around basic polls of our web site. Note that the polls app was created inside the

project package, so we have the pollsite project and the pollsite.polls app. Now we will see

what? inside a Django app.

Models

In Django, you define your data schema in Python code, using Python classes. This central

schema is used to generate the needed SQL statements to create the database schema, and to

dynamically generate SQL queries when you manipulate objects of these special Python

classes. Now, in Django you don? define the schema of the whole project in a single central

place. Because apps are the real providers of features, it follows that the schema of the whole

project isn? more than the combination of the schemas of each app. By the way, we will switch

to Django terminology now, and instead of talking about data schemas, we will talk about

models (which are actually a bit more than just schemas, but the distinction is not important at

this point). If you look into the pollsite/polls directory, you will see that there is a models.py file,

http://jdbc.postgresql.org/download.html

which is where the app? models must be defined. Listing 14-4 contains the model for simple

polls, each poll containing many choices:

Listing 14-4. Simple Model Code for Polls

from django.db import models

class Poll(models.Model):

 question = models.CharField(max_length=200)

 pub_date = models.DateTimeField('date published')

 def __unicode__(self):

 return self.question

class Choice(models.Model):

 poll = models.ForeignKey(Poll)

 choice = models.CharField(max_length=200)

 votes = models.IntegerField()

 def __unicode__(self):

 return self.choice

As you can see, the map between a class inheriting from models.Model and a database table is

clear, and it? more or less obvious how each Django field would be translated to a SQL field.

Actually, Django fields can carry more information than SQL fields can, as you can see on the

pub_date field, which includes a description more suited for human consumption: ?ate

published.?Django also provides more specialized fields for rather common types seen on today

web applications, like EmailField, URLField, or FileField. They free you from having to write the

same code again and again to deal with concerns such as validation or storage management for

the data these fields will contain. Once the models are defined, we want to create the tables that

will hold the data on the database. First, you will need to add the app to the project settings file

(yes, the fact that the app ?ives?under the project package isn? enough). Edit the file

pollsite/settings.py and add ‘pollsite.polls’ to the INSTALLED_APPS list. It will look like Listing

14-5.

Listing 14-5. Adding a Line to the INSTALLED_APPS List

INSTALLED_APPS = (

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.sites',

 'pollsite.polls',

)

Note

As you see, there were a couple of apps already included in your project. These apps are

included on every Django project by default, providing some of the basic features of the

framework, such as sessions.

After that, we make sure we are located on the project directory and run:

$ jython manage.py syncdb

If the database connection information was correctly specified, Django will create tables and

indexes for our models and for the models of the other apps that were also included by default

on INSTALLED_APPS. One of these extra apps is django.contrib.auth, which handles user

authentication. That? why you will also be asked for the username and password for the initial

admin user for your site. See Listing 14-6.

Listing 14-6. Django Authentication Data

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Creating table auth_message

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table polls_poll

Creating table polls_choice

You just installed Django's auth system, which means you don't have any

superusers defined.

Would you like to create one now? (yes/no):

Answer yes to that question, and provide the requested information, as in Listing 14-7.

Listing 14-7. Replying to Authentication Questions

Username (Leave blank to use u'lsoto'): admin

E-mail address: admin@mailinator.com

Warning: Problem with getpass. Passwords may be echoed.

Password: admin

Warning: Problem with getpass. Passwords may be echoed.

Password (again): admin

Superuser created successfully.

After this, Django will continue mapping your models to RDBMS artifacts, creating some

indexes for your tables. See Listing 14-8.

Listing 14-8. Automatic Index Creation from Django

Installing index for auth.Permission model

Installing index for auth.Message model

Installing index for polls.Choice model

If we want to know what Django is doing behind the scenes, we can ask using the sqlall

management command (which is how the commands recognized by manage.py are called, like

the recently used syncdb). This command requires an app label as argument, and prints the

SQL statements corresponding to the models contained in the app. By the way, the emphasis

on label was intentional, as it corresponds to the last part of the ?ull name?of an app and not to

the full name itself. In our case, the label of ?ollsite.polls?is simply ?olls.?So, we can run:

$ jython manage.py sqlall polls

And we get the output shown in Listing 14-9.

Listing 14-9. Manage.py Output

BEGIN;

CREATE TABLE "polls_poll" (

 "id" serial NOT NULL PRIMARY KEY,

 "question" varchar(200) NOT NULL,

 "pub_date" timestamp with time zone NOT NULL

)

;

CREATE TABLE "polls_choice" (

 "id" serial NOT NULL PRIMARY KEY,

 "poll_id" integer NOT NULL

 REFERENCES "polls_poll" ("id") DEFERRABLE INITIALLY DEFERRED,

 "choice" varchar(200) NOT NULL,

 "votes" integer NOT NULL

)

;

CREATE INDEX "polls_choice_poll_id" ON "polls_choice" ("poll_id");

COMMIT;

Two things to note here: first, each table contains an id field that wasn? explicitly specified in our

model definition. That? automatic, and is a sensible default (which can be overridden if you

really need a different type of primary key, but that? outside the scope of this quick tour).

Second, you can see how the SQL commands are tailored to the particular RDBMS we are

using (PostgreSQL in this case); naturally, it may change if you use a different database

backend.

Let? move on. We have our model defined, and we are ready to store polls. The typical next

step here would be to make a CRUD administrative interface so polls can be created, edited,

removed, and so on. Oh, and of course we may envision some searching and filtering

capabilities for this administrator, knowing in advance that once the number of polls grows too

much, the polls will become really hard to manage.

Well, no. We won? write the administrative interface from scratch. We will use one of the most

useful features of Django: the admin app.

Bonus: The Admin

This is an intermission during our tour through the main architectural points of a Django project

(namely, models, views, and templates), but it is a very nice intermission. The code for the

administrative interface we talked about a couple of paragraphs back will consist on less than

20 lines of code!

First, let? enable the admin app. To do this, edit pollsite/settings.py and add

‘django.contrib.admin’ to the INSTALLED_APPS. Then edit pollsite/urls.py, which looks like

Listing 14-10.

Listing 14-10. The Original Unchanged Urls.py

from django.conf.urls.defaults import *

Uncomment the next two lines to enable the admin:

from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns('',

 # Example:

 # (r'^pollsite/', include('pollsite.foo.urls')),

 # Uncomment the admin/doc line below and add 'django.contrib.admindocs'

 # to INSTALLED_APPS to enable admin documentation:

 # (r'^admin/doc/', include('django.contrib.admindocs.urls')),

 # Uncomment the next line to enable the admin:

 # (r'^admin/(.*)', admin.site.root),

)

And uncomment the lines that enable the admin (but not the admin/doc line!), so the file will look

like Listing 14-11.

Listing 14-11. Enabling the Admin App from Urls.py

from django.conf.urls.defaults import *

Uncomment the next two lines to enable the admin:

from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns('',

 # Example:

 # (r'^pollsite/', include('pollsite.foo.urls')),

 # Uncomment the admin/doc line below and add 'django.contrib.admindocs'

 # to INSTALLED_APPS to enable admin documentation:

 # (r'^admin/doc/', include('django.contrib.admindocs.urls')),

 # Uncomment the next line to enable the admin:

 (r'^admin/(.*)', admin.site.root),

)

Now you can remove all the remaining commented lines, so urls.py ends up with the contents

shown in Listing 14-12.

Listing 14-12. Final State of Urls.py

from django.conf.urls.defaults import *

from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns('',

 (r'^admin/(.*)', admin.site.root),

)

Although we haven? explained this urls.py file yet, we will go into some more depth in the next

section.

Finally, let? create the database artifacts needed by the admin app:

$ jython manage.py syncdb

Now we will see what this admin looks like. Let? run our site in development mode by executing:

$ jython manage.py runserver

Note

The development web server is an easy way to test your web project. It will run indefinitely until

you abort it (for example, hitting Ctrl + C) and it will reload itself when you change a source file

already loaded by the server, thus giving almost instant feedback. But, be advised that using

this development server in production is a really, really bad idea, because it can? handle

multiple simultaneous connections and just has poor performance in general.

Using a web browser, navigate to http://localhost:8000/admin/. You will be presented with a

login screen. Enter the user credentials you created when we first ran syncdb in the previous

section. Once you log in, you will see a page like the one shown in Figure 14-1.

http://localhost:8000/admin/

Figure 14-1. The Django admin

As you can see, the central area of the admin shows two boxes, titled ?uth?and ?ites.?Those

boxes correspond to the ?uth?and ?ites?apps that are built in in Django. The ?uth?box contains

two entries: ?roups?and ?sers,?each corresponding to a model contained in the auth app. If you

click the ?sers?link you will be presented with the typical options to add, modify, and remove

users. This is the kind of interface that the admin app can provide to any other Django app, so

we will add our polls app to it. Doing so is a matter of creating an admin.py file under your app

(that is, pollsite/polls/admin.py). Then we declare to the admin app how we want to present our

models. To administer polls, Listing 14-13 will do the trick.

Listing 14-13. Adding the Polls App to the Admin App

polls admin.py

from pollsite.polls.models import Poll, Choice

from django.contrib import admin

class ChoiceInline(admin.StackedInline):

 model = Choice

 extra = 3

class PollAdmin(admin.ModelAdmin):

 fieldsets = [

 (None, {'fields': ['question']}),

 ('Date information', {'fields': ['pub_date'],

 'classes': ['collapse']}),

]

 inlines = [ChoiceInline]

admin.site.register(Poll, PollAdmin)

This may look like magic to you, but remember that we?e moving quickly, as we want you to

see what? possible with Django. Let? look first at what we get after writing this code. Start the

development server, go to http://localhost:8000/admin/, and see how a new ?olls?box appears

now. If you click the ?dd?link in the ?olls?entry, you will see a page like the one in Figure 14-2.

http://localhost:8000/admin/

Figure 14-2. Adding a poll

Play a bit with the interface: create a couple of polls, remove one, modify the rest. Note that the

user interface is divided into three parts, one for the question, another for the date (initially

hidden) and the last part is dedicated to the choices. The first two were defined by the fieldsets

of the PollAdmin class, which let you define the titles of each section (where None means no

title), the fields contained (they can be more than one, of course), and additional CSS classes

providing behaviors such as ‘collapse’.

It? fairly obvious that we have ?erged?the administration of our two models (Poll and Choice)

into the same user interface, because choices ought to be edited ?nline?with their

corresponding poll. That was done via the ChoiceInline class, which declares what model will be

inlined and how many empty slots will be shown. The inline is hooked into the PollAdmin later

(because you can include many inlines on any ModelAdmin class).

Finally, PollAdmin is registered as the administrative interface for the Poll model using

admin.site.register(). As you can see, everything is absolutely declarative and works like a

charm.

You may be wondering what happened to the search/filter features we talked about a few

paragraphs ago. We will implement those in the poll list interface that you can access when

clicking the ?hange?link for Polls in the main interface (or by clicking the link ?olls,?or after

adding a Poll).

So, add the following lines to the PollAdmin class:

search_fields = ['question']

list_filter = ['pub_date']

And play with the admin again (that? why it was a good idea to create a few polls in the last

step). Figure 14-3 shows the search working, using ?jango?as the search string.

Figure 14-3. Searching on the Django admin

Now, if you try the filter by publishing date, it feels a bit awkward, because the list of polls only

shows the name of the poll, so you can? see the publishing date of the polls being filtered, to

check if the filter worked as advertised. That? easy to fix, by adding the following line to the

PollAdmin class:

list_display = ['question', 'pub_date']

Figure 14-4 shows how the interface looks after all these additions.

Figure 14-4. Filtering and listing more fields on the Django admin

Once again we can see how admin app offers us all these commons features almost for free,

and we only have to say what we want in a purely declarative way. However, in case you have

more special needs, the admin app has hooks that we can use to customize its behavior. It is so

powerful that sometimes it happens that a whole web application can be built based purely on

the admin. See the official docs http://docs.djangoproject.com/en/1.0/ref/contrib/admin/ for more

information.

Views and Templates

Well, now that we know the admin, we won? be able to use a simple CRUD example to

showcase the rest of the main architecture of the web framework. That? okay: CRUD is part of

almost all data driven web applications, but it isn? what makes your site different. So, now that

we have delegated the tedium to the admin app, we will concentrate on polls.

We already have our models in place, so it? time to write our views, which are the HTTP-

oriented functions that will make our app talk to the outside world (which is, after all, the point of

creating a web application).

http://docs.djangoproject.com/en/1.0/ref/contrib/admin/

Note

Django developers half-jokingly say that Django follows the ?TV?pattern: Model, Template, and

View. These three components map directly to what other modern frameworks call Model, View,

and Controller. Django takes this apparently unorthodox naming schema because, strictly

speaking, the controller is the framework itself. What is called ?ontroller?code in other

frameworks is really tied to HTTP and output templates, so they can be considered part of the

view layer. If you don? like this viewpoint, just remember to mentally map Django templates to

?iews?and Django views to ?ontrollers.?

By convention, code for views goes into the app views.py file. Views are simple functions that

take an HTTP request, do some processing, and return an HTTP response. Because an HTTP

response typically involves the construction of an HTML page, templates aid views with the job

of creating HTML output (and other text-based outputs) in a more maintainable way than just by

manually pasting strings together.

The polls app enables very simple navigation. First, the user will be presented with an

?ndex?with access to the list of the latest polls. He will select one and we will show the poll

?etails,?that is, a form with the available choices and a button so he can submit his choice.

Once a choice is made, the user will be directed to a page showing the current results of the poll

he just voted on.

Before writing the code for the views, a good way to start designing a Django app is to design its

URLs. In Django you map URLs to view functions, using regular expressions. Modern web

development takes URLs seriously, and nice URLs (not difficult to read URLs like

?oSomething.do?or ?hisIsNotNice.aspx? are the norm. Instead of patching ugly names with

URL rewriting, Django offers a layer of indirection between the URL which triggers a view and

the internal name you happen to give to such view. Also, as Django has an emphasis on apps

that can be reused across multiple projects, there is a modular way to define URLs so an app

can define the relative URLs for its views, and they can be later included on different projects.

Lets start by modifying the pollsite/urls.py file to the Listing 14-14.

Listing 14-14. Modifying Urls.py to Define Relative URLs for any App View Functions

from django.conf.urls.defaults import *

from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns('',

 (r'^admin/(.*)', admin.site.root),

 (r'^polls/', include('pollsite.polls.urls')),

)

Note how we added the pattern that says: if the URL starts with polls/ continue matching it

following the patterns defined on module pollsite.polls.urls. So let? create the file

pollsite/polls/urls.py (note that it will live inside the app) and put the code shown in Listing 14-15

in it.

Listing 14-15. Matching Alternative URLs from Pollsite/polls/urls.py

from django.conf.urls.defaults import *

urlpatterns = patterns('pollsite.polls.views',

 (r'^$', 'index'),

 (r'^(\d+)/$', 'detail'),

 (r'^(\d+)/vote/$', 'vote'),

 (r'^(\d+)/results/$', 'results'),

)

The first pattern says: if there is nothing else to match (remember that polls/ was already

matched by the previous pattern), use the index view. The other patterns include a placeholder

for numbers, written in the regular expression as d+, and it is captured (using the parenthesis)

so it will be passed as argument to their respective views. The end result is that a URL such as

polls/5/results/ will call the results view passing the string ‘5’ as the second argument (the first

view argument is always the request object). If you want to know more about Django URL

dispatching, seehttp://docs.djangoproject.com/en/1.1/topics/http/urls/.

So, from the URL patterns we just created, it can be seen that we need to write the view

functions named index, detail, vote and results. Listing 14-16 is code for pollsite/polls/views.py.

Listing 14-16. View Functions to Be Used from URL Patterns

from django.shortcuts import get_object_or_404, render_to_response

from django.http import HttpResponseRedirect

from django.core.urlresolvers import reverse

from pollsite.polls.models import Choice, Poll

def index(request):

 latest_poll_list = Poll.objects.all().order_by('-pub_date')[:5]

 return render_to_response('polls/index.html',

 {'latest_poll_list': latest_poll_list})

def detail(request, poll_id):

 poll = get_object_or_404(Poll, pk=poll_id)

 return render_to_response('polls/detail.html', {'poll': poll})

def vote(request, poll_id):

 poll = get_object_or_404(Poll, pk=poll_id)

 try:

 selected_choice = poll.choice_set.get(pk=request.POST['choice'])

 except (KeyError, Choice.DoesNotExist):

 # Redisplay the poll voting form.

 return render_to_response('polls/detail.html', {

 'poll': poll,

http://docs.djangoproject.com/en/1.1/topics/http/urls/

 'error_message': "You didn't select a choice.",

 })

 else:

 selected_choice.votes += 1

 selected_choice.save()

 # Always return an HttpResponseRedirect after successfully dealing

 # with POST data. This prevents data from being posted twice if a

 # user hits the Back button.

 return HttpResponseRedirect(

 reverse('pollsite.polls.views.results', args=(poll.id,)))

def results(request, poll_id):

 poll = get_object_or_404(Poll, pk=poll_id)

 return render_to_response('polls/results.html', {'poll': poll})

We know this was a bit fast, but remember that we are taking a quick tour. The important thing

here is to grasp the high-level concepts. Each function defined in this file is a view. You can

identify the functions because they are defined inside the views.py file. You can also identify

them because they receive a request as a first argument.

So, we defined the views named index, details, vote, and results that are going to be called

when a URL matches the patterns defined previously. With the exception of vote, they are

straightforward, and follow the same pattern: they search some data (using the Django ORM

and helper functions such as get_object_or_404 which, even if you aren? familiar with them, it?

easy to intuitively imagine what they do), and then end up calling render_to_response, passing

the path of a template and a dictionary with the data passed to the template.

Note

The three trivial views described here represent cases so common in web development that

Django provides an abstraction to implement them with even less code. The abstraction is

called ?eneric Views,?and you can learn about them

on http://docs.djangoproject.com/en/1.1/ref/generic-views/, as well as in the Django tutorial

at http://docs.djangoproject.com/en/1.1/intro/tutorial04/#use-generic-views-less-code-is-better.

The vote view is a bit more involved, and it ought to be, because it is the one doing interesting

things, namely, registering a vote. It has two paths: one for the exceptional case, in which the

user has not selected any choice, and one in which the user did select one. See how in the first

case the view ends up rendering the same template which is rendered by the detail view:

polls/detail.html; but we pass an extra variable to the template to display the error message so

the user can know why he is still viewing the same page. In case the user selected a choice, we

increment the votes and redirect the user to the results view.

We could have archived the redirection by just calling the view (something like return

results(request, poll.id)) but, as the comments say, it is good practice to do an actual HTTP

redirect after POST submissions to avoid problems with the browser back button (or the refresh

http://docs.djangoproject.com/en/1.1/ref/generic-views/
http://docs.djangoproject.com/en/1.1/intro/tutorial04/#use-generic-views-less-code-is-better

button). Because the view code doesn? know to what URLs they are mapped (as this left to

chance when you reuse the app), the reverse function gives you the URL for a given view and

parameters.

Before taking a look at templates, we should quickly make a mental note about them. The

Django template language is pretty simple and intentionally not as powerful as a programming

language. You can? execute arbitrary Python code, nor call any function. It is designed this way

to keep templates simple and web-designer-friendly. The main features of the template

language are expressions, delimited by double braces ({{ and }}), and directives (called

?emplate tags?, delimited by braces and the percent character ({% and %}). Expressions can

contain dots that work for accessing Python attributes and also dictionary items (so you write {{

foo.bar }} even if in Python you would write foo[‘bar’]), and also pipes (|) to apply filters to the

expressions (like, for example, cut a paragraph on the first five words: {{

comment.text|truncatewords:5 }}). And that? pretty much it. You see how obvious they are on

the following templates, but we?l give a bit of explanation when introducing some non obvious

template tags.

Now it? time to see the templates for our views. You can infer by reading the views code we just

wrote that we need three templates: polls/index.html, polls/detail.html, and polls/results.html. We

will create the templates subdirectory inside the polls app, and then create the templates under

it. Listing 14-17 shows is the content of pollsite/polls/templates/polls/index.html/.

Listing 14-17. Index File for Polls App Containing Template

{% if latest_poll_list %}

 {% for poll in latest_poll_list %}

 {{ poll.question }}

 {% endfor %}

{% else %}

<p>No polls are available.</p>

{% endif %}

Pretty simple, as you can see. Let? move to pollsite/polls/templates/polls/detail.html (Listing 14-

18).

Listing 14-18. The Poll Template

<h1>{{ poll.question }}</h1>

{% if error_message %}<p>{{ error_message }}</p>{% endif %}

<form action="./vote/" method="post">

{% for choice in poll.choice_set.all %}

 <input type="radio" name="choice" id="choice{{ forloop.counter }}"

value="{ { choice.id }}" />

 <label for="choice{{ forloop.counter }}">{{ choice.choice }}</label>

{% endfor %}

<input type="submit" value="Vote" />

</form>

One perhaps surprising construct in this template is the {{ forloop.counter }} expression, which

simply exposes the internal counter to the surrounding {% for %} loop.

Also note that the {% if %} template tag will evaluate an expression that is not defined to false,

as will be the case with error_message when this template is called from the detail view.

Finally, Listing 14-19 is pollsite/polls/templates/polls/results.html.

Listing 14-19. The Results Template Code

<h1>{{ poll.question }}</h1>

{% for choice in poll.choice_set.all %}

 {{ choice.choice }} -- {{ choice.votes }}

 vote{{ choice.votes|pluralize }}

{% endfor %}

In this template you can see the use of a filter in the expression {{ choice.votes|pluralize }}. It will

output an ??if the number of votes is greater than 1, and nothing otherwise. To learn more

about the template tags and filters available by default in Django,

seehttp://docs.djangoproject.com/en/1.1/ref/templates/builtins/. And to find out how to create

new filters and template tags, seehttp://docs.djangoproject.com/en/1.1/ref/templates/api/.

At this point we have a fully working poll site. It? not pretty, and can use a lot of polishing. But it

works! Try it by navigating to http://localhost:8000/polls/.

Reusing Templates Without ‘’include’‘: Template Inheritance

Like many other template languages, Django also has an ?nclude?directive. But its use is very

rare, because there is a better solution for reusing templates: inheritance.

It works just like class inheritance. You define a base template, with many ?locks.?Each block

has a name. Then other templates can inherit from the base template and override or extend

the blocks. You are free to build inheritance chains of any length you want, just like with class

hierarchies.

You may have noted that our templates weren? producing valid HTML, but only fragments. It

was convenient, to focus on the important parts of the templates, of course. But it also happens

http://docs.djangoproject.com/en/1.1/ref/templates/builtins/
http://docs.djangoproject.com/en/1.1/ref/templates/api/
http://localhost:8000/polls/

that with very minor modifications they will generate complete, pretty HTML pages. As you have

probably guessed by now, they will extend from a site-wide base template.

Because we?e not exactly good with web design, we will take a ready-made template

from http://www.freecsstemplates.org/. In particular, we will modify this

template: http://www.freecsstemplates.org/preview/exposure/.

Note that the base template is going to be site-wide, so it belongs to the project, not to an app.

We will create a templates subdirectory under the project directory. Listing 14-20 is the content

for pollsite/templates/base.html.

Listing 14-20. The Site-wide Template

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/ xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

 <title>Polls</title>

 <link rel="alternate" type="application/rss+xml"

 title="RSS Feed" href="/feeds/polls/" />

 <style>

 /* Irrelevant CSS code, see book sources if you are interested */

 </style>

 </head>

 <body>

 <!-- start header -->

 <div id="header">

 <div id="logo">

 <h1>Polls</h1>

 <p>an example for the Jython book</p>

 </div>

 <div id="menu">

 Home

 Contact Us

 Admin

 </div>

 </div>

<!-- end header -->

<!-- start page -->

 <div id="page">

 <!-- start content -->

 <div id="content">

 {% block content %} {% endblock %}

 </div>

<!-- end content -->

 <br style="clear: both;" />

 </div>

<!-- end page -->

<!-- start footer -->

 <div id="footer">

http://www.freecsstemplates.org/
http://www.freecsstemplates.org/preview/exposure/

 <p> Subscribe to RSS Feed </p>

 <p class="legal">

 ©2009 Apress. All Rights Reserved.

 •

 Design by

 Free CSS Templates

 •

 Icons by FAMFAMFAM. </p>

 </div>

<!-- end footer -->

 </body>

</html>

As you can see, the template declares only one block, named ?ontent?(near the end of the

template before the footer). You can define as many blocks as you want, but to keep things

simple we will do only one.

Now, to let Django find this template we need to tweak the settings. Edit pollsite/settings.py and

locate the TEMPLATE_DIRS section. Replace it with the Listing 14-21.

Listing 14-21. Editing Setting.py

import os

TEMPLATE_DIRS = (

 os.path.dirname(__file__) + '/templates',

 # Put strings here, like "/home/html/django_templates" or

 # "C:/www/django/templates".

 # Always use forward slashes, even on Windows.

 # Don't forget to use absolute paths, not relative paths.

)

That? a trick to avoid hardcoding the project root directory. The trick may not work in all

situations, but it will work for us. Now that we have the base.html template in place, we will

inherit from it in pollsite/polls/templates/polls/index.html. See Listing 14-22.

Listing 14-22. Inheriting from Base.html

{% extends 'base.html' %}

{% block content %}

{% if latest_poll_list %}

 {% for poll in latest_poll_list %}

 {{ poll.question }}

 {% endfor %}

{% else %}

<p>No polls are available.</p>

{% endif %}

{% endblock %}

As you can see, the changes are limited to the addition of the two first lines and the last one.

The practical implication is that the template is overriding the ?ontent?block and inheriting all the

rest. Do the same with the other two templates of the poll app and test the application again,

visitinghttp://localhost:8000/polls/. It will look as shown on Figure 14-5.

Figure 14-5. The poll site after applying a template

At this point we could consider our sample web application to be complete. But we want to

highlight some other features included in Django that can help you to develop your web apps

(just like the admin). To showcase them we will add the following features to our site:

1.A contact form (note that the link is already included in our common base template)

2.A RSS feed for the latest polls (also note the link was already added on the footer)

3.User Comments on polls

Forms

Django features some help to deal with HTML forms, which are always a bit tiresome. We will

use this help to implement the ?ontact us?feature. Because it sounds like a common feature

that could be reused on in the future, we will create a new app for it. Move to the project

directory and run:

$ jython manage.py startapp contactus

http://localhost:8000/polls/

Remember to add an entry for this app on pollsite/settings.py under the INSTALLED_APPS list

as ‘pollsite.contactus’.

Then we will delegate URL matching the /contact/ pattern to the app, by modifying

pollsite/urls.py and adding one line for it (see Listing 14-23).

Listing 14-23. Modifying Urls.py Again

from django.conf.urls.defaults import *

from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns('',

 (r'^admin/(.*)', admin.site.root),

 (r'^polls/', include('pollsite.polls.urls')),

 (r'^contact/', include('pollsite.contactus.urls')),

)

We now create pollsite/contactus/urls.py. For simplicity? sake we will use only one view to

display and process the form. So the file pollsite/contactus/urls.py will simply consist of Listing

14-24.

Listing 14-24. Creating a Short Urls.py

from django.conf.urls.defaults import *

urlpatterns = patterns('pollsite.contactus.views',

 (r'^$', 'index'),

)

And the content of pollsite/contactus/views.py is shown in Listing 14-25.

Listing 14-25. Adding to Views.py

from django.shortcuts import render_to_response

from django.core.mail import mail_admins

from django import forms

class ContactForm(forms.Form):

 name = forms.CharField(max_length=200)

 email = forms.EmailField()

 title = forms.CharField(max_length=200)

 text = forms.CharField(widget=forms.Textarea)

def index(request):

 if request.method == 'POST':

 form = ContactForm(request.POST)

 if form.is_valid():

 mail_admins(

 "Contact Form: %s" % form.title,

 "%s <%s> Said: %s" % (form.name, form.email, form.text))

 return render_to_response("contactus/success.html")

 else:

 form = ContactForm()

 return render_to_response("contactus/form.html", {'form': form})

The important bit here is the ContactForm class in which the form is declaratively defined and

which encapsulates the validation logic. We just call the is_valid() method on our view to invoke

that logic and act accordingly. See http://docs.djangoproject.com/en/1.1/topics/email/#mail-

admins to learn about the main_admins function included on Django and how to adjust the

project settings to make it work.

Forms also provide quick ways to render them in templates. We will try that now. Listing 14-26

is the code for pollsite/contactus/templates/contactus/form.html, which is the template used

inside the view we just wrote.

Listing 14-26. A Form Rendered in a Template

{% extends "base.html" %}

{% block content %}

<form action="." method="POST">

<table>

{{ form.as_table }}

</table>

<input type="submit" value="Send Message" >

</form>

{% endblock %}

Here we take advantage of the as_table() method of Django forms, which also takes care of

rendering validation errors. Django forms also provide other convenience functions to render

forms, but if none of them suits your need, you can always render the form in custom ways.

Seehttp://docs.djangoproject.com/en/1.1/topics/forms/ for details on form handling.

Before testing this contact form, we need to write the template

pollsite/contactus/templates/contactus/success.html, which is also used from

pollsite.contactus.views.index. This template is quite simple (see Listing 14-27).

Listing 14-27. Contact Form Template

{% extends "base.html" %}

{% block content %}

<h1> Send us a message </h1>

<p>Message received, thanks for your feedback!</p>

{% endblock %}

http://docs.djangoproject.com/en/1.1/topics/email/#mail-admins
http://docs.djangoproject.com/en/1.1/topics/email/#mail-admins
http://docs.djangoproject.com/en/1.1/topics/forms/

And we are done. Test it by navigation to http://localhost:8000/contact/. Try submitting the form

without data, or with erroneous data (for example with an invalid email address). You will get

something like what? shown in Figure 14-6. Without needing to write much code you get a lot of

validation data basically for free. Of course the forms framework is extensible, so you can create

custom form field types with their own validation or rendering code. Again, we refer you

to http://docs.djangoproject.com/en/1.1/topics/forms/ for detailed information.

Figure 14-6. Django form validation in action

Feeds

It? time to implement the feed we are offering on the link right before the footer. It surely won?

surprise you to know that Django includes ways to state your feeds declaratively and write them

very quickly. Let? start by modifying pollsite/urls.py to leave it as shown in Listing 14-28.

Listing 14-28. Modifying Urls.py

from django.conf.urls.defaults import *

from pollsite.polls.feeds import PollFeed

from django.contrib import admin

admin.autodiscover()

http://localhost:8000/contact/
http://docs.djangoproject.com/en/1.1/topics/forms/

urlpatterns = patterns('',

 (r'^admin/(.*)', admin.site.root),

 (r'^polls/', include('pollsite.polls.urls')),

 (r'^contact/', include('pollsite.contactus.urls')),

 (r'^feeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed',

 {'feed_dict': {'polls': PollFeed}}),

)

We are changing the import of the PollFeed class (which we haven? written yet) and we also

need to change the last pattern for URLs starting with /feeds/, because it will map to a built-in

view, which takes a dictionary with feeds as arguments. In our case, PollFeed is the only one.

Writing this class, which will describe the feed, is very easy. Let? create the file

pollsite/polls/feeds.py and put the following code on it. See Listing 14-29.

Listing 14-29. Creating Feeds.py

from django.contrib.syndication.feeds import Feed

from django.core.urlresolvers import reverse

from pollsite.polls.models import Poll

class PollFeed(Feed):

 title = "Polls"

 link = "/polls"

 description = "Latest Polls"

 def items(self):

 return Poll.objects.all().order_by('-pub_date')

 def item_link(self, poll):

 return reverse('pollsite.polls.views.detail', args=(poll.id,))

 def item_pubdate(self, poll):

 return poll.pub_date

And we are almost ready. When a request for the URL /feeds/polls/ is received by Django, it will

use this feed description to build all the XML data. The missing part is how the content of polls

will be displayed in the feeds. To do this, we need to create another template. By convention, it

has to be named feeds/<feed_name>_description.html, where <feed_name> is what we

specified as the key on the feed_dict in pollsite/urls.py. Thus we create the file

pollsite/polls/templates/feeds/polls_description.html with the very simple content shown in

Listing 14-30.

Listing 14-30. Polls Display Description

 {% for choice in obj.choice_set.all %}

 {{ choice.choice }}

 {% endfor %}

The idea is simple: Django passes each object returned by PollFeed.items() to this template, in

which it takes the name obj. You then generate an HTML fragment which will be embedded on

the feed result.

And that? all. Test it by pointing your browser to http://localhost:8000/feeds/polls/, or by

subscribing to that URL with your preferred feed reader. Opera, for example, displays the feed

as shown by Figure 14-7.

Figure 14-7. Poll feed in opera browser

http://localhost:8000/feeds/polls/

Comments

Because comments are a common feature of current web sites, Django includes a mini-

framework to make the incorporation of comments in any project or app fairly simple. We will

show you how to use it in our project. First, add a new URL pattern for the Django comments

app, so the pollsite/urls.py file will look like Listing 14-31.

Listing 14-31. Adding a New URL Pattern to Urls.py

from django.conf.urls.defaults import *

from pollsite.polls.feeds import PollFeed

from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns('',

 (r'^admin/(.*)', admin.site.root),

 (r'^polls/', include('pollsite.polls.urls')),

 (r'^contact/', include('pollsite.contactus.urls')),

 (r'^feeds/(?P<url>.*)/$', 'django.contrib.syndication.views.feed',

 {'feed_dict': {'polls': PollFeed}}),

 (r'^comments/', include('django.contrib.comments.urls')),

)

Then add ‘django.contrib.comments’ to the INSTALLED_APPS on pollsite/settings.py. After

that, we will let Django create the necessary tables by running:

$ jython manage.py syncdb

The comments will be added to the poll page, so we must edit

pollsite/polls/templates/polls/detail.html. We will add the following code just before the {%

endblock %} line, which currently is the last line of the file (see Listing 14-32).

Listing 14-32. Adding Comments to Details.html

{% load comments %}

{% get_comment_list for poll as comments %}

{% get_comment_count for poll as comments_count %}

{% if comments %}

<p>{{ comments_count }} comments:</p>

{% for comment in comments %}

<div class="comment">

 <div class="title">

 <p><small>

 Posted by {{ comment.user_name }},

 {{ comment.submit_date|timesince }} ago:

 </small></p>

 </div>

 <div class="entry">

 <p>

 {{ comment.comment }}

 </p>

 </div>

</div>

{% endfor %}

{% else %}

<p>No comments yet.</p>

{% endif %}

<h2>Left your comment:</h2>

{% render_comment_form for poll %}

Basically, we are importing the ?omments?template tag library (by doing {% load comments %})

and then we just use it. It supports binding comments to any database object, so we don? need

to do anything special to make it work. Figure 14-8 shows what we get in exchange for that

short snippet of code.

Figure 14-8. Comments powered poll

If you try the application by yourself you will note that after submitting a comment you get an

ugly page showing the success message. Or if you don? enter all the data, you get an ugly error

form. That? because we are using the comments templates. A quick and effective fix for that is

creating the file pollsite/templates/comments/base.html with the following content:

{% extends 'base.html' %}

Yeah, it? only one line! It shows the power of template inheritance: all we needed to do was to

change the base template of the comments framework to inherit from our global base template.

And More...

At this point we hope you have learned to appreciate Django? strengths. It? a very good web

framework in itself, but it also takes the ?atteries included?philosophy, and comes with solutions

for many common problems in web development. This usually speeds up a lot the process of

creating a new web site. And we didn? touch other features Django provides out of the box like

user authentication or generic views.

But this book is about Jython, and we will use the rest of this chapter to show the interesting

possibilities that appear when you run Django on Jython. If you want to learn more about

Django itself, we recommend (again) the excellent official documentation available

on http://docs.djangoproject.com/.

J2EE Deployment and Integration

Although you could deploy your application using Django? built in development server, it? a

terrible idea. The development server isn? designed to operate under heavy load and this is

really a job that is more suited to a proper application server. We?e going to install Glassfish

v2.1?n opensource highly performant JavaEE 5 application server from Sun Microsystems?nd

show deployment onto it.

Let? install Glassfish now; obtain the release from:

https://glassfish.dev.java.net/public/downloadsindex.html

At the time of this writing, Glassfish v3.0 is being prepared for release and it will support Django

and Jython out of the box, but we?l stick to the stable release as its documentation is complete

and its stability has been well established. Download the v2.1 release (currently v2.1-b60e). We

strongly suggest you use JDK6 to do your deployment. Once you have the installation JAR file,

you can install it by issuing:

% java -Xmx256m -jar glassfish-installer-v2.1-b60e-windows.jar

If your glassfish installer file has a different name, just use that instead of the filename listed in

the above example. Be careful where you invoke this command though?lassfish will unpack the

application server into a subdirectory ?lassfish?in the directory that you start the installer. One

http://docs.djangoproject.com/

step that tripped us up during our impatient installation of Glassfish is that you actually need to

invoke ant to complete the installation. On Unix and its derivatives you need to invoke:

% chmod -R +x lib/ant/bin

% lib/ant/bin/ant -f setup.xml

or for Windows:

% lib\ant\bin\ant -f setup.xml

This will complete the setup .You?l find a bin directory with ?sadmin?or ?sadmin.bat,?which will

indicate that the application server has been installed. You can start the server up by invoking:

% bin/asadmin start-domain -v

On Windows, this will start the server in the foreground. The process will not turn into daemon

and run in the background. On Unix operating systems, the process will automatically become a

daemon and run in the background. In either case, once the server is up and running, you will

be able to reach the web administration screen through a browser by going

to http://localhost:5000/. The default login is ?dmin?and the password is ?dminadmin.?

Currently, Django on Jython only supports the PostgreSQL, Oracle, and MySQL databases

officially, but there is also a SQLite3 backend. Let? get the PostgreSQL backend working?ou

will need to obtain the PostgreSQL JDBC driver from http://jdbc.postgresql.org.

At the time of this writing, the latest version was in postgresql-8.4-701.jdbc4.jar. Copy that jar

file into your GLASSFISH_HOME/domains/domain/domain1/lib directory. This will enable all

your applications hosted in your appserver to use the same JDBC driver.

You should now have a GLASSFISH_HOME/domains/domain1/lib directory with the contents

shown in Listing 14-33.

Listing 14-33. Lib Directory Contents

applibs/

classes/

databases/

ext/

postgresql-8.3-604.jdbc4.jar

You will need to stop and start the application server to let those libraries load up.

% bin/asadmin stop-domain

% bin/asadmin start-domain -v

http://localhost:5000/
http://jdbc.postgresql.org/

Deploying Your First Application

Django on Jython includes a built-in command to support the creation of WAR files, but first, you

will need to do a little bit of configuration to make everything run smoothly. First we?l set up a

simple Django application that has the administration application enabled so that we have some

models to play with. Create a project called ?ello?and make sure you add

?jango.contrib.admin?and ?oj?applications to the INSTALLED_APPS.

Now enable the user admin by editing urls.py and uncomment the admin lines. Your urls.py

should now look something like Listing 14-34.

Listing 14-34. Enabling User Admin in Urls.py

from django.conf.urls.defaults import *

from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns('',

 (r'^admin/(.*)', admin.site.root),

)

Disabling PostgreSQL Logins

The first thing we inevitably do on a development machine with PostgreSQL is disable

authentication checks to the database. The fastest way to do this is to enable only local

connections to the database by editing the pg_hba.conf file. For PostgreSQL 8.3, this file is

typically located in c:PostgreSQL8.3datapg_hba.conf and on UNIXes it is typically located in

/etc/PostgreSQL/8.3/data/pg_hba.conf

At the bottom of the file, you?l find connection configuration information. Comment out all the

lines and enable trusted connections from localhost. Your edited configuration should look

something like Listing 14-35.

Listing 14-35. PostgreSQL Authentication Configuration

TYPE DATABASE USER CIDR-ADDRESS METHOD

host all all 127.0.0.1/32 trust

This will let any username recognized by PostgreSQL connect to the database. You may need

to create a PostgreSQL user with the ?reateuser?command. Consult your PostgreSQL

documentation for more details. You do not want to do this for a public facing production server.

You should consult the PostgreSQL documentation for instructions for more suitable settings.

After you?e edited the connection configuration, you will need to restart the PostgreSQL server.

Create your PostgreSQL database using the createdb command now.

> createdb demodb

Setting up the database is straightforward; you just enable the pgsql backend from Django on

Jython. Note that the backend will expect a username and password pair even though we?e

disabled them in PostgreSQL. You can populate anything you want for the DATABASE_NAME

and DATABASE_USER settings. The database section of your settings module should now look

something like Listing 14-36.

Listing 14-36. Database Section of Settings Module for PostgreSQL

DATABASE_ENGINE = 'doj.backends.zxjdbc.postgresql'

DATABASE_NAME = 'demodb'

DATABASE_USER = 'ngvictor'

DATABASE_PASSWORD = 'nosecrets'

Initialize your database now.

> jython manage.py syncdb

Creating table django_admin_log

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Creating table auth_message

Creating table django_content_type

Creating table django_session

Creating table django_site

You just installed Django's auth system, which means you don't have any

superusers defined.

Would you like to create one now? (yes/no): yes

Username: admin

E-mail address: admin@abc.com

Warning: Problem with getpass. Passwords may be echoed.

Password: admin

Warning: Problem with getpass. Passwords may be echoed.

Password (again): admin

Superuser created successfully.

Installing index for admin.

LogEntry model

Installing index for auth.Permission model

Installing index for auth.Message model

All of this should be review so far, now we?e going to take the application and deploy it into the

running Glassfish server. This is actually the easy part. Django on Jython comes with a custom

?ar?command that builds a self-contained file, which you can use to deploy into any Java

servlet container.

A Note About WAR Files

For JavaEE servers, a common way to deploy your applications is to deploy a ?AR?file. This is

just a fancy name for a zip file that contains your application and any dependencies it requires

that the application server has not made available as a shared resource. This is a robust way of

making sure that you minimize the impact of versioning changes of libraries if you want to

deploy multiple applications in your app server.

Consider your Django applications over time. You will undoubtedly upgrade your version of

Django, and you may upgrade the version of your database drivers. You may even decide to

upgrade the version of the Jython language you wish to deploy on. These choices are ultimately

up to you if you bundle all your dependencies in your WAR file. By bundling up all your

dependencies into your WAR file, you can ensure that your app will ?ust work?when you go to

deploy it. The server will automatically partition each application into its own space with

concurrently running versions of the same code.

To enable the war command, add the ?oj?application to your settings in the INSTALLED_APPS

list. Next, you will need to enable your site? media directory and a context relative root for your

media. Edit your settings.py module so that that your media files are properly configured to be

served. The war command will automatically configure your media files so that they are served

using a static file servlet and the URLs will be remapped to be after the context root.

Edit your settings module and configure the MEDIA_ROOT and MEDIA_URL lines.

MEDIA_ROOT = 'c:\dev\hello\media_root' MEDIA_URL = '/site_media/'

Now you will need to create the media_root subdirectory under your ?ello?project and drop in a

sample file so you can verify that static content serving is working. Place a file ?ample.html?into

your media_root directory. Put whatever contents you want into it: we?e just using this to ensure

that static files are properly served.

In English, that means when the previous configuration is used, ?ello?will deployed into your

servlet container and the container will assign some URL path to be the ?ontext root?in

Glassfish? case. This means your app will live in ?ttp://localhost:8000/hello/? The site_media

directory will be visible at ?ttp://localhost:8000/hello/site_media? DOJ will automatically set the

static content to be served by Glassfish? fileservlet, which is already highly performant. There is

no need to setup a separate static file server for most deployments.

Build your WAR file now using the standard manage.py script, and deploy using the asadmin

tool. See Listing 14-37.

Listing 14-37. Deploying a WAR File on Windows

c:\dev\hello>jython manage.py war

Assembling WAR on c:\docume~1\ngvictor\locals~1\temp\tmp1-_snn\hello

Copying WAR skeleton...

Copying jython.jar...

Copying Lib...

Copying django...

Copying media...

Copying hello...

Copying site_media...

Copying doj...

Building WAR on C:\dev\hello.war...

Cleaning c:\docume~1\ngvictor\locals~1\temp\tmp1-_snn...

Finished.

Now you can copy C:\dev\hello.war to whatever location your application

server wants it.

C:\dev\hello>cd \glassfish

C:\glassfish>bin\asadmin.bat deploy hello.war

Command deploy executed successfully.

C:\glassfish>

That? it. You should now be able to see your application running on:

http://localhost:8080/hello/

The administration screen should also be visible at:

http://localhost:8080/hello/admin/

You can verify that your static media is being served correctly by going to:

http://localhost:8080/hello/site_media/sample.html

That? it. Your basic deployment to a servlet container is now working.

Extended Installation

The war command in doj provides extra options for you to specify extra JAR files to include with

your application, and which can bring down the size of your WAR file. By default, the

?ar?command will bundle the following items:

*Jython

*Django and its administration media files

http://www.jython.org/jythonbook/en/1.0/JythonDjango.html#id1
http://www.jython.org/jythonbook/en/1.0/JythonDjango.html#id3

*your project and media files

*all of your libraries in site-packages

You can specialize your WAR file to include specific JAR files and you can instruct doj to

assemble a WAR file with just the python packages that you require. The options for ?anage.py

war?are ?-include-py-packages?and ?-include-jar-libs.?The basic usage is straightforward:

simply pass in the location of your custom python packages and the JAR files to these two

arguments and distutils will automatically decompress the contents of those compressed

volumes and then recompress them into your WAR file.

To bundle up JAR files, you will need to specify a list of files to ?-include-java-libs.? The

following example bundles the jTDS JAR file and a regular python module called urllib3 with our

WAR file.:

$ jython manage.py war --include-java-libs=$HOME/downloads/jtds-1.2.2.jar \

 --include-py-package=$HOME/PYTHON_ENV/lib/python2.5/site-

packages/urllib3

You can have multiple JAR files or Python packages listed, but you must delimit them with your

operating system? path separator. For Unix systems, this means ??and for Windows it is ??

Eggs can also be installed using ?-include-py-path-entries?using the egg filename. For example

$ jython manage.py war --include-py-path-

entries=$HOME/PYTHON_ENV/lib/python2.5/site-packages/urllib3

Connection Pooling With JavaEE

Whenever your web application goes to fetch data from the database, the data has to come

back over a database connection. Some databases, such as MySQL, have ?heap?database

connections, but for many databases creating and releasing connections is quite expensive.

Under high-load conditions, opening and closing database connections on every request can

quickly consume too many file handles, and your application will crash. The general solution to

this is to employ database connection pooling. While your application will continue to create new

connections and close them off, a connection pool will manage your database connections from

a reusable set. When you go to close your connection, the connection pool will simply reclaim

your connection for use at a later time. Using a pool means you can put an enforced upper limit

restriction on the number of concurrent connections to the database. Having that upper limit

means you can reason about how your application will perform when the upper limit of database

connections is hit. Although Django does not natively support database connection pools with

CPython, you can enable them in the PostgreSQL driver for Django on Jython. Creating a

connection pool that is visible to Django/Jython is a two-step process in Glassfish. First, we?l

need to create a JDBC connection pool, and then we?l need to bind a JNDI name to that pool.

In a JavaEE container, JNDI, the Java Naming and Directory Interface, is a registry of names

http://www.jython.org/jythonbook/en/1.0/JythonDjango.html#id5
http://www.jython.org/jythonbook/en/1.0/JythonDjango.html#id7

bound to objects. It? really best thought of as a hashtable that typically abstracts a factory that

emits objects. In the case of database connections, JNDI abstracts a ConnectionFactory, which

provides proxy objects that behave like database connections. These proxies automatically

manage all the pooling behavior for us. Let? see this in practice now. First we?l need to create a

JDBC ConnectionFactory. Go to the administration screen of Glassfish and go down to

Resources/JDBC/JDBC Resources/Connection Pools. From there you can click on the

?ew?button and start to configure your pool. Set the name to ?gpool-demo? the resource type

should be ?avax.sql.ConnectionPoolDataSource?and the Database Vendor should be

PostgreSQL. Your completed form should resemble that which is shown in Figure 14-9. Click

?ext.?

Figure 14-9. Adding a Glassfish JDBC Connection Pool

Later, you?l see a section with ?dditional Properties.?You?l need to set four parameters to

make sure the connection is working, assuming that the database is configured for a

username/password of ngvictor/nosecrets. Table 14-1 shows what you need to connect to your

database.

Table 14-1. Database Connection Pool Properties

Name Value

databaseName demodb

serverName localhost

password nosecrets

user ngvictor

You can safely delete all the other properties?hey?e not needed. After your properties resemble

those shown in Figure 14-10, click ?inish.?

Figure 14-10. Connection Pool Properties in Glassfish Admin Console

Your pool will now be visible on the left-hand tree control in the Connection Pools list. Select it

and try pinging it to make sure it? working. If all is well, Glassfish will show you a successful

Ping message as seen in Figure 14-11.

Figure 14-11. Successful Connection Pool Test

We now need to bind a JNDI name to the connection factory to provide a mechanism for Jython

to see the pool. Go to the JDBC Resources and click ?ew.?Use the JNDI name: ?dbc/pgpool-

demo,?and select the ?gpool-demo?as your pool name. Your form should now resemble that

shown in Figure 14-12, and you can now hit ?K.?

Figure 14-12. Adding a New JDBC Resource in Glassfish Admin Console

Verify from the command line that the resource is available. See Listing 14-38.

Listing 14-38. Verifying Connection Pools

glassfish\bin $ asadmin list-jndi-entries --context jdbc

Jndi Entries for server within jdbc context:

pgpool-demo__pm: javax.naming.Reference

__TimerPool: javax.naming.Reference

__TimerPool__pm: javax.naming.Reference

pgpool-demo: javax.naming.Reference

Command list-jndi-entries executed successfully.

Now, we need to enable the Django application to use the JNDI name based lookup if we are

running in an application server, and fail back to regular database connection binding if JNDI

can? be found. Edit your settings.py module and add an extra configuration to enable JNDI. See

Listing 14-39.

Listing 14-39. Enabling JNDI in Settings.py

DATABASE_ENGINE = 'doj.backends.zxjdbc.postgresql'

DATABASE_NAME = 'demodb'

DATABASE_USER = 'ngvictor'

DATABASE_PASSWORD = 'nosecrets'

DATABASE_OPTIONS = {'RAW_CONNECTION_FALLBACK': True, \

 'JNDI_NAME': 'jdbc/pgpool-demo' }

Note that we?e duplicating the configuration to connect to the database. This is because we

want to be able to fall back to regular connection binding in the event that JNDI lookups fail.

This makes our life easier when we?e running in a testing or development environment.

That? it, you?e finished configuring database connection pooling. That wasn? that bad now,

was it?

Dealing With Long-running Tasks

When you?e building a complex web application, you will inevitably end up having to deal with

processes that need to be processed in the background. If you?e building on top of CPython

and Apache, you?e out of luck here?here? no standard infrastructure available for you to handle

these tasks. Luckily these services have had years of engineering work already done for you in

the Java world. We?l take a look at two different strategies for dealing with long running tasks.

Thread Pools

The first strategy is to leverage managed thread pools in the JavaEE container. When your web

application is running within Glassfish, each HTTP request is processed by the HTTP Service,

which contains a threadpool. You can change the number of threads to affect the performance

of the webserver. Glassfish will also let you create your own threadpools to execute arbitrary

work units for you.

The basic API for threadpools is simple:

 WorkManager, which provides an abstracted interface to the thread pool.

 Work is an interface, which encapsulates your unit of work.

 WorkListener, which is an interface that lets you monitor the progress of your Work

tasks.

First, we need to tell Glassfish to provision a threadpool for our use. In the Administration

screen, go down to Configuration/Thread Pools. Click on ?ew?to create a new thread pool. Give

your threadpool the name ?ackend-workers.?Leave all the other settings as the default values

and click ?K.? You?e now got a thread pool that you can use. The threadpool exposes an

interface where you can submit jobs to the pool and the pool will either execute the job

synchronously within a thread, or you can schedule the job to run asynchronously. As long as

your unit of work implements the javax.resource.spi.work.Work interface, the threadpool will

happily run your code. A WorkUnit class may be as simple as Listing 14-40.

Listing 14-40. Implementing a WorkUnit Class

from javax.resource.spi.work import Work

class WorkUnit(Work):

 """

 This is an implementation of the Work interface.

 """

 def __init__(self, job_id):

 self.job_id = job_id

 def release(self):

 """

 This method is invoked by the threadpool to tell threads

 to abort the execution of a unit of work.

 """

 logger.warn("[%d] Glassfish asked the job to stop quickly" %

self.job_id)

 def run(self):

 """

 This method is invoked by the threadpool when work is

 'running'

 """

 for i in range(20):

 logger.info("[%d] just doing some work" % self.job_id)

This WorkUnit class doesn? do anything very interesting, but it does illustrate the basic structure

of what unit of work requires. We?e just logging message to disk so that we can visually see the

thread execute.

WorkManager implements several methods that can run your job and block until the threadpool

completes your work, or it can run the job asynchronously. Generally, we prefer to run things

asynchronously and simply check the status of the work over time. This lets me submit multiple

jobs to the threadpool at once and check the status of each of the jobs.

To monitor the progress of work, we need to implement the WorkListener interface. This

interface gives us notifications as a task progresses through the three phases of execution

within the thread pool. Those states are:

 Accepted

 Started

 Completed

All jobs must go to either Completed or Rejected states. The simplest thing to do then is to

simply build up lists capturing the events. When the length of the completed and the rejected

lists together are the same as the number of jobs we submitted, we know that we are done. By

using lists instead of simple counters, we can inspect the work objects in much more detail.

Listing 14-41 shows the code for our SimpleWorkListener.

Listing 14-41. Writing SimpleWorkListener Code

from javax.resource.spi.work import WorkListener

class SimpleWorkListener(WorkListener):

 """

 Just keep track of all work events as they come in

 """

 def __init__(self):

 self.accepted = []

 self.completed = []

 self.rejected = []

 self.started = []

 def workAccepted(self, work_event):

 self.accepted.append(work_event.getWork())

 logger.info("Work accepted %s" % str(work_event.getWork()))

 def workCompleted(self, work_event):

 self.completed.append(work_event.getWork())

 logger.info("Work completed %s" % str(work_event.getWork()))

 def workRejected(self, work_event):

 self.rejected.append(work_event.getWork())

 logger.info("Work rejected %s" % str(work_event.getWork()))

 def workStarted(self, work_event):

 self.started.append(work_event.getWork())

 logger.info("Work started %s" % str(work_event.getWork()))

To access the threadpool, you simply need to know the name of the pool we want to access and

schedule our jobs. Each time we schedule a unit of work, we need to tell the pool how long to

wait until we timeout the job. We also need to provide a reference to the WorkListener object so

that we can monitor the status of the jobs.

The code to do this is shown in Listing 14-42.

Listing 14-42. Dealing with the Threadpool

from com.sun.enterprise.connectors.work import CommonWorkManager

from javax.resource.spi.work import Work, WorkManager, WorkListener

wm = CommonWorkManager('backend-workers')

listener = SimpleWorkListener()

for i in range(5):

 work = WorkUnit(i)

 wm.scheduleWork(work, -1, None, listener)

You may notice that the scheduleWork method takes in a None constant in the third argument.

This is the execution context?or our purposes, it? best to just ignore it and set it to None. The

scheduleWork method will return immediately and the listener will get callback notifications as

our work objects pass through. To verify that all our jobs have completed (or rejected), we

simply need to check the listener? internal lists. See Listing 14-43.

Listing 14-43. Checking the Listener? Internal Lists

while len(listener.completed) + len(listener.rejected) < num_jobs:

 logger.info("Found %d jobs completed" % len(listener.completed))

 time.sleep(0.1)

That covers all the code you need to access thread pools and monitor the status of each unit of

work. Ignoring the actual WorkUnit class, the actual code to manage the threadpool is about a

dozen lines long.

Note

Unfortunately, this API is not standard in the JavaEE 5 specification yet so the code listed here

will only work in Glassfish. The API for parallel processing is being standardized for JavaEE 6,

and until then you will need to know a little bit of the internals of your particular application

server to get threadpools working. If you?e working with Weblogic or Websphere, you will need

to use the CommonJ APIs to access the threadpools, but the logic is largely the same.

Passing Messages Across Process Boundaries

While threadpools provide access to background job processing, sometimes it may be beneficial

to have messages pass across process boundaries. Every week there seems to be a new

Python package that tries to solve this problem, for Jython we are lucky enough to leverage

Java? JMS. JMS specifies a message brokering technology where you may define

publish/subscribe or point to point delivery of messages between different services. Messages

are asynchronously sent to provide loose coupling and the broker deals with all manner of

boring engineering details like delivery guarantees, security, durability of messages between

server crashes and clustering.

Although you could use a hand rolled RESTful messaging implementation, using OpenMQ and

JMS has many advantages.

 It? mature. Do you really think your messaging implementation handles all the corner

cases? Server crashes? Network connectivity errors? Reliability guarantees?

Clustering? Security? OpenMQ has almost 10 years of engineering behind it.

 The JMS standard is just that: standard. You gain the ability to send and receive

messages between any JavaEE code.

 Interoperability. JMS isn? the only messaging broker in town. The Streaming Text

Orientated Messaging Protocol (STOMP) is another standard that is popular amongst

non-Java developers. You can turn a JMS broker into a STOMP broker using

stompconnect. This means you can effectively pass messages between any messaging

client and any messaging broker using any of a dozen different languages.

In JMS there are two types of message delivery mechanisms:

 Publish/Subscribe: This is for the times when we want to message one or more

subscribers about events currently occurring. This is done through JMS ?opics.?* Point

to point messaging: These are single sender, single receiver message queues.

Appropriately, JMS calls these ?ueues.?

We need to provision a couple of objects in Glassfish to get JMS going. In a nutshell, we need

to create a connection factory which clients will use to connect to the JMS broker. We?l create a

publish/subscribe resource and a point to point messaging queue. In JMS terms, these are

called ?estinations? They can be thought of as postboxes that you send your mail to. Go to the

Glassfish administration screen and go to Resources/JMS Resources/Connection Factories.

Create a new connection factory with the JNDI name ?ms/MyConnectionFactory.?Set the

resource type to javax.jms.ConnectionFactory. Delete the username and password properties at

the bottom of the screen and add a single property ?mqDisableSetClientID?with a value of

‘false’ as shown in Figure 14-13. Click ?K.? .. figure:: images/14-13.png

Figure 14-13. Connection Factory Properties in Glassfish Admin Console

By setting the imqDisableSetClientID to false, we are forcing clients to declare a username and

password when they use the ConnectionFactory. OpenMQ uses the login to uniquely identify

the clients of the JMS service so that it can properly enforce the delivery guarantees of the

destination. We now need to create the actual destinations? topic for publish/subscribe and a

queue for point to point messaging. Go to Resources/JMS Resources/Destination Resources

and click ?ew? Set the JNDI name to ?ms/MyTopic? the destination name to ?yTopic?and the

Resource type to be ?avax.jms.Topic?as shown in Figure 14-14. Click ?K?to save the topic.

Figure 14-14. Adding a New JMS Topic Resource

Now we need to create the JMS queue for point to point messages. Create a new resource, set

the JNDI name to ?ms/MyQueue.?the destination name to ?yQueue,?and the resource type to

?avax.jms.Queue,?as shown in Figure 14-15. Click ?K?to save.

Figure 14-15. Adding a New JMS Queue Resource

Like the database connections discussed earlier, the JMS services are also acquired in the

JavaEE container through the use of JNDI name lookups. Unlike the database code, we?e

going to have to do some manual work to acquire the naming context which we do our lookups

against. When our application is running inside of Glassfish, acquiring a context is very simple.

We just import the class and instantiate it. The context provides a lookup() method which we

use to acquire the JMS connection factory and get access to the particular destinations that we

are interested in. In Listing 14-44, we?l publish a message onto our topic. Let? see some code

first and we?l go over the finer details of what? going on.

Listing 14-44. Context for Creating a Text Message

from javax.naming import InitialContext, Session

from javax.naming import DeliverMode, Message

context = InitialContext()

tfactory = context.lookup("jms/MyConnectionFactory")

tconnection = tfactory.createTopicConnection('senduser', 'sendpass')

tsession = tconnection.createTopicSession(False, Session.AUTO_ACKNOWLEDGE)

publisher = tsession.createPublisher(context.lookup("jms/MyTopic"))

message = tsession.createTextMessage()

msg = "Hello there : %s" % datetime.datetime.now()

message.setText(msg)

publisher.publish(message, DeliveryMode.PERSISTENT,

 Message.DEFAULT_PRIORITY, 100)

tconnection.close()

context.close()

In this code snippet, we acquire a topic connection through the connection factory. To reiterate,

topics are for publish/subscribe scenarios. Next, we create a topic session, a context where we

can send and receive messages. The two arguments passed when creating the topic session

specify a transactional flag and how our client will acknowledge receipt of messages. We?e

going to just disable transactions and get the session to automatically send acknowledgements

back to the broker on message receipt. The last step to getting our publisher is creating the

publisher itself. From there we can start publishing messages up to the broker. At this point, it is

important to distinguish between persistent messages and durable messages. JMS calls a

message ?ersistent?if the messages received by the broker are persisted. This guarantees that

senders know that the broker has received a message. It makes no guarantee that messages

will actually be delivered to a final recipient. Durable subscribers are guaranteed to receive

messages in the case that they temporarily drop their connection to the broker and reconnect at

a later time. The JMS broker will uniquely identify subscriber clients with a combination of the

client ID, username and password to uniquely identify clients and manage message queues for

each client. Now we need to create the subscriber client. We?e going to write a standalone

client to show that your code doesn? have to live in the application server to receive messages.

The only trick we?e going to apply here is that while we can simply create an InitialContext with

an empty constructor for code in the app server, code that exists outside of the application

server must know where to find the JNDI naming service. Glassfish exposes the naming service

via CORBA, the Common Object Request Broker Architecture. In short, we need to know a

factory class name to create the context and we need to know the URL of where the object

request broker is located. The listener client shown in Listing 14-45 can be run on the same host

as the Glassfish server.

Listing 14-45. Creating a Subscriber Client for JMS

"""

This is a standalone client that listens for messages from JMS

"""

from javax.jms import TopicConnectionFactory, MessageListener, Session

from javax.naming import InitialContext, Context

import time

def get_context():

 props = {}

props[Context.INITIAL_CONTEXT_FACTORY]="com.sun.appserv.naming.S1ASCtxFactory

"

 props[Context.PROVIDER_URL]="iiop://127.0.0.1:3700"

 context = InitialContext(props)

 return context

class TopicListener(MessageListener):

 def go(self):

 context = get_context()

 tfactory = context.lookup("jms/MyConnectionFactory")

 tconnection = tfactory.createTopicConnection('recvuser', 'recvpass')

 tsession = tconnection.createTopicSession(False,

Session.AUTO_ACKNOWLEDGE)

 subscriber =

tsession.createDurableSubscriber(context.lookup("jms/MyTopic"), 'mysub')

 subscriber.setMessageListener(self)

 tconnection.start()

 while True:

 time.sleep(1)

 context.close()

 tconnection.close()

 def onMessage(self, message):

 print message.getText()

if __name__ == '__main__':

 TopicListener().go()

There are only a few key differences between the subscriber and publisher side of a JMS topic.

First, the subscriber is created with a unique client id?n this case, it? ?ysub.?This is used by

JMS to determine what pending messages to send to the client in the case that the client drops

the JMS connections and rebinds at a later time. If we don? care to receive missed messages,

we could have created a non-durable subscriber with ?reateSubscriber?instead of

?reateDurableSubscriber?and we would not have to pass in a client ID. Second, the listener

employs a callback pattern for incoming messages. When a message is received, the

onMessage will be called automatically by the subscriber object and the message object will be

passed in. Now we need to create our sending user and receiving user on the broker. Drop to

the command line and go to GLASSFISH_HOME/imq/bin. We are going to create two users:

one sender and one receiver. See Listing 14-46.

Listing 14-46. Creating Two JMS Users

GLASSFISH_HOME/imq/bin $ imqusermgr add -u senduser -p sendpass

User repository for broker instance: imqbroker

User senduser successfully added.

GLASSFISH_HOME/imq/bin $ imqusermgr add -u recvuser -p recvpass

User repository for broker instance: imqbroker

User recvuser successfully added.

We now have two new users with username/password pairs of senduser/sendpass and

recvuser/recvpass. You have enough code now to enable publish/subscribe messaging patterns

in your code to signal applications that live outside of your application server. We can potentially

have multiple listeners attached to the JMS broker and JMS will make sure that all subscribers

get messages in a reliable way. Let? take a look now at sending message through a queue: this

provides reliable point to point messaging and it adds guarantees that messages are persisted

in a safe manner to safeguard against server crashes. This time, we?l build our send and

receive clients as individual standalone clients that communicate with the JMS broker. See

Listing 14-47.

Listing 14-47. Sending Messages Through a Queue

from javax.jms import Session

from javax.naming import InitialContext, Context

import time

def get_context():

 props = {}

props[Context.INITIAL_CONTEXT_FACTORY]="com.sun.appserv.naming.S1ASCtxFactory

"

 props[Context.PROVIDER_URL]="iiop://127.0.0.1:3700"

 context = InitialContext(props)

 return context

def send():

 context = get_context()

 qfactory = context.lookup("jms/MyConnectionFactory")

 # This assumes a user has been provisioned on the broker with

 # username/password of 'senduser/sendpass'

 qconnection = qfactory.createQueueConnection('senduser', 'sendpass')

 qsession = qconnection.createQueueSession(False,

Session.AUTO_ACKNOWLEDGE)

 qsender = qsession.createSender(context.lookup("jms/MyQueue"))

 msg = qsession.createTextMessage()

 for i in range(20):

 msg.setText('this is msg [%d]' % i)

 qsender.send(msg)

def recv():

 context = get_context()

 qfactory = context.lookup("jms/MyConnectionFactory")

 # This assumes a user has been provisioned on the broker with

 # username/password of 'recvuser/recvpass'

 qconnection = qfactory.createQueueConnection('recvuser', 'recvpass')

 qsession = qconnection.createQueueSession(False,

Session.AUTO_ACKNOWLEDGE)

 qreceiver = qsession.createReceiver(context.lookup("jms/MyQueue"))

 qconnection.start() # start the receiver

 print "Starting to receive messages now:"

 while True:

 msg = qreceiver.receive(1)

 if msg is not None and isinstance(msg, TextMessage):

 print msg.getText()

The send() and recv() functions are almost identical to the publish/subscriber code used to

manage topics. A minor difference is that the JMS queue APIs don? use a callback object for

message receipt. It is assumed that client applications will actively dequeue objects from the

JMS queue instead of acting as a passive subscriber. The beauty of this JMS code is that you

can send messages to the broker and be assured that even in case the server goes down, your

messages are not lost. When the server comes back up and your endpoint client reconnects: it

will still receive all of its pending messages. We can extend this example even further. As

mentioned earlier in the chapter, Codehaus.org has a messaging project called STOMP, the

Streaming Text Orientated Messaging Protocol. STOMP is simpler, but less performant than

raw JMS messages, but the tradeoff is that clients exist in a dozen different languages. STOMP

also provides an adapter called ?tomp-connect,?which allows us to turn a JMS broker into a

STOMP messaging broker. This will enable us to have applications written in just about any

language communicate with our applications over JMS. There are times when we have existing

CPython code that leverages various C libraries like Imagemagick or NumPy to do

computations that are simply not supported with Jython or Java. By using stompconnect, we

can send work messages over JMS, bridge those messages over STOMP and have CPython

clients process our requests. The completed work is then sent back over STOMP, bridged to

JMS and received by our Jython code. First, you?l need to obtain latest version of stomp-

connect from codehaus.org. Download stompconnect-1.0.zip from here:

http://stomp.codehaus.org/Download

After you?e unpacked the zip file, you?l need to configure a JNDI property file so that STOMP

can act as a JMS client. The configuration is identical to our Jython client. Create a file called

?ndi.properties?and place it in your stompconnect directory. The contents should have the two

lines shown in Listing 14-48.

Listing 14-48. Jndi.properties Lines

java.naming.factory.initial=com.sun.appserv.naming.S1ASCtxFactory

java.naming.provider.url=iiop://127.0.0.1:3700

You now need to pull in some JAR files from Glassfish to gain access to JNDI, JMS and some

logging classes that STOMP requires. Copy the following JAR files from GLASSFISH_HOME/lib

into STOMPCONNECT_HOME/lib:

 appserv-admin.jar

 appserv-deployment-client.jar

 appserv-ext.jar

 appserv-rt.jar

 j2ee.jar

 javaee.jar

Copy the imqjmsra.jar file from GLASSFISH_HOME/imq/lib/imqjmsra.jar to

STOMPCONNECT_HOME/lib.

You should be able to now start the connector with the following command line:

java -cp "lib*;stompconnect-1.0.jar" \

 org.codehaus.stomp.jms.Main tcp://0.0.0.0:6666 \

 "jms/MyConnectionFactory"

If it works, you should see a bunch of output that ends with a message that the server is

listening for connection on tcp://0.0.0.0:6666. Congratulations, you now have a STOMP broker

tcp://0.0.0.0:6666/

acting as a bidirectional proxy for the OpenMQ JMS broker. Receiving messages in CPython

that originate from Jython+JMS is as simple as Listing 14-49.

Listing 14-49. Receiving Messages via a STOMP Broker

import stomp

serv = stomp.Stomp('localhost', 6666)

serv.connect({'client-id': 'reader_client', \

 'login': 'recvuser', \

 'passcode': 'recvpass'})

serv.subscribe({'destination': '/queue/MyQueue', 'ack': 'client'})

frame = self.serv.receive_frame()

if frame.command == 'MESSAGE':

 # The message content will arrive in the STOMP frame's

 # body section

 print frame.body

 serv.ack(frame)

Sending messages is just as straightforward. From our CPython code, we just need to import

the stomp client and we can send messages back to our Jython code. See Listing 14-50.

Listing 14-50. Sending Messages via a STOMP Broker

import stomp

serv = stomp.Stomp('localhost', 6666)

serv.connect({'client-id': 'sending_client', \

 'login': 'senduser', \

 'passcode': 'sendpass'})

serv.send({'destination': '/queue/MyQueue', 'body': 'Hello world!'})

Summary

We?e covered a lot of ground here. We?e shown you how to get Django on Jython to use

database connection pooling to enforce limits on the database resources an application can

consume. We?e looked at setting up JMS queues and topic to provide both point to point and

publish/subscribe messages between Jython processes. We then took those messaging

services and provided interoperability between Jython code and non-Java code. In our

experience, the ability to remix a hand-picked collection of technologies is what gives Jython so

much power. You can use both the technology in JavaEE, leveraging years of hard-won

experience and get the benefit of using a lighter weight, more modern web application stack like

Django. The future of Jython and Django support in application server is very promising.

Websphere now uses Jython for its official scripting language and the version 3 release of

Glassfish will offer first class support of Django applications. You?l be able to deploy your web

applications without building WAR files up. Just deploy straight from your source directory and

you?e off to the races.

Source: http://www.jython.org/jythonbook/en/1.0/JythonDjango.html

