
APPROACHING
MOBILE
Understanding the Three Ways
to Build Mobile Apps

A publication of

Mobile app development is complex.
To build apps that reach all users, developers must
deal with many different operating systems, SDKs,
development tools, screen sizes and form factors,
as well as a technology landscape that is still in a
constant state of flux. And if that were not enough,
there are also several different ways to build mobile
apps that development teams must sort through
before beginning any new mobile effort.

Choosing how to build a mobile app, though, can
have the most dramatic effect on the eventual
cost, time, and success of a mobile project. This
is second only to determining the scope and
functionality of the app itself. Failure to match
an application's requirements to the right mobile
development approach all but guarantees wasted
time and effort–often resulting in a less effective
end result.

There are three primary approaches to building
mobile apps today: Web, Hybrid and Native. This
paper aims to explain the primary differences
between these approaches, and provide a basic
framework for choosing the “right” way to build
modern mobile apps.

A responsible software

development strategy is built

around a mixture of approaches

that allow a business to cover

all software requirements while

optimizing the time and cost of

delivering an app."

Mobile software development is still software
development. If twenty years of “desktop” software
development taught the industry anything, it is that
every application is unique. Every application has
requirements that drive the decisions about how
it should be built. Some apps require maximum
access to hardware for rich visual presentation.
Some apps require maximum flexibility and the
ability to quickly deploy changes in response to
business needs.

A responsible software development strategy is
built around a mixture of approaches that allow a
business to cover all software requirements while
optimizing the time and cost of delivering an app.
Forrester Research shares the same belief in its
study, Putting a Price to Your Mobile Strategy,
suggesting developers not “get taken in by the
allure of technology trends du jour.” The pattern for
success is to realize each mobile app has a best-fit
technology determined by mobile app objectives
and available resources.

Before mobile development, it was well understood
there are no silver bullets that solve all software
development requirements.

A peek inside the software portfolio of any
business today will reveal a mix of web-based
applications, desktop-based applications, and

perhaps software targeting cross-platform plugins,
like Silverlight, Flash or Java.

The same principles apply to a new era of
mobile software development. A mature mobile
organization with an optimized strategy will have
a mix of mobile apps developed with Web, Hybrid,
and Native approaches. The key is knowing how to
choose the right approach for each application.

3 Share this article

WHY ARE THERE DIFFERENT
APPROACHES?

http://www.telerik.com/app-development
http://www.telerik.com/app-development
http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=

A publication of A publication of

THE THREE PRIMARY
APPROACHES

There are three broad approaches to developing
mobile applications: Web, Hybrid, and Native.
Each affords distinct advantages to a mobile
development team, and none is a silver bullet that
will meet the needs of all mobile applications.

As with all software development, there are
tradeoffs that must be considered when choosing

between these options. Understanding when and
why to use each of these approaches is key to
forming a consistent and optimized mobile strategy.

The following sections briefly describe each of the
primary approaches to mobile development and
highlight common pros and cons.

WEB

Mobile web development leverages the same
skills and workflow traditionally associated with
“desktop” web development. Developers build
websites using HTML, JavaScript and CSS that
are then accessed on mobile devices via mobile
browsers. While some degree of local caching
can be employed, most mobile web apps rely on
a constant connection to the Internet and a web
server to provide the views and content as a user
navigates through the app.

There are two ways developers target apps for
mobile devices with the web:

1. Responsive Web Design: With
responsive web design (RWD), developers
primarily focus on modifying the layout and
display of existing desktop websites to adapt
to the smaller screen size and touch-input
of mobile devices. The advantage is a single
web code base for both desktop and mobile
users, but RWD is generally limited in its ability
to create a “tailored” mobile experience that
imitates the look-and-feel of native apps. It can

also be challenging to use this technique when
a desktop web experience contains complex
widgets, such as data grids, that do not easily
adapt to mobile screens with responsive CSS.

2. Mobile Web App: Alternatively, developers
can build web-based experiences designed
specifically for mobile users. In this scenario,
mobile devices are usually detected and
directed to a mobile optimized web app where
developers can build tailored experiences that
conform to mobile specific UI conventions.
While much of a mobile web app’s code base
can continue to be shared with desktop web
apps, this approach does require developers to
build and maintain separate view (HTML/CSS)
implementations for both mobile and desktop
clients. Developers can choose to make mobile
web apps look and feel exactly like installable
mobile apps, or they can choose simpler
presentations that feel more like traditional
browser web apps (with no attempt to mimic
native UI).

4 5Share this article Share this article

http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=

A publication of A publication of

Regardless of which approach to web a developer
chooses, web is one of the most familiar and fastest
ways to reach mobile users. No software installs
(and subsequent updates) are required. Application
access and information security can continue to
happen in the data center on the server. And done
properly, a mobile web app can reach all mobile
devices with a browser, not just a limited subset
of specifically targeted mobile platforms. Modern
mobile browsers are even exposing an increasing
number of device APIs, such as geolocation, via
JavaScript, further enhancing the capabilities of
mobile web-based apps.

That said, the trade-off for a mobile web app’s
familiar development platform and maximum reach

is ultimately limited access to device capabilities
relative to native and hybrid options. Unlike hybrid
apps, which are able to expose essentially any
device API via native plug-ins, web apps are limited
to the features built-in to mobile browsers. Web
apps also offer a very weak offline story in today’s
browsers, so any app that needs to work without
an active Internet connection will be a challenge to
implement on the web.

Even still, for apps that don’t require offline support
and don’t exceed the capabilities of the web (no
need to access device sensors/APIs, for example),
the web remains a very compelling way to build
and deliver mobile apps.

Essential skills: HTML, JavaScript, CSS

Essential tools: Anything capable of

developing web apps

Platform reach: iOS, Android, Windows Phone

or any HTML5 capable mobile browser

Sharable cross-platform codebase:
100% (UI + Logic)

Web is one of the most familiar

and fastest ways to reach

mobile users. " NATIVE

On the other end of the spectrum from mobile
web app development is native app development.
As the name implies, native apps are built using
platform-specific SDKs and development tools
provided by the platform vendors. For iOS, that
means apps are built using Objective C in Apple’s

If something can be done on a mobile

device, then native apps will impose

the fewest limits."

XCode. For Android, that means apps are built
using Java and Google’s Android SDKs. Windows
Phone is .NET and Visual Studio, and so on. Every
platform has its own SDKs, and often, its own
programming language.

The advantage of native mobile apps, of course, is
maximum access to the features and APIs available
on each platform. If something can be done on
a mobile device, then native apps will impose
the fewest limits. As stated in an MGI Research
study titled Buyer's Guide for Mobile Enterprise
Applications Platforms (MEAP), “Native architecture
tends to offer the richest, most graphically engaging
user experience, high performance, and the ability
to integrate with native device functions and back-
end enterprise systems.”

 PROS

• Familiar, very low developer learning curve

• Easy to deploy, no software installs

• Easy to share code with desktop websites

• Maximum reach

• Reuse existing security and software

management solutions

• Open standards-based platform

(no vendor lock-in)

 CONS

• Limited access to device hardware, APIs

• Poor offline support, requires “always on”

Internet connection

• Unable to “install” on a device or publish via an

app store

• Unable to match native performance for rich,

animated interfaces

6 7Share this article Share this article

http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=

A publication of A publication of

This power comes at the high cost of building
apps that only reach one platform at a time, and
with the requirement that development teams
build and maintain multiple platform-specific code
bases for the same app. Native app development
is the most powerful, but the most expensive
and slowest approach to reach all mobile users,
especially if an app must support two or more
platforms. Still, when maximum power is required,
nothing beats native.

Multi-Platform Native
Development
Before discussing hybrid, it’s worth mentioning
a “middle-ground” option that has emerged
for developing native applications across
multiple platforms. With multi-platform native
development, developers write an application
in a single language (such as JavaScript or C#)
targeting an abstraction layer to access native
device APIs and SDKs. When the application is
compiled, different app packages are produced

that can run “natively” on different platforms.
The result is a multi-platform “native” application
written in non-native language, and a code base
that can be largely shared between platforms.

The actual degree of “nativeness” and code
reusability varies between multi-platform solutions,
but in all cases the UI for the application is native.
This is different from hybrid applications (discussed

below), which rely on embedded web containers
to present full-screen HTML-based UI. As a result,
multi-platform native development is appealing
when an app’s UI complexity exceeds the limits of
HTML, CSS and JavaScript, such as apps with lots
of animation or movement.

The major drawback to multi-platform native
solutions today is that the frameworks providing
the abstraction are proprietary and reach a
limited number of mobile platforms. Developers
adopting one of these solutions will be “locked-
in” to vendor specific abstractions (or bindings)
and will be dependent on that vendor to continue
to evolve the abstraction as underlying mobile
operating systems change. In many ways, multi-
platform native solutions face the same limits and
risks as cross-platform plugins like Silverlight and
Flash. If a company is willing to accept the risk
of the underlying multi-platform technology, the
solution can be a great path to simplifying normally
expensive and time consuming native development
for multiple platforms.

Essential skills: Depends on the multi-

platform solution (examples: C#, JavaScript)

Essential tools: Usually a custom development

environment

Platform reach: Limited to platforms

supported by underlying compiler

Sharable cross-platform codebase*:
Partial (UI is generally not sharable)

*Clearly, exact sharability depends heavily on the multi-
platform native technology stack and app design. Some
solutions provide better support for sharing UI and logic;
some leverage platform-specific native UI, requiring custom
UI implementations for each target platform.

 PROS

• Complete access to device hardware, APIs

• Installable, can be app store deployed

• Maximum control over performance

• Powerful platform-specific development and
debugging tools direct from platform vendors

 CONS

• Multiple implementations required to reach
multiple platforms

• Multiple skill sets and programming languages

• Requires installation (and device provisioning if
private deployment desired)

• New tools needed to manage app security,
enforce data security policies

Essential skills*: Objective-C, Java, .NET,

HTML/JavaScript

Essential tools*: XCode (for iOS), Eclipse

(for Android), Visual Studio (for WinPhone)

Platform reach: Each app only reaches

one platform

Sharable cross-platform codebase:
0% (No UI, No logic)

*Required skills and tools will vary depending on target
platforms. To support the “top” mobile platforms today, a
minimum of three programming languages and three IDEs
is required.

8 9Share this article Share this article

http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=

A publication of A publication of

HYBRID

Recognizing that most developers, given the
choice, would prefer apps that have the “reach” of
web and the “richness” of native, hybrid attempts
to blend the benefits of web and native mobile app
development. According to a recent Telerik Kendo
UI Survey on HTML5, when asked what makes
HTML5 development more appealing than other
options for writing software, 62% said reach/cross-
platform support as one of the biggest benefits.
Hybrid apps are developed using standard web
technologies, like HTML, JavaScript and CSS, but
are able to overcome the limits of “pure” web apps
by using platform-specific native “wrappers” to
package and deploy the code. The native wrappers
allow hybrid apps to be installed on devices, deploy
via app stores and access native device APIs
via JavaScript.

Since hybrid apps are built with web technologies,
the learning curve is very low for web developers,
and most existing JavaScript libraries can be

leveraged from within a hybrid app. Seventy-two
percent of developers surveyed by Telerik, noted
the familiarity of languages as most appealing.
Developers can further access any native API or
device capability via plugins that expose additional
native features to JavaScript code. Popular hybrid
containers, like Apache Cordova, offer a rich
ecosystem of available plugins, and developers
with native programming skills can choose to
create custom plug-ins tailored to specific app
requirements.

Hybrid apps are completely self-contained. No
server is required to launch or run a hybrid app,
other than to supply or persist data within the
app. In this way, hybrid apps are identical to native.
When a hybrid app runs, the native application
wrapper hosts a full-screen web container in
which the HTML, JavaScript and CSS are loaded
and run. To an end user, a well done hybrid app
can be visually indistinguishable from a native

app. In fact, prior to rebuilding their mobile apps
natively, Facebook used hybrid technology to
create some of the world’s most popular mobile
apps, reaching millions of users. Most users, and
even many developers, did not know Facebook’s
apps were anything other than native. In fact, 52%
of developers surveyed by Telerik in 2012 were
unaware of this fact.

The primary limit of hybrid apps is the speed
and performance of the web container on each
target device. Older, slower devices require highly
optimized code to achieve expected performance,
while newer, faster devices are more capable
of running more complex CSS and application
JavaScript without making hybrid apps appear
slow. For this reason, hybrid development is best
used when the requirements of an app exceed the
limits of web, but do not demand the full power of
native. As an example, simple line of business apps
that require offline support are great candidates for
hybrid. Hybrid development for enterprise mobility
is increasingly endorsed by leading industry
analyst firms as well. In its 2013 release, Gartner
recommends the hybrid approach, which “offers a
balance between HTML5 and native” for Business-
to-Employee mobile apps. Meanwhile, rich,
interactive games or highly-animated interfaces are
not good candidates for hybrid.

Essential skills: HTML, JavaScript, CSS,

Hybrid container (such as Apache Cordova)

Essential tools: Anything used for web

development* + hybrid SDKs

Platform reach: Limited to reach of hybrid

container, but most reach all major platforms

Sharable cross-platform codebase:
Almost 100% (Some platform specific UI may be

desired)

*While web development tools can be used, tools designed
and optimized for hybrid mobile development can improve
productivity by helping with debugging, packaging and
deployment to devices.

Hybrid development is best used

when the requirements of an app

exceed the limits of web, but do not

demand the full power of native."

 PROS

• Low learning curve for web developers

• Installed, can be app store deployed

• One code base for all platforms

• Easy to transition from web to hybrid
development, reuse code

• Extensive access to device hardware, APIs

 CONS

• Performance limited by web’s capabilities

• Requires installation (and device provisioning
if private deployment desired)

• New tools need to manage app security,

enforce data security policies

10 11Share this article Share this article

http://blogs.telerik.com/appbuilder/posts/12-06-14/what-is-a-hybrid-mobile-app-
http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=

A publication of A publication of

HOW DO YOU CHOOSE
THE “RIGHT” APPROACH?

Choosing the “right” approach to develop a
mobile app depends entirely on marrying the
requirements and budget of an app to the
capabilities and cost of a mobile development
approach. As such, it is impossible to generically
prescribe the “right way” to build every mobile app,
but for businesses building many mobile apps,
asking the following questions can help determine
whether web, hybrid or native is right for any
mobile project:

Who is the audience for the app?
There is a big difference between building
internal Business-to-Business (B2B) or Business-
to-Employee (B2E) apps and building public,
consumer-facing, Business-to-Consumer (B2C)
apps. The differences are similar to developing
internal web apps or line of business apps and

developing a company’s primary, consumer-facing
.COM website or packaged, off-the-shelf software.

Internal apps often prioritize budget and flexibility
over rich experience, making them ideal candidates
for web and hybrid development.

How long do we have to develop
the app—and for how many
platforms?
Timelines have always been a critical factor in any
software project. With mobile, if the goal is to reach
multiple platforms, a tight timeline may require
the use of web, hybrid or multi-platform native
development. Developing the same app multiple
times with native SDKs may simply exceed the time
and budget of many projects.

If native is determined to be a requirement, plan on
targeting one platform, such as iOS, first, and then
rolling-out additional apps to additional platforms.
In some cases, it even makes sense to build one
native app for one platform, complemented by a
web or hybrid app to address all other platforms.

What are the skills of our
development team?
Teams with strong backgrounds in web
development are going to be more productive
faster with mobile web and hybrid app
development. Strong skill reuse will minimize
learning curves and often translate back into
improved desktop web apps.

Meanwhile, if a team is not familiar with web
development, or is not skilled in creating and
debugging JavaScript, pursuing native or cross-
platform native can avoid future frustration and
wasted development time. The available native
development tools can also help a team produce
better results if they are not proficient debugging
and optimizing JavaScript.

Does the app need to work offline?
If offline support is important, developing
with the web will be much more difficult, if not
impossible. Hybrid or native development will
be needed to create the desired sometimes-
connected capabilities.

Does the app need to access
device APIs or hardware
features?
While mobile web apps have access to basic device
APIs and hardware sensors, apps that require more
complete access should plan on hybrid or native
implementations. If it is known up-front that an app
will need push notifications, access to the device
camera, contact list, file system or other native
capabilities, you can quickly eliminate web as an
option for developing the app.

What is most important for the
app: Experience, Reach or Cost?
If maximum reach is desired, nothing beats the
web. It spans all screens, even those not yet
on the market today, while minimizing risk if
popular platforms today fail in the future (such as
BlackBerry). If maximum “experience” is desired,
with rich, animated interfaces, native is the safest
choice. Animation in particular is taxing on hybrid
and web performance, and native will provide more
polished results. Finally, if it’s a blend of reach and
richness that’s required, hybrid is a solid choice
that can help control costs and promote code
reusability across platforms.

Internal apps often prioritize

budget and flexibility over

rich experience, making them

ideal candidates for web and

hybrid development."

12 13Share this article Share this article

http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=

A publication of A publication of

INEFFICIENCY OF
“ONE SIZE FITS ALL” STRATEGY

It is tempting to look for the “one size fits
all” solution to mobile development as a way
of reducing complexity. Unfortunately, any
strategy that attempts to develop all apps using
one approach will ultimately force inefficient
development decisions, waste development time and
money, and limit the flexibility of an organization.
Avoiding one or the other option completely is not
wise either. As Forrester puts it, “Don’t be a mobile
technology lemming; simply because Facebook
decided to move away from HTML5 doesn’t mean
that you should do the same.”

For example, basic internal apps that need to
quickly reach all employees and rapidly evolve with
the business are likely best built as mobile web
apps. No installs. Reusable code for desktop and
mobile clients. The requirements do not exceed
the limits of web, and the web offers a low cost, fast
way to deliver the mobile solution.

Meanwhile, polished apps that reach a business’
customers via public app stores are better
candidates for hybrid or native development.
Consumers expect to discover apps in an app
store. The app is less likely to change as rapidly.
And overall, the goal is to optimize experience
more so than cost.

If a “one size fits all strategy” is adopted, such as
“all native” or “all hybrid” mobile development,
inefficient decisions will be made in these
scenarios. A company may overspend and reduce
agility building many native internal apps, or it may
fail to deliver the right experience for a polished
consumer-facing app.

Beware the temptation to find a mobile
development silver bullet, and instead adopt
a smart, optimized strategy that draws
on the benefits of web, hybrid and native
app development.

Any strategy that attempts

to develop all apps using one

approach will ultimately force

inefficient development decisions,

waste development time and

money, and limit the flexibility of

an organization."

MOBILE APPLICATION
MANAGEMENT

One hidden implication of choosing between
different mobile app development approaches is
how that decision will impact the need for new
application management policies and tools. Unlike
desktop applications which tend to stay inside the
firewall on computers that don’t regularly leave the
building, mobile apps are everywhere. They quite
literally live with users, frequently traveling outside
the boundaries of traditional corporate security.

This has significant implications on application
distribution and security. When native or hybrid
mobile apps are created, a company must deal with
each of the following:

• How does the app get on “allowed” devices

(assuming it’s not a public app store app)?

• How is access to the app controlled (for

scenarios where a device is lost or employee/

partner access needs to be revoked)?

• How are updates delivered (and enforced)?

• How is cached data handled and secured

on a device?

• How is app usage monitored? How are crash

reports collected?

A company unprepared to deal with these
challenges may have extra motivation to consider
mobile web apps, which can typically reuse existing
delivery and security policies set-up for traditional
desktop web apps. With no installs and often no
offline data storage, mobile web apps sidestep
the need to introduce formal mobile application
management solutions.

When choosing between web, hybrid and native,
in addition to matching the strengths of each
approach to a mobile app’s requirements, a
company should also consider the secondary
impacts, like mobile application management,
before making a final decision.

APP

14 15Share this article Share this article

http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=

A publication of A publication of

OPTIMIZED MOBILE STRATEGY
DECISION GUIDE

The following diagram illustrates how to apply an
optimized mobile development strategy to choose
between web, hybrid and native for any project.
Clearly, every organization will have different
criteria to consider, but this example is a good

Conclusion
Mobile development may be complex and
disruptive, but the core principles of software
development that have been honed for more than
twenty years still apply. Every app is unique, and
that demands a strategy capable of intelligently

delivering the right result. When a mobile strategy
is built around the three approaches to mobile app
development, every app can be delivered on-time
and on-budget.

starting point for any company building multiple
mobile apps reaching different audiences, like
employees (B2E), business partners (B2B) and
consumers (B2C).

ABOUT THE AUTHOR

Todd Anglin
EVP of Cross-Platform Tools & Services

As the EVP of Cross-Platform Tools & Services at
Telerik, Todd Anglin is responsible for the Telerik
growing line of tools for web and mobile apps
development, including Kendo UI and AppBuilder.
He leads a global team of engineers, evangelists
and business analysts and oversees the design,
creation, sales and support of the Telerik industry
leading HTML/JavaScript tools.

Todd joined Telerik in 2007 and prior to serving
as EVP of Cross-Platform Tools & Services, he was
Telerik Chief Evangelist, building and coordinating
Telerik global evangelism efforts. Todd is a well-
respected HTML5 industry leader and is an active
member of the .NET and HTML5 developer
communities. He is also a Microsoft MVP, founder
and president of the North Houston .NET Users
Group, and O'Reilly author.

Previously, Todd worked in Fortune 200 financial
services enterprise IT, and has experience
independently building and selling SaaS. He
graduated with business honors from Mays
Business School at Texas A&M University with a
Bachelor's Degree in Business Administration. He is
based in the Telerik office in Houston, Texas.

He is on Twitter at @toddanglin

B2B B2E

YES

WEB

not
WEB

not
WEB

YES

B2C

YES

YES

NO

NO

NO

NO NO

NO NO

YES

YES

 or

Exceed
capabilities of

web?WEB NATIVE

HYBRID HYBRID

NATIVE

Exceed
capabilities of

hybrid?

Exceed
capabilities of

hybrid?

Mobile Development:
Web, Hybrid or Native?

Require
multi-platform

support?

Team
skills?

Require
o�line

support?

App
audience?

App Store
deployed?

Team
skills?

Multi-
platform?

Exceed
capabilities of

web?

16 17Share this article Share this article

http://www.telerik.com/platform
http://www.telerik.com/kendo-ui
http://www.telerik.com/appbuilder
https://twitter.com/toddanglin
http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://twitter.com/home?status=Approaching%20Mobile:%20Understanding%20the%20Three%20Ways%20to%20Build%20Mobile%20Apps
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=
http://www.facebook.com/sharer/sharer.php?s=100&p[url]=http://www.telerik.com/whitepapers/appbuilder/approaching-mobile-understanding-the-three-ways-to-build-mobile-apps&p[images][0]=&p[title]=Web,%20native%20and%20cross-platform%20-%20three%20approaches%20to%20mobile%20app%20development%20&p[summary]=

	Twitter:
	Page 2: Off
	Page 31: Off
	Page 32: Off
	Page 43: Off
	Page 44: Off
	Page 55: Off
	Page 56: Off
	Page 67: Off
	Page 68: Off
	Page 79: Off
	Page 710: Off
	Page 811: Off
	Page 812: Off
	Page 913: Off
	Page 914: Off

	Facebook:
	Page 2: Off
	Page 31: Off
	Page 32: Off
	Page 43: Off
	Page 44: Off
	Page 55: Off
	Page 56: Off
	Page 67: Off
	Page 68: Off
	Page 79: Off
	Page 710: Off
	Page 811: Off
	Page 812: Off
	Page 913: Off
	Page 914: Off

