

Web Scraping with Python

Scrape data from any website with the power of Python

Richard Lawson

BIRMINGHAM - MUMBAI

Web Scraping with Python

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1231015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-436-4

www.packtpub.com

www.packtpub.com

Credits

Author
Richard Lawson

Reviewers
Martin Burch

Christopher Davis

William Sankey

Ayush Tiwari

Acquisition Editor
Rebecca Youé

Content Development Editor
Akashdeep Kundu

Technical Editors
Novina Kewalramani

Shruti Rawool

Copy Editor
Sonia Cheema

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Mariammal Chettiar

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Richard Lawson is from Australia and studied Computer Science at the University
of Melbourne. Since graduating, he built a business specializing at web scraping
while traveling the world, working remotely from over 50 countries. He is a
fluent Esperanto speaker, conversational at Mandarin and Korean, and active in
contributing to and translating open source software. He is currently undertaking
postgraduate studies at Oxford University and in his spare time enjoys developing
autonomous drones.

I would like to thank Professor Timothy Baldwin for introducing me
to this exciting field and Tharavy Douc for hosting me in Paris while
I wrote this book.

About the Reviewers

Martin Burch is a data journalist based in New York City, where he makes
interactive graphics for The Wall Street Journal. He holds a master of arts in
journalism from the City University of New York's Graduate School of Journalism,
and has a baccalaureate from New Mexico State University, where he studied
journalism and information systems.

I would like to thank my wife, Lisa, who encouraged me to assist
with this book; my uncle, Michael, who has always patiently
answered my programming questions; and my father, Richard, who
inspired my love of journalism and writing.

William Sankey is a data professional and hobbyist developer who lives in
College Park, Maryland. He graduated in 2012 from Johns Hopkins University
with a master's degree in public policy and specializes in quantitative analysis. He
is currently a health services researcher at L&M Policy Research, LLC, working on
projects for the Centers for Medicare and Medicaid Services (CMS). The scope of
these projects range from evaluating Accountable Care Organizations to monitoring
the Inpatient Psychiatric Facility Prospective Payment System.

I would like to thank my devoted wife, Julia, and rambunctious
puppy, Ruby, for all their love and support.

Ayush Tiwari is a Python developer and undergraduate at IIT Roorkee. He has
been working at Information Management Group, IIT Roorkee, since 2013, and has
been actively working in the web development field. Reviewing this book has been a
great experience for him. He did his part not only as a reviewer, but also as an avid
learner of web scraping. He recommends this book to all Python enthusiasts so that
they can enjoy the benefits of scraping.

He is enthusiastic about Python web scraping and has worked on projects such as live
sports feeds, as well as a generalized Python e-commerce web scraper (at Miranj).

He has also been handling a placement portal with the help of a Django app to assist
the placement process at IIT Roorkee.

Besides backend development, he loves to work on computational Python/data
analysis using Python libraries, such as NumPy, SciPy, and is currently working
in the CFD research field. You can visit his projects on GitHub. His username
is tiwariayush.

He loves trekking through Himalayan valleys and participates in several treks
every year, adding this to his list of interests, besides playing the guitar. Among his
accomplishments, he is a part of the internationally acclaimed Super 30 group and
has also been a rank holder in it. When he was in high school, he also qualified for
the International Mathematical Olympiad.

I have been provided a lot of help by my family members (my sister, Aditi, my
parents, and Anand sir), my friends at VI and IMG, and my professors. I would like
to thank all of them for the support they have given me.

Last but not least, kudos to the respected author and the Packt Publishing team
for publishing these fantastic tech books. I commend all the hard work involved in
producing their books.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 v
Chapter 1: Introduction to Web Scraping	 1

When is web scraping useful?	 1
Is web scraping legal?	 2
Background research	 2

Checking robots.txt	 3
Examining the Sitemap	 4
Estimating the size of a website	 4
Identifying the technology used by a website	 6
Finding the owner of a website	 6

Crawling your first website	 7
Downloading a web page	 8

Retrying downloads	 8
Setting a user agent	 10

Sitemap crawler	 11
ID iteration crawler	 11
Link crawler	 14

Advanced features	 16
Summary	 20

Chapter 2: Scraping the Data	 21
Analyzing a web page	 22
Three approaches to scrape a web page	 24

Regular expressions	 24
Beautiful Soup	 26
Lxml	 27

CSS selectors	 28

Table of Contents

[ii]

Comparing performance	 29
Scraping results	 30

Overview	 32
Adding a scrape callback to the link crawler	 32

Summary	 34
Chapter 3: Caching Downloads	 35

Adding cache support to the link crawler	 35
Disk cache	 37

Implementation	 39
Testing the cache	 40
Saving disk space	 41
Expiring stale data	 41
Drawbacks	 43

Database cache	 44
What is NoSQL?	 44
Installing MongoDB	 44
Overview of MongoDB	 45
MongoDB cache implementation	 46
Compression	 47
Testing the cache	 48

Summary	 48
Chapter 4: Concurrent Downloading	 49

One million web pages	 49
Parsing the Alexa list	 50

Sequential crawler	 51
Threaded crawler	 52

How threads and processes work	 52
Implementation	 53
Cross-process crawler	 55

Performance	 58
Summary	 59

Chapter 5: Dynamic Content	 61
An example dynamic web page	 62
Reverse engineering a dynamic web page	 64

Edge cases	 67
Rendering a dynamic web page	 69

PyQt or PySide	 69
Executing JavaScript	 70

Table of Contents

[iii]

Website interaction with WebKit	 72
Waiting for results	 73
The Render class	 74

Selenium	 76
Summary	 78

Chapter 6: Interacting with Forms	 79
The Login form	 80

Loading cookies from the web browser	 83
Extending the login script to update content	 87
Automating forms with the Mechanize module	 90
Summary	 91

Chapter 7: Solving CAPTCHA	 93
Registering an account	 94

Loading the CAPTCHA image	 95
Optical Character Recognition	 96

Further improvements	 100
Solving complex CAPTCHAs	 100

Using a CAPTCHA solving service	 101
Getting started with 9kw	 102

9kw CAPTCHA API	 103
Integrating with registration	 108

Summary	 109
Chapter 8: Scrapy	 111

Installation	 111
Starting a project	 112

Defining a model	 113
Creating a spider	 114

Tuning settings	 115
Testing the spider	 116

Scraping with the shell command	 117
Checking results	 118
Interrupting and resuming a crawl	 121

Visual scraping with Portia	 122
Installation	 122
Annotation	 124
Tuning a spider	 127
Checking results	 129

Automated scraping with Scrapely	 130
Summary	 131

Table of Contents

[iv]

Chapter 9: Overview	 133
Google search engine	 133
Facebook	 137

The website	 138
The API	 139

Gap	 140
BMW	 142
Summary	 146

Index	 147

[v]

Preface
The Internet contains the most useful set of data ever assembled, which is largely
publicly accessible for free. However, this data is not easily reusable. It is embedded
within the structure and style of websites and needs to be extracted to be useful.
This process of extracting data from web pages is known as web scraping and is
becoming increasingly useful as ever more information is available online.

What this book covers
Chapter 1, Introduction to Web Scraping, introduces web scraping and explains ways to
crawl a website.

Chapter 2, Scraping the Data, shows you how to extract data from web pages.

Chapter 3, Caching Downloads, teaches you how to avoid redownloading by
caching results.

Chapter 4, Concurrent Downloading, helps you to scrape data faster by downloading
in parallel.

Chapter 5, Dynamic Content, shows you how to extract data from dynamic websites.

Chapter 6, Interacting with Forms, shows you how to work with forms to access the
data you are after.

Chapter 7, Solving CAPTCHA, elaborates how to access data that is protected by
CAPTCHA images.

Preface

[vi]

Chapter 8, Scrapy, teaches you how to use the popular high-level Scrapy framework.

Chapter 9, Overview, is an overview of web scraping techniques that have been covered.

What you need for this book
All the code used in this book has been tested with Python 2.7, and is available for
download at http://bitbucket.org/wswp/code. Ideally, in a future version of
this book, the examples will be ported to Python 3. However, for now, many of
the libraries required (such as Scrapy/Twisted, Mechanize, and Ghost) are only
available for Python 2. To help illustrate the crawling examples, we created a sample
website at http://example.webscraping.com. This website limits how fast you
can download content, so if you prefer to host this yourself the source code and
installation instructions are available at http://bitbucket.org/wswp/places.

We decided to build a custom website for many of the examples used in this book
instead of scraping live websites, so that we have full control over the environment.
This provides us stability—live websites are updated more often than books, and by
the time you try a scraping example, it may no longer work. Also, a custom website
allows us to craft examples that illustrate specific skills and avoid distractions. Finally,
a live website might not appreciate us using them to learn about web scraping and try
to block our scrapers. Using our own custom website avoids these risks; however, the
skills learnt in these examples can certainly still be applied to live websites.

Who this book is for
This book requires prior programming experience and would not be suitable for
absolute beginners. When practical we will implement our own version of web
scraping techniques so that you understand how they work before introducing the
popular existing module. These examples will assume competence with Python and
installing modules with pip. If you need a brush up, there is an excellent free online
book by Mark Pilgrim available at http://www.diveintopython.net. This is the
resource I originally used to learn Python.

The examples also assume knowledge of how web pages are constructed with HTML
and updated with JavaScript. Prior knowledge of HTTP, CSS, AJAX, WebKit, and
MongoDB would also be useful, but not required, and will be introduced as and
when each technology is needed. Detailed references for many of these topics are
available at http://www.w3schools.com.

http://bitbucket.org/wswp/code
http://bitbucket.org/wswp/places
http://www.diveintopython.net
http://www.w3schools.com
http://example.webscraping.com

Preface

[vii]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Most websites define a robots.txt file to
let robots know any restrictions about crawling their website."

A block of code is set as follows:

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <url><loc>http://example.webscraping.com/view/Afghanistan-1
 </loc></url>
 <url><loc>http://example.webscraping.com/view/Aland-Islands-2
 </loc></url>
 <url><loc>http://example.webscraping.com/view/Albania-3</loc>
 </url>
 ...
</urlset>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def link_crawler(..., scrape_callback=None):
 …
 links = []
 if scrape_callback:
 links.extend(scrape_callback(url, html) or [])
 ...

Any command-line input or output is written as follows:

$ python performance.py

Regular expressions: 5.50 seconds

BeautifulSoup: 42.84 seconds

Lxml: 7.06 seconds

Preface

[viii]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: " When
regular users open this web page in their browser, they will enter their e-mail and
password, and click on the Log In button to submit the details to the server."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[ix]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

Introduction to Web Scraping
In this chapter, we will cover the following topics:

•	 Introduce the field of web scraping
•	 Explain the legal challenges
•	 Perform background research on our target website
•	 Progressively building our own advanced web crawler

When is web scraping useful?
Suppose I have a shop selling shoes and want to keep track of my competitor's
prices. I could go to my competitor's website each day to compare each shoe's price
with my own, however this would take a lot of time and would not scale if I sold
thousands of shoes or needed to check price changes more frequently. Or maybe
I just want to buy a shoe when it is on sale. I could come back and check the shoe
website each day until I get lucky, but the shoe I want might not be on sale for
months. Both of these repetitive manual processes could instead be replaced with
an automated solution using the web scraping techniques covered in this book.

In an ideal world, web scraping would not be necessary and each website would
provide an API to share their data in a structured format. Indeed, some websites do
provide APIs, but they are typically restricted by what data is available and how
frequently it can be accessed. Additionally, the main priority for a website developer
will always be to maintain the frontend interface over the backend API. In short, we
cannot rely on APIs to access the online data we may want and therefore, need to learn
about web scraping techniques.

Introduction to Web Scraping

[2]

Is web scraping legal?
Web scraping is in the early Wild West stage, where what is permissible is still being
established. If the scraped data is being used for personal use, in practice, there is
no problem. However, if the data is going to be republished, then the type of data
scraped is important.

Several court cases around the world have helped establish what is permissible when
scraping a website. In Feist Publications, Inc. v. Rural Telephone Service Co., the United
States Supreme Court decided that scraping and republishing facts, such as telephone
listings, is allowed. Then, a similar case in Australia, Telstra Corporation Limited v. Phone
Directories Company Pty Ltd, demonstrated that only data with an identifiable author
can be copyrighted. Also, the European Union case, ofir.dk vs home.dk, concluded that
regular crawling and deep linking is permissible.

These cases suggest that when the scraped data constitutes facts (such as business
locations and telephone listings), it can be republished. However, if the data is
original (such as opinions and reviews), it most likely cannot be republished for
copyright reasons.

In any case, when you are scraping data from a website, remember that you are their
guest and need to behave politely or they may ban your IP address or proceed with
legal action. This means that you should make download requests at a reasonable
rate and define a user agent to identify you. The next section on crawling will cover
these practices in detail.

You can read more about these legal cases at http://
caselaw.lp.findlaw.com/scripts/getcase.
pl?court=US&vol=499&invol=340, http://www.
austlii.edu.au/au/cases/cth/FCA/2010/44.html, and
http://www.bvhd.dk/uploads/tx_mocarticles/S_-_
og_Handelsrettens_afg_relse_i_Ofir-sagen.pdf.

Background research
Before diving into crawling a website, we should develop an understanding about
the scale and structure of our target website. The website itself can help us through
their robots.txt and Sitemap files, and there are also external tools available to
provide further details such as Google Search and WHOIS.

http://caselaw.lp.findlaw.com/scripts/getcase.pl?court=US&vol=499&invol=340
http://caselaw.lp.findlaw.com/scripts/getcase.pl?court=US&vol=499&invol=340
http://caselaw.lp.findlaw.com/scripts/getcase.pl?court=US&vol=499&invol=340
http://www.austlii.edu.au/au/cases/cth/FCA/2010/44.html
http://www.austlii.edu.au/au/cases/cth/FCA/2010/44.html
http://www.bvhd.dk/uploads/tx_mocarticles/S_-_og_Handelsrettens_afg_relse_i_Ofir-sagen.pdf
http://www.bvhd.dk/uploads/tx_mocarticles/S_-_og_Handelsrettens_afg_relse_i_Ofir-sagen.pdf

Chapter 1

[3]

Checking robots.txt
Most websites define a robots.txt file to let crawlers know of any restrictions about
crawling their website. These restrictions are just a suggestion but good web citizens
will follow them. The robots.txt file is a valuable resource to check before crawling
to minimize the chance of being blocked, and also to discover hints about a website's
structure. More information about the robots.txt protocol is available at http://
www.robotstxt.org. The following code is the content of our example robots.txt,
which is available at http://example.webscraping.com/robots.txt:

section 1
User-agent: BadCrawler
Disallow: /

section 2
User-agent: *
Crawl-delay: 5
Disallow: /trap

section 3
Sitemap: http://example.webscraping.com/sitemap.xml

In section 1, the robots.txt file asks a crawler with user agent BadCrawler not to
crawl their website, but this is unlikely to help because a malicious crawler would
not respect robots.txt anyway. A later example in this chapter will show you how
to make your crawler follow robots.txt automatically.

Section 2 specifies a crawl delay of 5 seconds between download requests for all
User-Agents, which should be respected to avoid overloading their server. There is
also a /trap link to try to block malicious crawlers who follow disallowed links. If you
visit this link, the server will block your IP for one minute! A real website would block
your IP for much longer, perhaps permanently, but then we could not continue with
this example.

Section 3 defines a Sitemap file, which will be examined in the next section.

http://www.robotstxt.org
http://www.robotstxt.org
http://example.webscraping.com/robots.txt

Introduction to Web Scraping

[4]

Examining the Sitemap
Sitemap files are provided by websites to help crawlers locate their updated content
without needing to crawl every web page. For further details, the sitemap standard
is defined at http://www.sitemaps.org/protocol.html. Here is the content of the
Sitemap file discovered in the robots.txt file:

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <url><loc>http://example.webscraping.com/view/Afghanistan-1
 </loc></url>
 <url><loc>http://example.webscraping.com/view/Aland-Islands-2
 </loc></url>
 <url><loc>http://example.webscraping.com/view/Albania-3</loc>
 </url>
 ...
</urlset>

This sitemap provides links to all the web pages, which will be used in the next
section to build our first crawler. Sitemap files provide an efficient way to crawl a
website, but need to be treated carefully because they are often missing, out of date,
or incomplete.

Estimating the size of a website
The size of the target website will affect how we crawl it. If the website is just a few
hundred URLs, such as our example website, efficiency is not important. However,
if the website has over a million web pages, downloading each sequentially would
take months. This problem is addressed later in Chapter 4, Concurrent Downloading,
on distributed downloading.

A quick way to estimate the size of a website is to check the results of Google's
crawler, which has quite likely already crawled the website we are interested in. We
can access this information through a Google search with the site keyword to filter
the results to our domain. An interface to this and other advanced search parameters
are available at http://www.google.com/advanced_search.

http://www.sitemaps.org/protocol.html
http://www.google.com/advanced_search

Chapter 1

[5]

Here are the site search results for our example website when searching Google for
site:example.webscraping.com:

As we can see, Google currently estimates 202 web pages, which is about as
expected. For larger websites, I have found Google's estimates to be less accurate.

We can filter these results to certain parts of the website by adding a URL path to
the domain. Here are the results for site:example.webscraping.com/view, which
restricts the site search to the country web pages:

site:example.webscraping.com

Introduction to Web Scraping

[6]

This additional filter is useful because ideally you will only want to crawl the part of
a website containing useful data rather than every page of it.

Identifying the technology used by a website
The type of technology used to build a website will effect how we crawl it. A useful
tool to check the kind of technologies a website is built with is the builtwith
module, which can be installed with:

 pip install builtwith

This module will take a URL, download and analyze it, and then return the
technologies used by the website. Here is an example:

 >>> import builtwith

 >>> builtwith.parse('http://example.webscraping.com')

 {u'javascript-frameworks': [u'jQuery', u'Modernizr', u'jQuery UI'],

 u'programming-languages': [u'Python'],

 u'web-frameworks': [u'Web2py', u'Twitter Bootstrap'],

 u'web-servers': [u'Nginx']}

We can see here that the example website uses the Web2py Python web framework
alongside with some common JavaScript libraries, so its content is likely embedded
in the HTML and be relatively straightforward to scrape. If the website was instead
built with AngularJS, then its content would likely be loaded dynamically. Or, if
the website used ASP.NET, then it would be necessary to use sessions and form
submissions to crawl web pages. Working with these more difficult cases will be
covered later in Chapter 5, Dynamic Content and Chapter 6, Interacting with Forms.

Finding the owner of a website
For some websites it may matter to us who is the owner. For example, if the owner
is known to block web crawlers then it would be wise to be more conservative in our
download rate. To find who owns a website we can use the WHOIS protocol to see
who is the registered owner of the domain name. There is a Python wrapper to this
protocol, documented at https://pypi.python.org/pypi/python-whois, which
can be installed via pip:

 pip install python-whois

Here is the key part of the WHOIS response when querying the appspot.com domain
with this module:

 >>> import whois

 >>> print whois.whois('appspot.com')

https://pypi.python.org/pypi/python-whois

Chapter 1

[7]

 {

 ...

 "name_servers": [

 "NS1.GOOGLE.COM",

 "NS2.GOOGLE.COM",

 "NS3.GOOGLE.COM",

 "NS4.GOOGLE.COM",

 "ns4.google.com",

 "ns2.google.com",

 "ns1.google.com",

 "ns3.google.com"

],

 "org": "Google Inc.",

 "emails": [

 "abusecomplaints@markmonitor.com",

 "dns-admin@google.com"

]

 }

We can see here that this domain is owned by Google, which is correct—this domain
is for the Google App Engine service. Google often blocks web crawlers despite
being fundamentally a web crawling business themselves. We would need to be
careful when crawling this domain because Google often blocks web crawlers,
despite being fundamentally a web crawling business themselves.

Crawling your first website
In order to scrape a website, we first need to download its web pages containing the
data of interest—a process known as crawling. There are a number of approaches
that can be used to crawl a website, and the appropriate choice will depend on the
structure of the target website. This chapter will explore how to download web
pages safely, and then introduce the following three common approaches to crawling
a website:

•	 Crawling a sitemap
•	 Iterating the database IDs of each web page
•	 Following web page links

Introduction to Web Scraping

[8]

Downloading a web page
To crawl web pages, we first need to download them. Here is a simple Python script
that uses Python's urllib2 module to download a URL:

import urllib2
def download(url):
 return urllib2.urlopen(url).read()

When a URL is passed, this function will download the web page and return the
HTML. The problem with this snippet is that when downloading the web page, we
might encounter errors that are beyond our control; for example, the requested page
may no longer exist. In these cases, urllib2 will raise an exception and exit the
script. To be safer, here is a more robust version to catch these exceptions:

import urllib2

def download(url):
 print 'Downloading:', url
 try:
 html = urllib2.urlopen(url).read()
 except urllib2.URLError as e:
 print 'Download error:', e.reason
 html = None
 return html

Now, when a download error is encountered, the exception is caught and the
function returns None.

Retrying downloads
Often, the errors encountered when downloading are temporary; for example, the
web server is overloaded and returns a 503 Service Unavailable error. For these
errors, we can retry the download as the server problem may now be resolved.
However, we do not want to retry downloading for all errors. If the server returns
404 Not Found, then the web page does not currently exist and the same request is
unlikely to produce a different result.

Chapter 1

[9]

The full list of possible HTTP errors is defined by the Internet Engineering
Task Force, and is available for viewing at https://tools.ietf.org/html/
rfc7231#section-6. In this document, we can see that the 4xx errors occur when
there is something wrong with our request and the 5xx errors occur when there is
something wrong with the server. So, we will ensure our download function only
retries the 5xx errors. Here is the updated version to support this:

def download(url, num_retries=2):
 print 'Downloading:', url
 try:
 html = urllib2.urlopen(url).read()
 except urllib2.URLError as e:
 print 'Download error:', e.reason
 html = None
 if num_retries > 0:
 if hasattr(e, 'code') and 500 <= e.code < 600:
 # recursively retry 5xx HTTP errors
 return download(url, num_retries-1)
 return html

Now, when a download error is encountered with a 5xx code, the download is
retried by recursively calling itself. The function now also takes an additional
argument for the number of times the download can be retried, which is set to two
times by default. We limit the number of times we attempt to download a web page
because the server error may not be resolvable. To test this functionality we can try
downloading http://httpstat.us/500, which returns the 500 error code:

>>> download('http://httpstat.us/500')

Downloading: http://httpstat.us/500

Download error: Internal Server Error

Downloading: http://httpstat.us/500

Download error: Internal Server Error

Downloading: http://httpstat.us/500

Download error: Internal Server Error

As expected, the download function now tries downloading the web page, and then
on receiving the 500 error, it retries the download twice before giving up.

https://tools.ietf.org/html/rfc7231#section-6
https://tools.ietf.org/html/rfc7231#section-6
http://httpstat.us/500

Introduction to Web Scraping

[10]

Setting a user agent
By default, urllib2 will download content with the Python-urllib/2.7 user agent,
where 2.7 is the version of Python. It would be preferable to use an identifiable
user agent in case problems occur with our web crawler. Also, some websites block
this default user agent, perhaps after they experienced a poorly made Python web
crawler overloading their server. For example, this is what http://www.meetup.
com/ currently returns for Python's default user agent:

So, to download reliably, we will need to have control over setting the user agent.
Here is an updated version of our download function with the default user agent
set to 'wswp' (which stands for Web Scraping with Python):

def download(url, user_agent='wswp', num_retries=2):
 print 'Downloading:', url
 headers = {'User-agent': user_agent}
 request = urllib2.Request(url, headers=headers)
 try:
 html = urllib2.urlopen(request).read()
 except urllib2.URLError as e:
 print 'Download error:', e.reason
 html = None
 if num_retries > 0:
 if hasattr(e, 'code') and 500 <= e.code < 600:
 # retry 5XX HTTP errors
 return download(url, user_agent, num_retries-1)
 return html

Now we have a flexible download function that can be reused in later examples to
catch errors, retry the download when possible, and set the user agent.

http://www.meetup.com/
http://www.meetup.com/

Chapter 1

[11]

Sitemap crawler
For our first simple crawler, we will use the sitemap discovered in the example
website's robots.txt to download all the web pages. To parse the sitemap, we will
use a simple regular expression to extract URLs within the <loc> tags. Note that a
more robust parsing approach called CSS selectors will be introduced in the next
chapter. Here is our first example crawler:

def crawl_sitemap(url):
 # download the sitemap file
 sitemap = download(url)
 # extract the sitemap links
 links = re.findall('<loc>(.*?)</loc>', sitemap)
 # download each link
 for link in links:
 html = download(link)
 # scrape html here
 # ...

Now, we can run the sitemap crawler to download all countries from the
example website:

>>> crawl_sitemap('http://example.webscraping.com/sitemap.xml')

Downloading: http://example.webscraping.com/sitemap.xml

Downloading: http://example.webscraping.com/view/Afghanistan-1

Downloading: http://example.webscraping.com/view/Aland-Islands-2

Downloading: http://example.webscraping.com/view/Albania-3

...

This works as expected, but as discussed earlier, Sitemap files often cannot be relied
on to provide links to every web page. In the next section, another simple crawler
will be introduced that does not depend on the Sitemap file.

ID iteration crawler
In this section, we will take advantage of weakness in the website structure to easily
access all the content. Here are the URLs of some sample countries:

•	 http://example.webscraping.com/view/Afghanistan-1

•	 http://example.webscraping.com/view/Australia-2

•	 http://example.webscraping.com/view/Brazil-3

http://example.webscraping.com/view/Afghanistan-1
http://example.webscraping.com/view/Australia-2
http://example.webscraping.com/view/Brazil-3

Introduction to Web Scraping

[12]

We can see that the URLs only differ at the end, with the country name (known
as a slug) and ID. It is a common practice to include a slug in the URL to help
with search engine optimization. Quite often, the web server will ignore the slug
and only use the ID to match with relevant records in the database. Let us check
whether this works with our example website by removing the slug and loading
http://example.webscraping.com/view/1:

The web page still loads! This is useful to know because now we can ignore the slug
and simply iterate database IDs to download all the countries. Here is an example
code snippet that takes advantage of this trick:

import itertools
for page in itertools.count(1):
 url = 'http://example.webscraping.com/view/-%d' % page
 html = download(url)
 if html is None:
 break
 else:
 # success - can scrape the result
 pass

http://example.webscraping.com/view/1

Chapter 1

[13]

Here, we iterate the ID until we encounter a download error, which we assume
means that the last country has been reached. A weakness in this implementation is
that some records may have been deleted, leaving gaps in the database IDs. Then,
when one of these gaps is reached, the crawler will immediately exit. Here is an
improved version of the code that allows a number of consecutive download errors
before exiting:

maximum number of consecutive download errors allowed
max_errors = 5
current number of consecutive download errors
num_errors = 0
for page in itertools.count(1):
 url = 'http://example.webscraping.com/view/-%d' % page
 html = download(url)
 if html is None:
 # received an error trying to download this webpage
 num_errors += 1
 if num_errors == max_errors:
 # reached maximum number of
 # consecutive errors so exit
 break
 else:
 # success - can scrape the result
 # ...
 num_errors = 0

The crawler in the preceding code now needs to encounter five consecutive
download errors to stop iterating, which decreases the risk of stopping the iteration
prematurely when some records have been deleted.

Iterating the IDs is a convenient approach to crawl a website, but is similar to the
sitemap approach in that it will not always be available. For example, some websites
will check whether the slug is as expected and if not return a 404 Not Found error.
Also, other websites use large nonsequential or nonnumeric IDs, so iterating is not
practical. For example, Amazon uses ISBNs as the ID for their books, which have at
least ten digits. Using an ID iteration with Amazon would require testing billions of
IDs, which is certainly not the most efficient approach to scraping their content.

Introduction to Web Scraping

[14]

Link crawler
So far, we have implemented two simple crawlers that take advantage of the
structure of our sample website to download all the countries. These techniques
should be used when available, because they minimize the required amount of web
pages to download. However, for other websites, we need to make our crawler act
more like a typical user and follow links to reach the content of interest.

We could simply download the entire website by following all links. However, this
would download a lot of web pages that we do not need. For example, to scrape user
account details from an online forum, only account pages need to be downloaded and
not discussion threads. The link crawler developed here will use a regular expression
to decide which web pages to download. Here is an initial version of the code:

import re

def link_crawler(seed_url, link_regex):
 """Crawl from the given seed URL following links matched by link_regex
 """
 crawl_queue = [seed_url]
 while crawl_queue:
 url = crawl_queue.pop()
 html = download(url)
 # filter for links matching our regular expression
 for link in get_links(html):
 if re.match(link_regex, link):
 crawl_queue.append(link)

def get_links(html):
 """Return a list of links from html
 """
 # a regular expression to extract all links from the webpage
 webpage_regex = re.compile('<a[^>]+href=["\'](.*?)["\']',
 re.IGNORECASE)
 # list of all links from the webpage
 return webpage_regex.findall(html)

To run this code, simply call the link_crawler function with the URL of the website
you want to crawl and a regular expression of the links that you need to follow. For
the example website, we want to crawl the index with the list of countries and the
countries themselves. The index links follow this format:

•	 http://example.webscraping.com/index/1

•	 http://example.webscraping.com/index/2

http://example.webscraping.com/index/1
http://example.webscraping.com/index/2

Chapter 1

[15]

The country web pages will follow this format:

•	 http://example.webscraping.com/view/Afghanistan-1

•	 http://example.webscraping.com/view/Aland-Islands-2

So a simple regular expression to match both types of web pages is /(index|view)/.
What happens when the crawler is run with these inputs? You would find that we
get the following download error:

>>> link_crawler('http://example.webscraping.com',
 'example.webscraping.com/(index|view)/')
Downloading: http://example.webscraping.com
Downloading: /index/1
Traceback (most recent call last):
 ...
ValueError: unknown url type: /index/1

The problem with downloading /index/1 is that it only includes the path of the
web page and leaves out the protocol and server, which is known as a relative link.
Relative links work when browsing because the web browser knows which web
page you are currently viewing. However, urllib2 is not aware of this context.
To help urllib2 locate the web page, we need to convert this link into an absolute
link, which includes all the details to locate the web page. As might be expected,
Python includes a module to do just this, called urlparse. Here is an improved
version of link_crawler that uses the urlparse module to create the absolute links:

import urlparse
def link_crawler(seed_url, link_regex):
 """Crawl from the given seed URL following links matched by link_regex
 """
 crawl_queue = [seed_url]
 while crawl_queue:
 url = crawl_queue.pop()
 html = download(url)
 for link in get_links(html):
 if re.match(link_regex, link):
 link = urlparse.urljoin(seed_url, link)
 crawl_queue.append(link)

http://example.webscraping.com/view/Afghanistan-1
http://example.webscraping.com/view/Aland-Islands-2

Introduction to Web Scraping

[16]

When this example is run, you will find that it downloads the web pages without
errors; however, it keeps downloading the same locations over and over. The reason
for this is that these locations have links to each other. For example, Australia links to
Antarctica and Antarctica links right back, and the crawler will cycle between these
forever. To prevent re-crawling the same links, we need to keep track of what has
already been crawled. Here is the updated version of link_crawler that stores the
URLs seen before, to avoid redownloading duplicates:

def link_crawler(seed_url, link_regex):
 crawl_queue = [seed_url]
 # keep track which URL's have seen before
 seen = set(crawl_queue)
 while crawl_queue:
 url = crawl_queue.pop()
 html = download(url)
 for link in get_links(html):
 # check if link matches expected regex
 if re.match(link_regex, link):
 # form absolute link
 link = urlparse.urljoin(seed_url, link)
 # check if have already seen this link
 if link not in seen:
 seen.add(link)
 crawl_queue.append(link)

When this script is run, it will crawl the locations and then stop as expected. We
finally have a working crawler!

Advanced features
Now, let's add some features to make our link crawler more useful for crawling
other websites.

Parsing robots.txt
Firstly, we need to interpret robots.txt to avoid downloading blocked URLs.
Python comes with the robotparser module, which makes this straightforward,
as follows:

>>> import robotparser

>>> rp = robotparser.RobotFileParser()

>>> rp.set_url('http://example.webscraping.com/robots.txt')

>>> rp.read()

>>> url = 'http://example.webscraping.com'

Chapter 1

[17]

>>> user_agent = 'BadCrawler'

>>> rp.can_fetch(user_agent, url)

False

>>> user_agent = 'GoodCrawler'

>>> rp.can_fetch(user_agent, url)

True

The robotparser module loads a robots.txt file and then provides a can_fetch()
function, which tells you whether a particular user agent is allowed to access a web
page or not. Here, when the user agent is set to 'BadCrawler', the robotparser
module says that this web page can not be fetched, as was defined in robots.txt
of the example website.

To integrate this into the crawler, we add this check in the crawl loop:

...
while crawl_queue:
 url = crawl_queue.pop()
 # check url passes robots.txt restrictions
 if rp.can_fetch(user_agent, url):
 ...
 else:
 print 'Blocked by robots.txt:', url

Supporting proxies
Sometimes it is necessary to access a website through a proxy. For example, Netflix
is blocked in most countries outside the United States. Supporting proxies with
urllib2 is not as easy as it could be (for a more user-friendly Python HTTP module,
try requests, documented at http://docs.python-requests.org/). Here is how
to support a proxy with urllib2:

proxy = ...
opener = urllib2.build_opener()
proxy_params = {urlparse.urlparse(url).scheme: proxy}
opener.add_handler(urllib2.ProxyHandler(proxy_params))
response = opener.open(request)

Here is an updated version of the download function to integrate this:

def download(url, user_agent='wswp', proxy=None, num_retries=2):
 print 'Downloading:', url
 headers = {'User-agent': user_agent}
 request = urllib2.Request(url, headers=headers)

http://docs.python-requests.org/

Introduction to Web Scraping

[18]

 opener = urllib2.build_opener()
 if proxy:
 proxy_params = {urlparse.urlparse(url).scheme: proxy}
 opener.add_handler(urllib2.ProxyHandler(proxy_params))
 try:
 html = opener.open(request).read()
 except urllib2.URLError as e:
 print 'Download error:', e.reason
 html = None
 if num_retries > 0:
 if hasattr(e, 'code') and 500 <= e.code < 600:
 # retry 5XX HTTP errors
 html = download(url, user_agent, proxy,
 num_retries-1)
 return html

Throttling downloads
If we crawl a website too fast, we risk being blocked or overloading the server.
To minimize these risks, we can throttle our crawl by waiting for a delay between
downloads. Here is a class to implement this:

class Throttle:
 """Add a delay between downloads to the same domain
 """
 def __init__(self, delay):
 # amount of delay between downloads for each domain
 self.delay = delay
 # timestamp of when a domain was last accessed
 self.domains = {}

 def wait(self, url):
 domain = urlparse.urlparse(url).netloc
 last_accessed = self.domains.get(domain)

 if self.delay > 0 and last_accessed is not None:
 sleep_secs = self.delay - (datetime.datetime.now() -
 last_accessed).seconds
 if sleep_secs > 0:
 # domain has been accessed recently
 # so need to sleep
 time.sleep(sleep_secs)
 # update the last accessed time
 self.domains[domain] = datetime.datetime.now()

Chapter 1

[19]

This Throttle class keeps track of when each domain was last accessed and will
sleep if the time since the last access is shorter than the specified delay. We can add
throttling to the crawler by calling throttle before every download:

throttle = Throttle(delay)
...
throttle.wait(url)
result = download(url, headers, proxy=proxy,
 num_retries=num_retries)

Avoiding spider traps
Currently, our crawler will follow any link that it has not seen before. However,
some websites dynamically generate their content and can have an infinite number
of web pages. For example, if the website has an online calendar with links provided
for the next month and year, then the next month will also have links to the next
month, and so on for eternity. This situation is known as a spider trap.

A simple way to avoid getting stuck in a spider trap is to track how many links
have been followed to reach the current web page, which we will refer to as depth.
Then, when a maximum depth is reached, the crawler does not add links from this
web page to the queue. To implement this, we will change the seen variable, which
currently tracks the visited web pages, into a dictionary to also record the depth they
were found at:

def link_crawler(..., max_depth=2):
 max_depth = 2
 seen = {}
 ...
 depth = seen[url]
 if depth != max_depth:
 for link in links:
 if link not in seen:
 seen[link] = depth + 1
 crawl_queue.append(link)

Now, with this feature, we can be confident that the crawl will always complete
eventually. To disable this feature, max_depth can be set to a negative number so
that the current depth is never equal to it.

Introduction to Web Scraping

[20]

Final version
The full source code for this advanced link crawler can be downloaded at
https://bitbucket.org/wswp/code/src/tip/chapter01/link_crawler3.py.
To test this, let us try setting the user agent to BadCrawler, which we saw earlier
in this chapter was blocked by robots.txt. As expected, the crawl is blocked and
finishes immediately:

>>> seed_url = 'http://example.webscraping.com/index'

>>> link_regex = '/(index|view)'

>>> link_crawler(seed_url, link_regex, user_agent='BadCrawler')

Blocked by robots.txt: http://example.webscraping.com/

Now, let's try using the default user agent and setting the maximum depth to 1 so
that only the links from the home page are downloaded:

>>> link_crawler(seed_url, link_regex, max_depth=1)

Downloading: http://example.webscraping.com//index

Downloading: http://example.webscraping.com/index/1

Downloading: http://example.webscraping.com/view/Antigua-and-Barbuda-10

Downloading: http://example.webscraping.com/view/Antarctica-9

Downloading: http://example.webscraping.com/view/Anguilla-8

Downloading: http://example.webscraping.com/view/Angola-7

Downloading: http://example.webscraping.com/view/Andorra-6

Downloading: http://example.webscraping.com/view/American-Samoa-5

Downloading: http://example.webscraping.com/view/Algeria-4

Downloading: http://example.webscraping.com/view/Albania-3

Downloading: http://example.webscraping.com/view/Aland-Islands-2

Downloading: http://example.webscraping.com/view/Afghanistan-1

As expected, the crawl stopped after downloading the first page of countries.

Summary
This chapter introduced web scraping and developed a sophisticated crawler that
will be reused in the following chapters. We covered the usage of external tools and
modules to get an understanding of a website, user agents, sitemaps, crawl delays,
and various crawling strategies.

In the next chapter, we will explore how to scrape data from the crawled web pages.

https://bitbucket.org/wswp/code/src/tip/chapter01/link_crawler3.py

[21]

Scraping the Data
In the preceding chapter, we built a crawler that follows links to download the
web pages we want. This is interesting but not useful—the crawler downloads a
web page, and then discards the result. Now, we need to make this crawler achieve
something by extracting data from each web page, which is known as scraping.

We will first cover a browser extension called Firebug Lite to examine a web page,
which you may already be familiar with if you have a web development background.
Then, we will walk through three approaches to extract data from a web page using
regular expressions, Beautiful Soup and lxml. Finally, the chapter will conclude with
a comparison of these three scraping alternatives.

Scraping the Data

[22]

Analyzing a web page
To understand how a web page is structured, we can try examining the source
code. In most web browsers, the source code of a web page can be viewed by
right-clicking on the page and selecting the View page source option:

The data we are interested in is found in this part of the HTML:

<table>
<tr id="places_national_flag__row"><td class="w2p_fl"><label
 for="places_national_flag"
 id="places_national_flag__label">National Flag:
 </label></td><td class="w2p_fw"><img
 src="/places/static/images/flags/gb.png" /></td><td
 class="w2p_fc"></td></tr>
...
<tr id="places_neighbours__row"><td class="w2p_fl"><label
 for="places_neighbours"
 id="places_neighbours__label">Neighbours: </label></td><td
 class="w2p_fw"><div>IE </div></td><td
 class="w2p_fc"></td></tr></table>

Chapter 2

[23]

This lack of whitespace and formatting is not an issue for a web browser to interpret,
but it is difficult for us. To help us interpret this table, we will use the Firebug Lite
extension, which is available for all web browsers at https://getfirebug.com/
firebuglite. Firefox users can install the full Firebug extension if preferred, but the
features we will use here, and in Chapter 6, Interacting with Forms on dynamic content,
are included in the Lite version.

Now, with Firebug Lite installed, we can right-click on the part of the web page
we are interested in scraping and select Inspect with Firebug Lite from the context
menu, as shown here:

https://getfirebug.com/firebuglite
https://getfirebug.com/firebuglite

Scraping the Data

[24]

This will open a panel showing the surrounding HTML hierarchy of the selected
element:

In the preceding screenshot, the country attribute was clicked on and the Firebug
panel makes it clear that the country area figure is included within a <td> element of
class w2p_fw, which is the child of a <tr> element of ID places_area__row. We now
have all the information needed to scrape the area data.

Three approaches to scrape a web page
Now that we understand the structure of this web page we will investigate three
different approaches to scraping its data, firstly with regular expressions, then with
the popular BeautifulSoup module, and finally with the powerful lxml module.

Regular expressions
If you are unfamiliar with regular expressions or need a reminder, there is a
thorough overview available at https://docs.python.org/2/howto/regex.html.

To scrape the area using regular expressions, we will first try matching the contents
of the <td> element, as follows:

>>> import re
>>> url = 'http://example.webscraping.com/view/United
 Kingdom-239'
>>> html = download(url)
>>> re.findall('<td class="w2p_fw">(.*?)</td>', html)

https://docs.python.org/2/howto/regex.html

Chapter 2

[25]

['',
 '244,820 square kilometres',
 '62,348,447',
 'GB',
 'United Kingdom',
 'London',
 'EU',
 '.uk',
 'GBP',
 'Pound',
 '44',
 '@# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA',
 '^(([A-Z]\\d{2}[A-Z]{2})|([A-Z]\\d{3}[A-Z]{2})|([A-Z]{2}\\d{2}
 [A-Z]{2})|([A-Z]{2}\\d{3}[A-Z]{2})|([A-Z]\\d[A-Z]\\d[A-Z]{2})
 |([A-Z]{2}\\d[A-Z]\\d[A-Z]{2})|(GIR0AA))$',
 'en-GB,cy-GB,gd',
 '<div>IE </div>']

This result shows that the <td class="w2p_fw"> tag is used for multiple country
attributes. To isolate the area, we can select the second element, as follows:

>>> re.findall('<td class="w2p_fw">(.*?)</td>', html)[1]
'244,820 square kilometres'

This solution works but could easily fail if the web page is updated. Consider if this
table is changed so that the population data is no longer available in the second row.
If we just need to scrape the data now, future changes can be ignored. However, if
we want to rescrape this data in future, we want our solution to be as robust against
layout changes as possible. To make this regular expression more robust, we can
include the parent <tr> element, which has an ID, so it ought to be unique:

>>> re.findall('<tr id="places_area__row"><td
 class="w2p_fl"><label for="places_area"
 id="places_area__label">Area: </label></td><td
 class="w2p_fw">(.*?)</td>', html)
['244,820 square kilometres']

This iteration is better; however, there are many other ways the web page could
be updated in a way that still breaks the regular expression. For example, double
quotation marks might be changed to single, extra space could be added between the
<td> tags, or the area_label could be changed. Here is an improved version to try
and support these various possibilities:

>>> re.findall('<tr
 id="places_area__row">.*?<td\s*class=["\']w2p_fw["\']>(.*?)
 </td>', html)
['244,820 square kilometres']

Scraping the Data

[26]

This regular expression is more future-proof but is difficult to construct, becoming
unreadable. Also, there are still other minor layout changes that would break it, such
as if a title attribute was added to the <td> tag.

From this example, it is clear that regular expressions provide a quick way to
scrape data but are too brittle and will easily break when a web page is updated.
Fortunately, there are better solutions.

Beautiful Soup
Beautiful Soup is a popular module that parses a web page and then provides a
convenient interface to navigate content. If you do not already have this module,
the latest version can be installed using this command:

pip install beautifulsoup4

The first step with Beautiful Soup is to parse the downloaded HTML into a soup
document. Most web pages do not contain perfectly valid HTML and Beautiful Soup
needs to decide what is intended. For example, consider this simple web page of a
list with missing attribute quotes and closing tags:

 <ul class=country>
 Area
 Population

If the Population item is interpreted as a child of the Area item instead of the list,
we could get unexpected results when scraping. Let us see how Beautiful Soup
handles this:

>>> from bs4 import BeautifulSoup
>>> broken_html = '<ul class=country>AreaPopulation'
>>> # parse the HTML
>>> soup = BeautifulSoup(broken_html, 'html.parser')
>>> fixed_html = soup.prettify()
>>> print fixed_html
<html>
 <body>
 <ul class="country">
 Area
 Population

 </body>
</html>

Chapter 2

[27]

Here, BeautifulSoup was able to correctly interpret the missing attribute quotes and
closing tags, as well as add the <html> and <body> tags to form a complete HTML
document. Now, we can navigate to the elements we want using the find() and
find_all() methods:

>>> ul = soup.find('ul', attrs={'class':'country'})
>>> ul.find('li') # returns just the first match
Area
>>> ul.find_all('li') # returns all matches
[Area, Population]

For a full list of available methods and parameters, the official
documentation is available at http://www.crummy.com/
software/BeautifulSoup/bs4/doc/.

Now, using these techniques, here is a full example to extract the area from our
example country:

>>> from bs4 import BeautifulSoup
>>> url = 'http://example.webscraping.com/places/view/
 United-Kingdom-239'
>>> html = download(url)
>>> soup = BeautifulSoup(html)
>>> # locate the area row
>>> tr = soup.find(attrs={'id':'places_area__row'})
>>> td = tr.find(attrs={'class':'w2p_fw'}) # locate the area tag
>>> area = td.text # extract the text from this tag
>>> print area
244,820 square kilometres

This code is more verbose than regular expressions but easier to construct and
understand. Also, we no longer need to worry about problems in minor layout
changes, such as extra whitespace or tag attributes.

Lxml
Lxml is a Python wrapper on top of the libxml2 XML parsing library written in C,
which helps make it faster than Beautiful Soup but also harder to install on some
computers. The latest installation instructions are available at http://lxml.de/
installation.html.

http://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://lxml.de/installation.html
http://lxml.de/installation.html

Scraping the Data

[28]

As with Beautiful Soup, the first step is parsing the potentially invalid HTML into a
consistent format. Here is an example of parsing the same broken HTML:

>>> import lxml.html
>>> broken_html = '<ul class=country>AreaPopulation'
>>> tree = lxml.html.fromstring(broken_html) # parse the HTML
>>> fixed_html = lxml.html.tostring(tree, pretty_print=True)
>>> print fixed_html
<ul class="country">
 Area
 Population

As with BeautifulSoup, lxml was able to correctly parse the missing attribute
quotes and closing tags, although it did not add the <html> and <body> tags.

After parsing the input, lxml has a number of different options to select elements,
such as XPath selectors and a find() method similar to Beautiful Soup. Instead, we
will use CSS selectors here and in future examples, because they are more compact
and can be reused later in Chapter 5, Dynamic Content when parsing dynamic content.
Also, some readers will already be familiar with them from their experience with
jQuery selectors.

Here is an example using the lxml CSS selectors to extract the area data:

>>> tree = lxml.html.fromstring(html)
>>> td = tree.cssselect('tr#places_area__row > td.w2p_fw')[0]
>>> area = td.text_content()
>>> print area
244,820 square kilometres

The key line with the CSS selector is highlighted. This line finds a table row element
with the places_area__row ID, and then selects the child table data tag with the
w2p_fw class.

CSS selectors
CSS selectors are patterns used for selecting elements. Here are some examples of
common selectors you will need:

Select any tag: *
Select by tag <a>: a
Select by class of "link": .link
Select by tag <a> with class "link": a.link
Select by tag <a> with ID "home": a#home
Select by child of tag <a>: a > span

Chapter 2

[29]

Select by descendant of tag <a>: a span
Select by tag <a> with attribute title of "Home": a[title=Home]

The CSS3 specification was produced by the W3C and is
available for viewing at http://www.w3.org/TR/2011/
REC-css3-selectors-20110929/.

Lxml implements most of CSS3, and details on unsupported features are available at
https://pythonhosted.org/cssselect/#supported-selectors.

Note that, internally, lxml converts the CSS selectors into an equivalent XPath.

Comparing performance
To help evaluate the trade-offs of the three scraping approaches described in this
chapter, it would help to compare their relative efficiency. Typically, a scraper would
extract multiple fields from a web page. So, for a more realistic comparison, we will
implement extended versions of each scraper that extract all the available data from a
country's web page. To get started, we need to return to Firebug to check the format
of the other country features, as shown here:

http://www.w3.org/TR/2011/REC-css3-selectors-20110929/
http://www.w3.org/TR/2011/REC-css3-selectors-20110929/
https://pythonhosted.org/cssselect/#supported-selectors

Scraping the Data

[30]

Firebug shows that each table row has an ID starting with places_ and ending with
__row. Then, the country data is contained within these rows in the same format
as the earlier area example. Here are implementations that use this information to
extract all of the available country data:

FIELDS = ('area', 'population', 'iso', 'country', 'capital',
 'continent', 'tld', 'currency_code', 'currency_name', 'phone',
 'postal_code_format', 'postal_code_regex', 'languages',
 'neighbours')

import re
def re_scraper(html):
 results = {}
 for field in FIELDS:
 results[field] = re.search('<tr id="places_%s__row">.*?<td
 class="w2p_fw">(.*?)</td>' % field, html).groups()[0]
 return results

from bs4 import BeautifulSoup
def bs_scraper(html):
 soup = BeautifulSoup(html, 'html.parser')
 results = {}
 for field in FIELDS:
 results[field] = soup.find('table').find('tr',
 id='places_%s__row' % field).find('td',
 class_='w2p_fw').text
 return results

import lxml.html
def lxml_scraper(html):
 tree = lxml.html.fromstring(html)
 results = {}
 for field in FIELDS:
 results[field] = tree.cssselect('table > tr#places_%s__row
 > td.w2p_fw' % field)[0].text_content()
 return results

Scraping results
Now that we have complete implementations for each scraper, we will test their
relative performance with this snippet:

import time
NUM_ITERATIONS = 1000 # number of times to test each scraper
html = download('http://example.webscraping.com/places/view/

Chapter 2

[31]

 United-Kingdom-239')
for name, scraper in [('Regular expressions', re_scraper),
 ('BeautifulSoup', bs_scraper),
 ('Lxml', lxml_scraper)]:
 # record start time of scrape
 start = time.time()
 for i in range(NUM_ITERATIONS):
 if scraper == re_scraper:
 re.purge()
 result = scraper(html)
 # check scraped result is as expected
 assert(result['area'] == '244,820 square kilometres')
 # record end time of scrape and output the total
 end = time.time()
 print '%s: %.2f seconds' % (name, end – start)

This example will run each scraper 1000 times, check whether the scraped results are as
expected, and then print the total time taken. The download function used here is the
one defined in the preceding chapter. Note the highlighted line calling re.purge(); by
default, the regular expression module will cache searches and this cache needs to be
cleared to make a fair comparison with the other scraping approaches.

Here are the results from running this script on my computer:

$ python performance.py

Regular expressions: 5.50 seconds

BeautifulSoup: 42.84 seconds

Lxml: 7.06 seconds

The results on your computer will quite likely be different because of the different
hardware used. However, the relative difference between each approach should be
equivalent. The results show that Beautiful Soup is over six times slower than the
other two approaches when used to scrape our example web page. This result could
be anticipated because lxml and the regular expression module were written in C,
while BeautifulSoup is pure Python. An interesting fact is that lxml performed
comparatively well with regular expressions, since lxml has the additional overhead
of having to parse the input into its internal format before searching for elements.
When scraping many features from a web page, this initial parsing overhead is
reduced and lxml becomes even more competitive. It really is an amazing module!

Scraping the Data

[32]

Overview
The following table summarizes the advantages and disadvantages of each approach
to scraping:

Scraping
approach

Performance Ease of use Ease to install

Regular
expressions

Fast Hard Easy (built-in module)

Beautiful
Soup

Slow Easy Easy (pure Python)

Lxml Fast Easy Moderately difficult

If the bottleneck to your scraper is downloading web pages rather than extracting
data, it would not be a problem to use a slower approach, such as Beautiful Soup.
Or, if you just need to scrape a small amount of data and want to avoid additional
dependencies, regular expressions might be an appropriate choice. However, in
general, lxml is the best choice for scraping, because it is fast and robust, while
regular expressions and Beautiful Soup are only useful in certain niches.

Adding a scrape callback to the link crawler
Now that we know how to scrape the country data, we can integrate this into the link
crawler built in the preceding chapter. To allow reusing the same crawling code to
scrape multiple websites, we will add a callback parameter to handle the scraping.
A callback is a function that will be called after certain events (in this case, after
a web page has been downloaded). This scrape callback will take a url and html
as parameters and optionally return a list of further URLs to crawl. Here is the
implementation, which is simple in Python:

def link_crawler(..., scrape_callback=None):
 ...
 links = []
 if scrape_callback:
 links.extend(scrape_callback(url, html) or [])
 ...

The new code for the scraping callback function are highlighted in the preceding
snippet, and the full source code for this version of the link crawler is available at
https://bitbucket.org/wswp/code/src/tip/chapter02/link_crawler.py.

https://bitbucket.org/wswp/code/src/tip/chapter02/link_crawler.py

Chapter 2

[33]

Now, this crawler can be used to scrape multiple websites by customizing the
function passed to scrape_callback. Here is a modified version of the lxml
example scraper that can be used for the callback function:

def scrape_callback(url, html):
 if re.search('/view/', url):
 tree = lxml.html.fromstring(html)
 row = [tree.cssselect('table > tr#places_%s__row >
 td.w2p_fw' % field)[0].text_content() for field in
 FIELDS]
 print url, row

This callback function would scrape the country data and print it out. Usually,
when scraping a website, we want to reuse the data, so we will extend this example
to save results to a CSV spreadsheet, as follows:

import csv
class ScrapeCallback:
 def __init__(self):
 self.writer = csv.writer(open('countries.csv', 'w'))
 self.fields = ('area', 'population', 'iso', 'country',
 'capital', 'continent', 'tld', 'currency_code',
 'currency_name', 'phone', 'postal_code_format',
 'postal_code_regex', 'languages',
 'neighbours')
 self.writer.writerow(self.fields)

 def __call__(self, url, html):
 if re.search('/view/', url):
 tree = lxml.html.fromstring(html)
 row = []
 for field in self.fields:
 row.append(tree.cssselect('table >
 tr#places_{}__row >
 td.w2p_fw'.format(field))
 [0].text_content())
 self.writer.writerow(row)

To build this callback, a class was used instead of a function so that the state of the
csv writer could be maintained. This csv writer is instantiated in the constructor, and
then written to multiple times in the __call__ method. Note that __call__ is a special
method that is invoked when an object is "called" as a function, which is how the
cache_callback is used in the link crawler. This means that scrape_callback(url,
html) is equivalent to calling scrape_callback.__call__(url, html). For further
details on Python's special class methods, refer to https://docs.python.org/2/
reference/datamodel.html#special-method-names.

https://docs.python.org/2/reference/datamodel.html#special-method-names
https://docs.python.org/2/reference/datamodel.html#special-method-names

Scraping the Data

[34]

Here is how to pass this callback to the link crawler:

link_crawler('http://example.webscraping.com/', '/(index|view)',
 max_depth=-1, scrape_callback=ScrapeCallback())

Now, when the crawler is run with this callback, it will save results to a CSV file
that can be viewed in an application such as Excel or LibreOffice:

Success! We have completed our first working scraper.

Summary
In this chapter, we walked through a variety of ways to scrape data from a
web page. Regular expressions can be useful for a one-off scrape or to avoid the
overhead of parsing the entire web page, and BeautifulSoup provides a high-level
interface while avoiding any difficult dependencies. However, in general, lxml will
be the best choice because of its speed and extensive functionality, so we will use it
in future examples.

In the next chapter we will introduce caching, which allows us to save web pages so
that they only need be downloaded the first time a crawler is run.

[35]

Caching Downloads
In the preceding chapter, we learned how to scrape data from crawled web pages
and save the results to a spreadsheet. What if we now want to scrape an additional
field, such as the flag URL? To scrape additional fields, we would need to download
the entire website again. This is not a significant obstacle for our small example
website. However, other websites can have millions of web pages that would take
weeks to recrawl. The solution presented in this chapter is to cache all the crawled
web pages so that they only need to be downloaded once.

Adding cache support to the link crawler
To support caching, the download function developed in Chapter 1, Introduction to
Web Scraping, needs to be modified to check the cache before downloading a URL.
We also need to move throttling inside this function and only throttle when a
download is made, and not when loading from a cache. To avoid the need to pass
various parameters for every download, we will take this opportunity to refactor the
download function into a class, so that parameters can be set once in the constructor
and reused multiple times. Here is the updated implementation to support this:

class Downloader:
 def __init__(self, delay=5,
 user_agent='wswp', proxies=None,
 num_retries=1, cache=None):
 self.throttle = Throttle(delay)
 self.user_agent = user_agent
 self.proxies = proxies
 self.num_retries = num_retries
 self.cache = cache

 def __call__(self, url):
 result = None

Caching Downloads

[36]

 if self.cache:
 try:
 result = self.cache[url]
 except KeyError:
 # url is not available in cache
 pass
 else:
 if self.num_retries > 0 and \
 500 <= result['code'] < 600:
 # server error so ignore result from cache
 # and re-download
 result = None
 if result is None:
 # result was not loaded from cache
 # so still need to download
 self.throttle.wait(url)
 proxy = random.choice(self.proxies) if self.proxies
 else None
 headers = {'User-agent': self.user_agent}
 result = self.download(url, headers, proxy,
 self.num_retries)
 if self.cache:
 # save result to cache
 self.cache[url] = result
 return result['html']

 def download(self, url, headers, proxy, num_retries,
 data=None):
 ...
 return {'html': html, 'code': code}

The full source code for this class is available at
https://bitbucket.org/wswp/code/src/tip/
chapter03/downloader.py

The interesting part of the Download class used in the preceding code is in the
__call__ special method, where the cache is checked before downloading. This
method first checks whether the cache is defined. If so, it checks whether this
URL was previously cached. If it is cached, it checks whether a server error was
encountered in the previous download. Finally, if no server error was encountered,
the cached result can be used. If any of these checks fail, the URL needs to be
downloaded as usual, and the result will be added to the cache. The download
method of this class is the same as the previous download function, except now it
returns the HTTP status code along with the downloaded HTML so that error codes
can be stored in the cache. If you just want a simple download without throttling or
caching, this method can be used instead of __call__.

https://bitbucket.org/wswp/code/src/tip/chapter03/downloader.py
https://bitbucket.org/wswp/code/src/tip/chapter03/downloader.py

Chapter 3

[37]

The cache class is used here by calling result = cache[url] to load from
cache and cache[url] = result to save to cache, which is a convenient interface
that you should be familiar with from Python's builtin dictionary data type. To
support this interface, our cache class will need to define the __getitem__() and
__setitem__() special class methods.

The link crawler also needs to be slightly updated to support caching by adding the
cache parameter, removing the throttle, and replacing the download function with
the new class, as shown in the following code:

def link_crawler(..., cache=None):
 crawl_queue = [seed_url]
 seen = {seed_url: 0}
 num_urls = 0
 rp = get_robots(seed_url)
 D = Downloader(delay=delay, user_agent=user_agent,
 proxies=proxies, num_retries=num_retries, cache=cache)

 while crawl_queue:
 url = crawl_queue.pop()
 depth = seen[url]
 # check url passes robots.txt restrictions
 if rp.can_fetch(user_agent, url):
 html = D(url)
 links = []
 ...

Now, our web scraping infrastructure is prepared, and we can start building the
actual cache.

Disk cache
To cache downloads, we will first try the obvious solution and save web pages to
the filesystem. To do this, we will need a way to map URLs to a safe cross-platform
filename. The following table lists the limitations for some popular filesystems:

Operating system File system Invalid filename
characters

Maximum filename
length

Linux Ext3/Ext4 / and \0 255 bytes
OS X HFS Plus : and \0 255 UTF-16 code units
Windows NTFS \, /, ?, :, *, ", >, <, and | 255 characters

Caching Downloads

[38]

To keep our file path safe across these filesystems, it needs to be restricted to
numbers, letters, basic punctuation, and replace all other characters with an
underscore, as shown in the following code:

>>> import re
>>> url = 'http://example.webscraping.com/default/view/
 Australia-1'
>>> re.sub('[^/0-9a-zA-Z\-.,;_]', '_', url)
'http_//example.webscraping.com/default/view/Australia-1'

Additionally, the filename and the parent directories need to be restricted to 255
characters (as shown in the following code) to meet the length limitations described
in the preceding table:

>>> filename = '/'.join(segment[:255] for segment in
 filename.split('/'))

There is also an edge case that needs to be considered, where the URL path ends
with a slash (/), and the empty string after this slash would be an invalid filename.
However, removing this slash to use the parent for the filename would prevent
saving other URLs. Consider the following URLs:

•	 http://example.webscraping.com/index/

•	 http://example.webscraping.com/index/1

If you need to save these, then index needs to be a directory to save the child path
for 1. The solution our disk cache will use is appending index.html to the filename
when the URL path ends with a slash. The same applies when the URL path is
empty. To parse the URL, we will use the urlparse.urlsplit() function, which
splits a URL into its components:

>>> import urlparse
>>> components =
 urlparse.urlsplit('http://example.webscraping.com/index/')
>>> print components
SplitResult(scheme='http', netloc='example.webscraping.com',
 path='/index/', query='', fragment='')
>>> print components.path
'/index/'

This function provides a convenient interface to parse and manipulate URLs. Here is
an example using this module to append index.html for this edge case:

>>> path = components.path
>>> if not path:
>>> path = '/index.html'
>>> elif path.endswith('/'):
>>> path += 'index.html'

http://example.webscraping.com/index/
http://example.webscraping.com/index/1

Chapter 3

[39]

>>> filename = components.netloc + path + components.query
>>> filename
'example.webscraping.com/index/index.html'

Implementation
In the preceding section, we covered the limitations of the filesystem that need to
be considered when building a disk-based cache, namely the restriction on which
characters can be used, the filename length, and making sure a file and directory
are not created in the same location. Together, using this logic to map a URL to a
filename will form the main part of the disk cache. Here is an initial implementation
of the DiskCache class:

import os
import re
import urlparse

class DiskCache:
 def __init__(self, cache_dir='cache'):
 self.cache_dir = cache_dir
 self.max_length = max_length

 def url_to_path(self, url):
 """Create file system path for this URL
 """
 components = urlparse.urlsplit(url)
 # append index.html to empty paths
 path = components.path
 if not path:
 path = '/index.html'
 elif path.endswith('/'):
 path += 'index.html'
 filename = components.netloc + path + components.query
 # replace invalid characters
 filename = re.sub('[^/0-9a-zA-Z\-.,;_]', '_', filename)
 # restrict maximum number of characters
 filename = '/'.join(segment[:250] for segment in
 filename.split('/'))
 return os.path.join(self.cache_dir, filename)

The class constructor shown in the preceding code takes a parameter to set the
location of the cache, and then the url_to_path method applies the filename
restrictions that have been discussed so far. Now we just need methods to load and
save the data with this filename. Here is an implementation of these missing methods:

import pickle
class DiskCache:
 ...

Caching Downloads

[40]

 def __getitem__(self, url):
 """Load data from disk for this URL
 """
 path = self.url_to_path(url)
 if os.path.exists(path):
 with open(path, 'rb') as fp:
 return pickle.load(fp)
 else:
 # URL has not yet been cached
 raise KeyError(url + ' does not exist')

 def __setitem__(self, url, result):
 """Save data to disk for this url
 """
 path = self.url_to_path(url)
 folder = os.path.dirname(path)
 if not os.path.exists(folder):
 os.makedirs(folder)
 with open(path, 'wb') as fp:
 fp.write(pickle.dumps(result))

In __setitem__(), the URL is mapped to a safe filename using url_to_path(),
and then the parent directory is created if necessary. The pickle module is used to
convert the input to a string, which is then saved to disk. Also, in __getitem__(), the
URL is mapped to a safe filename. Then, if the filename exists, the content is loaded
and unpickled to restore the original data type. If the filename does not exist, that is,
there is no data in the cache for this URL, a KeyError exception is raised.

Testing the cache
Now we are ready to try DiskCache with our crawler by passing it to the cache
callback. The source code for this class is available at https://bitbucket.org/
wswp/code/src/tip/chapter03/disk_cache.py and the cache can be tested with
the link crawler by running this script:

$ time python disk_cache.py

Downloading: http://example.webscraping.com

Downloading: http://example.webscraping.com/view/Afghanistan-1

...

Downloading: http://example.webscraping.com/view/Zimbabwe-252

23m38.289s

https://bitbucket.org/wswp/code/src/tip/chapter03/disk_cache.py
https://bitbucket.org/wswp/code/src/tip/chapter03/disk_cache.py

Chapter 3

[41]

The first time this command is run, the cache is empty so that all the web pages are
downloaded normally. However, when we run this script a second time, the pages
will be loaded from the cache so that the crawl should be completed more quickly, as
shown here:

$ time python disk_cache.py

0m0.186s

As expected, this time the crawl completed much faster. While downloading with an
empty cache on my computer, the crawler took over 23 minutes, while the second
time with a full cache in just 0.186 seconds (over 7000 times faster!). The exact time
on your computer will differ, depending on your hardware. However, the disk cache
will undoubtedly be faster.

Saving disk space
To minimize the amount of disk space required for our cache, we can compress the
downloaded HTML file. This is straightforward to implement by compressing the
pickled string with zlib before saving to disk, as follows:

fp.write(zlib.compress(pickle.dumps(result)))

Then, decompress the data loaded from the disk, as follows:

return pickle.loads(zlib.decompress(fp.read()))

With this addition of compressing each web page, the cache is reduced from 4.4 MB to
2.3 MB and takes 0.212 seconds to crawl the cached example website on my computer.
This is marginally longer than 0.186 seconds with the uncompressed cache. So, if
speed is important for your project, you may want to disable compression.

Expiring stale data
Our current version of the disk cache will save a value to disk for a key, and then
return it whenever this key is requested in future. This functionality may not be ideal
when caching web pages because online content changes, so the data in our cache
would become out of date. In this section, we will add an expiration time to our
cached data so that the crawler knows when to redownload a web page. To support
storing the timestamp of when each web page was cached is straightforward. Here
is an implementation of this:

from datetime import datetime, timedelta

class DiskCacke:
 def __init__(self, ..., expires=timedelta(days=30)):

Caching Downloads

[42]

 ...
 self.expires = expires

 def __getitem__(self, url):
 """Load data from disk for this URL
 """
 ...
 with open(path, 'rb') as fp:
 result, timestamp =
 pickle.loads(zlib.decompress(fp.read()))
 if self.has_expired(timestamp):
 raise KeyError(url + ' has expired')
 return result
 else:
 # URL has not yet been cached
 raise KeyError(url + ' does not exist')

 def __setitem__(self, url, result):
 """Save data to disk for this url
 """
 ...
 timestamp = datetime.utcnow()
 data = pickle.dumps((result, timestamp))
 with open(path, 'wb') as fp:
 fp.write(zlib.compress(data))

 def has_expired(self, timestamp):
 """Return whether this timestamp has expired
 """
 return datetime.utcnow() > timestamp + self.expires

In the constructor, the default expiration time is set to 30 days with a timedelta
object. Then, the __set__ method saves the current timestamp in the pickled data
and the __get__ method compares this to the expiration time. To test this expiration,
we can try a short timeout of 5 seconds, as shown here:

 >>> cache = DiskCache(expires=timedelta(seconds=5))
 >>> url = 'http://example.webscraping.com'
 >>> result = {'html': '...'}
 >>> cache[url] = result
 >>> cache[url]
 {'html': '...'}
 >>> import time; time.sleep(5)
 >>> cache[url]
 Traceback (most recent call last):
 ...
 KeyError: 'http://example.webscraping.com has expired'

Chapter 3

[43]

As expected, the cached result is initially available, and then, after sleeping for 5 seconds,
calling the same key raises a KeyError to show this cached download has expired.

Drawbacks
Our disk-based caching system was relatively simple to implement, does not depend
on installing additional modules, and the results are viewable in our file manager.
However, it has the drawback of depending on the limitations of the local filesystem.
Earlier in this chapter, we applied various restrictions to map the URL to a safe
filename, but an unfortunate consequence of this is that some URLs will map to
the same filename. For example, replacing unsupported characters in the following
URLs would map them all to the same filename:

•	 http://example.com/?a+b

•	 http://example.com/?a*b

•	 http://example.com/?a=b

•	 http://example.com/?a!b

This means that if one of these URLs were cached, it would look like the other three
URLs were cached too, because they map to the same filename. Alternatively, if
some long URLs only differed after the 255th character, the chomped versions would
also map to the same filename. This is a particularly important problem since there is
no defined limit on the maximum length of a URL. Although, in practice, URLs over
2000 characters are rare and older versions of Internet Explorer did not support over
2083 characters.

A potential solution to avoid these limitations is by taking the hash of the URL and
using this as the filename. This may be an improvement - however, then we will
eventually face a larger problem that many filesystems have; that is, a limit on the
number of files allowed per volume and per directory. If this cache is used in a FAT32
filesystem, the maximum number of files allowed per directory is just 65,535. This
limitation could be avoided by splitting the cache across multiple directories, however
filesystems can also limit the total number of files. My current ext4 partition supports
a little over 15 million files, whereas a large website may have excess of 100 million
web pages. Unfortunately the DiskCache approach has too many limitations to be of
general use. What we need instead is to combine the multiple cached web pages into
a single file and index them with a B+ tree or similar. Instead of implementing our
own, we will use an existing database in the next section.

Caching Downloads

[44]

Database cache
To avoid the anticipated limitations to our disk-based cache, we will now build
our cache on top of an existing database system. When crawling, we may need to
cache massive amounts of data and will not need any complex joins, so we will use
a NoSQL database, which is easier to scale than a traditional relational database.
Specifically, our cache will use MongoDB, which is currently the most popular
NoSQL database.

What is NoSQL?
NoSQL stands for Not Only SQL and is a relatively new approach to database
design. The traditional relational model used a fixed schema and splits the data into
tables. However, with large datasets, the data is too big for a single server and needs
to be scaled across multiple servers. This does not fit well with the relational model
because, when querying multiple tables, the data will not necessarily be available on
the same server. NoSQL databases, on the other hand, are generally schemaless and
designed from the start to shard seamlessly across servers. There have been multiple
approaches to achieve this that fit under the NoSQL umbrella. There are column data
stores, such as HBase; key-value stores, such as Redis; document-oriented databases,
such as MongoDB; and graph databases, such as Neo4j.

Installing MongoDB
MongoDB can be downloaded from https://www.mongodb.org/downloads.
Then, the Python wrapper needs to be installed separately using this command:

pip install pymongo

To test whether the installation is working, start MongoDB locally using this
command:

$ mongod -dbpath .

Then, try connecting to MongoDB from Python using the default MongoDB port:

>>> from pymongo import MongoClient
>>> client = MongoClient('localhost', 27017)

https://www.mongodb.org/downloads

Chapter 3

[45]

Overview of MongoDB
Here is an example of how to save some data to MongoDB and then load it:

>>> url = 'http://example.webscraping.com/view/United-Kingdom-239'
>>> html = '...'
>>> db = client.cache
>>> db.webpage.insert({'url': url, 'html': html})
ObjectId('5518c0644e0c87444c12a577')
>>> db.webpage.find_one(url=url)
{u'_id': ObjectId('5518c0644e0c87444c12a577'),
u'html': u'...',
u'url': u'http://example.webscraping.com/view/United-Kingdom-239'}

A problem with the preceding example is that if we now insert another document
with the same URL, MongoDB will happily insert it for us, as follows:

>>> db.webpage.insert({'url': url, 'html': html})
>>> db.webpage.find(url=url).count()
2

Now we have multiple records for the same URL when we are only interested in
storing the latest data. To prevent duplicates, we can set the ID to the URL and
perform upsert, which means updating the existing record if it exists; otherwise,
insert a new one, as shown here:

>>> self.db.webpage.update({'_id': url}, {'$set': {'html': html}},
 upsert=True)
>>> db.webpage.update({'_id': url}, {'$set': {'html': ''}},
 upsert=True)
>>> db.webpage.find_one({'_id': url})
{u'_id': u'http://example.webscraping.com/view/
 United-Kingdom-239', u'html': u'...'}

Now, when we try inserting a record with the same URL as shown in the following
code, the content will be updated instead of creating duplicates:

>>> new_html = '<html></html>'
>>> db.webpage.update({'_id': example_url}, {'$set': {'html': new_
html}}, upsert=True)
>>> db.webpage.find_one({'_id': url})
{u'_id': u'http://example.webscraping.com/view/United-Kingdom-239',
u'html': u'<html></html>'}
>>> db.webpage.find({'_id': url}).count()
1

Caching Downloads

[46]

We can see that after adding this record, the HTML has been updated and the
number of records for this URL is still 1.

The official MongoDB documentation, which is available
at http://docs.mongodb.org/manual/, covers these
features and others in detail.

MongoDB cache implementation
Now we are ready to build our cache on MongoDB using the same class interface as
the earlier DiskCache class:

from datetime import datetime, timedelta
from pymongo import MongoClient

class MongoCache:
 def __init__(self, client=None, expires=timedelta(days=30)):
 # if a client object is not passed then try
 # connecting to mongodb at the default localhost port
 self.client = MongoClient('localhost', 27017)
 if client is None else client
 # create collection to store cached webpages,
 # which is the equivalent of a table
 # in a relational database
 self.db = client.cache
 # create index to expire cached webpages
 self.db.webpage.create_index('timestamp',
 expireAfterSeconds=expires.total_seconds())

 def __getitem__(self, url):
 """Load value at this URL
 """
 record = self.db.webpage.find_one({'_id': url})
 if record:
 return record['result']
 else:
 raise KeyError(url + ' does not exist')

 def __setitem__(self, url, result):
 """Save value for this URL
 """
 record = {'result': result, 'timestamp':
 datetime.utcnow()}
 self.db.webpage.update({'_id': url}, {'$set': record},
 upsert=True)

http://docs.mongodb.org/manual/

Chapter 3

[47]

The __getitem__ and __setitem__ methods here should be familiar to you from
the discussion on how to prevent duplicates in the preceding section. You may have
also noticed that a timestamp index was created in the constructor. This is a handy
MongoDB feature that will automatically delete records in a specified number of
seconds after the given timestamp. This means that we do not need to manually
check whether a record is still valid, as in the DiskCache class. Let's try it out with an
empty timedelta object so that the record should be deleted immediately:

>>> cache = MongoCache(expires=timedelta())
>>> cache[url] = result
>>> cache[url]

The record is still there; it seems that our cache expiration is not working. The reason
for this is that MongoDB runs a background task to check for expired records every
minute, so this record has not yet been deleted. If we wait for a minute, we would
find that the cache expiration is working:

>>> import time; time.sleep(60)
>>> cache[url]
Traceback (most recent call last):
...
KeyError: 'http://example.webscraping.com/view/United-Kingdom-239
 does not exist'

This means that our MongoDB cache will not expire records at exactly the time
given, and there will be up to a 1 minute delay. However, since typically a cache
expiration of several weeks or months would be used, this relatively small additional
delay should not be an issue.

Compression
To make this cache feature complete with the original disk cache, we need to add one
final feature: compression. This can be achieved in a similar way as the disk cache by
pickling the data and then compressing with zlib, as follows:

import pickle
import zlib
from bson.binary import Binary

class MongoCache:
 def __getitem__(self, url):
 record = self.db.webpage.find_one({'_id': url})
 if record:
 return pickle.loads(zlib.decompress(record['result']))
 else:

Caching Downloads

[48]

 raise KeyError(url + ' does not exist')

 def __setitem__(self, url, result):
 record = {
 'result': Binary(zlib.compress(pickle.dumps(result))),
 'timestamp': datetime.utcnow()
 }
 self.db.webpage.update(
 {'_id': url}, {'$set': record}, upsert=True)

Testing the cache
The source code for the MongoCache class is available at https://bitbucket.org/
wswp/code/src/tip/chapter03/mongo_cache.py and as with DiskCache, the
cache can be tested with the link crawler by running this script:

$ time python mongo_cache.py

http://example.webscraping.com

http://example.webscraping.com/view/Afghanistan-1

...

http://example.webscraping.com/view/Zimbabwe-252

23m40.302s

$ time python mongo_cache.py

0.378s

The time taken here is double that for the disk cache. However, MongoDB does not
suffer from filesystem limitations and will allow us to make a more efficient crawler
in the next chapter, which deals with concurrency.

Summary
In this chapter, we learned that caching downloaded web pages will save time and
minimize bandwidth when recrawling a website. The main drawback of this is
that the cache takes up disk space, which can be minimized through compression.
Additionally, building on top of an existing database system, such as MongoDB, can
be used to avoid any filesystem limitations.

In the next chapter, we will add further functionalities to our crawler so that we can
download multiple web pages concurrently and crawl faster.

https://bitbucket.org/wswp/code/src/tip/chapter03/mongo_cache.py
https://bitbucket.org/wswp/code/src/tip/chapter03/mongo_cache.py

[49]

Concurrent Downloading
In previous chapters, our crawlers downloaded web pages sequentially, waiting for
each download to complete before starting the next one. Sequential downloading
is fine for the relatively small example website but quickly becomes impractical for
larger crawls. To crawl a large website of 1 million web pages at an average of one
web page per second would take over 11 days of continuous downloading all day
and night. This time can be significantly improved by downloading multiple web
pages simultaneously.

This chapter will cover downloading web pages with multiple threads and
processes, and then compare the performance to sequential downloading.

One million web pages
To test the performance of concurrent downloading, it would be preferable to have a
larger target website. For this reason, we will use the Alexa list in this chapter, which
tracks the top 1 million most popular websites according to users who have installed
the Alexa Toolbar. Only a small percentage of people use this browser plugin, so the
data is not authoritative, but is fine for our purposes.

These top 1 million web pages can be browsed on the Alexa website at http://www.
alexa.com/topsites. Additionally, a compressed spreadsheet of this list is available
at http://s3.amazonaws.com/alexa-static/top-1m.csv.zip, so scraping Alexa is
not necessary.

http://www.alexa.com/topsites
http://www.alexa.com/topsites
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

Concurrent Downloading

[50]

Parsing the Alexa list
The Alexa list is provided in a spreadsheet with columns for the rank and domain:

Extracting this data requires a number of steps, as follows:

1.	 Download the .zip file.
2.	 Extract the CSV file from this .zip file.
3.	 Parse the CSV file.
4.	 Iterate each row of the CSV file to extract the domain.

Here is an implementation to achieve this:

import csv
from zipfile import ZipFile
from StringIO import StringIO
from downloader import Downloader

D = Downloader()
zipped_data = D('http://s3.amazonaws.com/alexa-static/top-1m.csv.zip')
urls = [] # top 1 million URL's will be stored in this list
with ZipFile(StringIO(zipped_data)) as zf:
 csv_filename = zf.namelist()[0]
 for _, website in csv.reader(zf.open(csv_filename)):
 urls.append('http://' + website)

You may have noticed the downloaded zipped data is wrapped with the StringIO
class and passed to ZipFile. This is necessary because ZipFile expects a file-like
interface rather than a string. Next, the CSV filename is extracted from the filename
list. The .zip file only contains a single file, so the first filename is selected. Then, this
CSV file is iterated and the domain in the second column is added to the URL list. The
http:// protocol is prepended to the domains to make them valid URLs.

Chapter 4

[51]

To reuse this function with the crawlers developed earlier, it needs to be modified to
use the scrape_callback interface:

class AlexaCallback:
 def __init__(self, max_urls=1000):
 self.max_urls = max_urls
 self.seed_url = 'http://s3.amazonaws.com/alexa-static/
 top-1m.csv.zip'

 def __call__(self, url, html):
 if url == self.seed_url:
 urls = []
 with ZipFile(StringIO(html)) as zf:
 csv_filename = zf.namelist()[0]
 for _, website in
 csv.reader(zf.open(csv_filename)):
 urls.append('http://' + website)
 if len(urls) == self.max_urls:
 break
 return urls

A new input argument was added here called max_urls, which sets the number
of URLs to extract from the Alexa file. By default, this is set to 1000 URLs, because
downloading a million web pages takes a long time (as mentioned in the chapter
introduction, over 11 days when downloaded sequentially).

Sequential crawler
Here is the code to use AlexaCallback with the link crawler developed earlier to
download sequentially:

scrape_callback = AlexaCallback()
link_crawler(seed_url=scrape_callback.seed_url,
 cache_callback=MongoCache(),
 scrape_callback=scrape_callback)

This code is available at https://bitbucket.org/wswp/code/src/tip/chapter04/
sequential_test.py and can be run from the command line as follows:

$ time python sequential_test.py

...

26m41.141s

This time is as expected for sequential downloading with an average of ~1.6
seconds per URL.

https://bitbucket.org/wswp/code/src/tip/chapter04/sequential_test.py
https://bitbucket.org/wswp/code/src/tip/chapter04/sequential_test.py

Concurrent Downloading

[52]

Threaded crawler
Now we will extend the sequential crawler to download the web pages in parallel.
Note that if misused, a threaded crawler could request content too fast and overload
a web server or cause your IP address to be blocked. To avoid this, our crawlers will
have a delay flag to set the minimum number of seconds between requests to the
same domain.

The Alexa list example used in this chapter covers 1 million separate domains, so
this problem does not apply here. However, a delay of at least one second between
downloads should be considered when crawling many web pages from a single
domain in future.

How threads and processes work
Here is a diagram of a process containing multiple threads of execution:

Process

Ti
m

e
Thread #1 Thread #2

When a Python script or other computer program is run, a process is created
containing the code and state. These processes are executed by the CPU(s) of a
computer. However, each CPU can only execute a single process at a time and will
quickly switch between them to give the impression that multiple programs are
running simultaneously. Similarly, within a process, the program execution can
switch between multiple threads, with each thread executing different parts of the
program. This means that when one thread is waiting for a web page to download,
the process can switch and execute another thread to avoid wasting CPU time. So,
using all the resources of our computer to download data as fast as possible requires
distributing our downloads across multiple threads and processes.

Chapter 4

[53]

Implementation
Fortunately, Python makes threading relatively straightforward. This means we
can keep a similar queuing structure to the link crawler developed in Chapter 1,
Introduction to Web Scraping, but start the crawl loop in multiple threads to download
these links in parallel. Here is a modified version of the start of the link crawler with
the crawl loop moved into a function:

import time
import threading
from downloader import Downloader
SLEEP_TIME = 1

def threaded_crawler(..., max_threads=10):
 # the queue of URL's that still need to be crawled
 crawl_queue = [seed_url]
 # the URL's that have been seen
 seen = set([seed_url])
 D = Downloader(cache=cache, delay=delay,
 user_agent=user_agent, proxies=proxies,
 num_retries=num_retries, timeout=timeout)

 def process_queue():
 while True:
 try:
 url = crawl_queue.pop()
 except IndexError:
 # crawl queue is empty
 break
 else:
 html = D(url)
 ...

Concurrent Downloading

[54]

Here is the remainder of the threaded_crawler function to start process_queue in
multiple threads and wait until they have completed:

 threads = []
 while threads or crawl_queue:
 # the crawl is still active
 for thread in threads:
 if not thread.is_alive():
 # remove the stopped threads
 threads.remove(thread)
 while len(threads) < max_threads and crawl_queue:
 # can start some more threads
 thread = threading.Thread(target=process_queue)
 # set daemon so main thread can exit when receives ctrl-c
 thread.setDaemon(True)
 thread.start()
 threads.append(thread)

 # all threads have been processed
 # sleep temporarily so CPU can focus execution elsewhere
 time.sleep(SLEEP_TIME))

The loop in the preceding code will keep creating threads while there are URLs to
crawl until it reaches the maximum number of threads set. During the crawl, threads
may also prematurely shut down when there are currently no more URLs in the
queue. For example, consider a situation when there are two threads and two URLs
to download. When the first thread finishes its download, the crawl queue is empty
so this thread exits. However, the second thread may then complete its download
and discover additional URLs to download. The thread loop will then notice that
there are still more URLs to download and the maximum number of threads has not
been reached so create a new download thread.

The interface to process_link_crawler is still the same as the threaded crawler and
is available at https://bitbucket.org/wswp/code/src/tip/chapter04/
process_test.py. Now, let's test the performance of this multiprocess version of the
link crawler with the following command:

$ time python threaded_test.py 5

...

4m50.465s

Since there are five threads, downloading is approximately five times faster! Further
analysis of the threaded performance will be covered in the Performance section.

https://bitbucket.org/wswp/code/src/tip/chapter04/process_test.py
https://bitbucket.org/wswp/code/src/tip/chapter04/process_test.py

Chapter 4

[55]

Cross-process crawler
To improve the performance further, the threaded example can be extended to
support multiple processes. Currently, the crawl queue is held in local memory,
which means other processes cannot contribute to the same crawl. To address this,
the crawl queue will be transferred to MongoDB. Storing the queue independently
means that even crawlers on separate servers could collaborate on the same crawl.

Note that for more robust queuing, a dedicated message passing tool such as
Celery should be considered; however, MongoDB will be reused here to minimize
the number of technologies introduced. Here is an implementation of the new
MongoDB-backed queue:

from datetime import datetime, timedelta
from pymongo import MongoClient, errors

class MongoQueue:
 # possible states of a download
 OUTSTANDING, PROCESSING, COMPLETE = range(3)

 def __init__(self, client=None, timeout=300):
 self.client = MongoClient() if client is None else client
 self.db = self.client.cache
 self.timeout = timeout

 def __nonzero__(self):
 """Returns True if there are more jobs to process
 """
 record = self.db.crawl_queue.find_one(
 {'status': {'$ne': self.COMPLETE}}
)
 return True if record else False

 def push(self, url):
 """Add new URL to queue if does not exist
 """
 try:
 self.db.crawl_queue.insert({'_id': url, 'status':
 self.OUTSTANDING})
 except errors.DuplicateKeyError as e:
 pass # this is already in the queue

 def pop(self):
 """Get an outstanding URL from the queue and set its
 status to processing. If the queue is empty a KeyError
 exception is raised.
 """

Concurrent Downloading

[56]

 record = self.db.crawl_queue.find_and_modify(
 query={'status': self.OUTSTANDING},
 update={'$set': {'status': self.PROCESSING,
 'timestamp': datetime.now()}}
)
 if record:
 return record['_id']
 else:
 self.repair()
 raise KeyError()

 def complete(self, url):
 self.db.crawl_queue.update({'_id': url}, {'$set':
 {'status': self.COMPLETE}})

 def repair(self):
 """Release stalled jobs
 """
 record = self.db.crawl_queue.find_and_modify(
 query={
 'timestamp': {'$lt': datetime.now() -
 timedelta(seconds=self.timeout)},
 'status': {'$ne': self.COMPLETE}
 },
 update={'$set': {'status': self.OUTSTANDING}}
)
 if record:
 print 'Released:', record['_id']

The queue in the preceding code defines three states: OUTSTANDING, PROCESSING, and
COMPLETE. When a new URL is added, the state is OUTSTANDING, and when a URL
is popped from the queue for downloading, the state is PROCESSING. Also, when
the downloading is complete, the state is COMPLETE. Much of this implementation
is concerned with how to handle when a URL is popped from the queue but the
processing is never completed, for example, if the process that was handling the
popped URL was terminated. To avoid losing the results of those URLs, this class
takes a timeout argument, which is set to 300 seconds by default. In the repair()
method, if the processing of a URL is found to take longer than this timeout, we
assume that there has been an error and the URL state is returned to OUTSTANDING to
be processed again.

Chapter 4

[57]

Some minor changes are required to the threaded crawler to support this new queue
type, which are highlighted here:

def threaded_crawler(...):
 ...
 # the queue of URL's that still need to be crawled
 crawl_queue = MongoQueue()
 crawl_queue.push(seed_url)

 def process_queue():
 while True:
 # keep track that are processing url
 try:
 url = crawl_queue.pop()
 except KeyError:
 # currently no urls to process
 break
 else:
 ...
 crawl_queue.complete(url)

The first change is replacing Python's built-in queue with the new MongoDB-based
queue, named MongoQueue. This queue handles duplicate URLs internally, so the
seen variable is no longer required. Finally, the complete() method is called after
processing a URL to record that it has been successfully parsed.

This updated version of the threaded crawler can then be started in multiple
processes with this snippet:

import multiprocessing

def process_link_crawler(args, **kwargs):
 num_cpus = multiprocessing.cpu_count()
 processes = []
 for i in range(num_cpus):
 p = multiprocessing.Process(target=threaded_crawler,
 args=[args], kwargs=kwargs)
 p.start()
 processes.append(p)
 # wait for processes to complete
 for p in processes:
 p.join()

Concurrent Downloading

[58]

This structure might look familiar now because the multiprocessing module follows
a similar interface to the threading module used earlier. This code simply finds the
number of CPUs available, starts the threaded crawler in a new process for each, and
then waits for all the processes to complete execution.

Now, let's test the performance of this multiprocess version of the link crawler with
using the following command. The interface to process_link_crawler is still the
same as the threaded crawler and is available at https://bitbucket.org/wswp/
code/src/tip/chapter04/process_test.py:

$ time python process_test.py 5

Starting 2 processes

...

2m5.405s

As detected by the script, the server on which this was tested has two CPUs, and
the running time is approximately double that of the previous threaded crawler
on a single process. In the next section, we will further investigate the relative
performance of these three approaches.

Performance
To further understand how increasing the number of threads and processes affects
the time required when downloading; here is a spreadsheet of results for crawling
1000 web pages:

Script Number of
threads

Number of
processes

Time Comparison
with
sequential

Sequential 1 1 28m59.966s 1
Threaded 5 1 7m11.634s 4.03
Threaded 10 1 3m50.455s 7.55
Threaded 20 1 2m45.412s 10.52
Processes 5 2 4m2.624s 7.17
Processes 10 2 2m1.445s 14.33
Processes 20 2 1m47.663s 16.16

https://bitbucket.org/wswp/code/src/tip/chapter04/process_test.py
https://bitbucket.org/wswp/code/src/tip/chapter04/process_test.py

Chapter 4

[59]

The last column shows the proportion of time in comparison to the base case of
sequential downloading. We can see that the increase in performance is not linearly
proportional to the number of threads and processes, but appears logarithmic. For
example, one process and five threads leads to 4X better performance, but 20 threads
only leads to 10X better performance. Each extra thread helps, but is less effective
than the previously added thread. This is to be expected, considering the process has
to switch between more threads and can devote less time to each. Additionally, the
amount of bandwidth available for downloading is limited so that eventually adding
additional threads will not lead to a greater download rate. At this point, achieving
greater performance would require distributing the crawl across multiple servers, all
pointing to the same MongoDB queue instance.

Summary
This chapter covered why sequential downloading creates a bottleneck. We then
looked at how to download large numbers of web pages efficiently across multiple
threads and processes.

In the next chapter, we will cover how to scrape content from web pages that load
their content dynamically using JavaScript.

[61]

Dynamic Content
According to the United Nations Global Audit of Web Accessibility, 73 percent
of leading websites rely on JavaScript for important functionalities (refer to
http://www.un.org/esa/socdev/enable/documents/execsumnomensa.doc).
The use of JavaScript can vary from simple form events to single page apps that
download all their content after loading. The consequence of this is that for many
web pages the content that is displayed in our web browser is not available in
the original HTML, and the scraping techniques covered so far will not work.
This chapter will cover two approaches to scraping data from dynamic
JavaScript dependent websites. These are as follows:

•	 Reverse engineering JavaScript
•	 Rendering JavaScript

http://www.un.org/esa/socdev/enable/documents/execsumnomensa.doc

Dynamic Content

[62]

An example dynamic web page
Let's look at an example dynamic web page. The example website has a search form,
which is available at http://example.webscraping.com/search, that is used to
locate countries. Let's say we want to find all the countries that begin with the letter A:

http://example.webscraping.com/search

Chapter 5

[63]

If we right-click on these results to inspect them with Firebug (as covered in Chapter
2, Scraping the Data), we would find that the results are stored within a div element
of ID "results":

Let's try to extract these results using the lxml module, which was also covered
in Chapter 2, Scraping the Data, and the Downloader class from Chapter 3, Caching
Downloads:

>>> import lxml.html
>>> from downloader import Downloader
>>> D = Downloader()
>>> html = D('http://example.webscraping.com/search')

Dynamic Content

[64]

>>> tree = lxml.html.fromstring(html)
>>> tree.cssselect('div#results a')
[]

The example scraper here has failed to extract results. Examining the source code of
this web page can help you understand why. Here, we find that the div element we
are trying to scrape is empty:

<div id="results">
</div>

Firebug gives us a view of the current state of the web page, which means that the
web page has used JavaScript to load search results dynamically. In the next section,
we will use another feature of Firebug to understand how these results are loaded.

What is AJAX
AJAX stands for Asynchronous JavaScript and XML and was
coined in 2005 to describe the features available across web
browsers that made dynamic web applications possible. Most
importantly, the JavaScript XMLHttpRequest object, which was
originally implemented by Microsoft for ActiveX, was available
in many common web browsers. This allowed JavaScript to make
HTTP requests to a remote server and receive responses, which
meant that a web application could send and receive data. The
traditional way to communicate between client and server was
to refresh the entire web page, which resulted in a poor user
experience and wasted bandwidth when only a small amount of
data needed to be transmitted.
Google's Gmail and Google Maps were early examples of the
dynamic web applications and helped take AJAX to a mainstream
audience.

Reverse engineering a dynamic
web page
So far, we have tried to scrape data from a web page the same way as introduced
in Chapter 2, Scraping the Data. However, it did not work because the data is loaded
dynamically with JavaScript. To scrape this data, we need to understand how the web
page loads this data, a process known as reverse engineering. Continuing the example
from the preceding section, in Firebug, if we click on the Console tab and then perform
a search, we will see that an AJAX request is made, as shown in this screenshot:

Chapter 5

[65]

This AJAX data is not only accessible from within the search web page, but can also
be downloaded directly, as follows:

>>> html =
 D('http://example.webscraping.com/ajax/
 search.json?page=0&page_size=10&search_term=a')

Dynamic Content

[66]

The AJAX response returns data in JSON format, which means Python's json
module can be used to parse this into a dictionary, as follows:

>>> import json
>>> json.loads(html)
{u'error': u'',
 u'num_pages': 22,
 u'records': [{u'country': u'Afghanistan',
 u'id': 1261,
 u'pretty_link': u'<div><img
 src="/places/static/images/flags/af.png" />
 Afghanistan</div>'},
 ...]
}

Now we have a simple way to scrape countries containing the letter A. To find the
details of all these countries then requires calling the AJAX search with each letter of
the alphabet. For each letter, the search results are split into pages, and the number
of pages is indicated by page_size in the response. An issue with saving results is
that the same countries will be returned in multiple searches—for example, Fiji
matches searches for f, i, and j. These duplicates are filtered here by storing results
in a set before writing them to a spreadsheet—the set data structure will not store
duplicate elements.

Here is an example implementation that scrapes all of the countries by searching
for each letter of the alphabet and then iterating the resulting pages of the JSON
responses. The results are then stored in a spreadsheet.

import json
import string

template_url =
 'http://example.webscraping.com/ajax/
 search.json?page={}&page_size=10&search_term={}'
countries = set()

for letter in string.lowercase:
 page = 0
 while True:
 html = D(template_url.format(page, letter))
 try:
 ajax = json.loads(html)
 except ValueError as e:
 print e
 ajax = None

Chapter 5

[67]

 else:
 for record in ajax['records']:
 countries.add(record['country'])
 page += 1
 if ajax is None or page >= ajax['num_pages']:
 break

open('countries.txt', 'w').write('\n'.join(sorted(countries)))

This AJAX interface provides a simpler way to extract the country details than
the scraping approach covered in Chapter 2, Scraping the Data. This is a common
experience: the AJAX-dependent websites initially look more complex but their
structure encourages separating the data and presentation layers, which can make
our job of extracting this data much easier.

Edge cases
The AJAX search script is quite simple, but it can be simplified further by taking
advantage of edge cases. So far, we have queried each letter, which means 26
separate queries, and there are duplicate results between these queries. It would
be ideal if a single search query could be used to match all results. We will try
experimenting with different characters to see if this is possible. This is what
happens if the search term is left empty:

>>> url =
 'http://example.webscraping.com/ajax/
 search.json?page=0&page_size=10&search_term='
>>> json.loads(D(url))['num_pages']
0

Unfortunately, this did not work—there are no results. Next we will check if '*' will
match all results:

>>> json.loads(D(url + '*'))['num_pages']
0

Still no luck. Now we will check '.', which is a regular expression to match
any character:

>>> json.loads(D(url + '.'))['num_pages']
26

There we go: the server must be matching results with regular expressions. So, now
searching each letter can be replaced with a single search for the dot character.

Dynamic Content

[68]

Further more, you may have noticed a parameter that is used to set the page size
in the AJAX URLs. The search interface had options for setting this to 4, 10, and 20,
with the default set to 10. So, the number of pages to download could be halved by
increasing the page size to the maximum.

>>> url =
 'http://example.webscraping.com/ajax/
 search.json?page=0&page_size=20&search_term=.'
>>> json.loads(D(url))['num_pages']
13

Now, what if a much higher page size is used, a size higher than what the web
interface select box supports?

>>> url =
 'http://example.webscraping.com/ajax/
 search.json?page=0&page_size=1000&search_term=.'
>>> json.loads(D(url))['num_pages']
1

Apparently, the server does not check whether the page size parameter matches
the options allowed in the interface and now returns all the results in a single page.
Many web applications do not check the page size parameter in their AJAX backend
because they expect requests to only come through the web interface.

Now, we have crafted a URL to download the data for all the countries in a
single request. Here is the updated and much simpler implementation to scrape
all countries:

writer = csv.writer(open('countries.csv', 'w'))
writer.writerow(FIELDS)
html = D('http://example.webscraping.com/ajax/
 search.json?page=0&page_size=1000&search_term=.')
ajax = json.loads(html)
for record in ajax['records']:
 row = [record[field] for field in FIELDS]
 writer.writerow(row)

Chapter 5

[69]

Rendering a dynamic web page
For the example search web page, we were able to easily reverse engineer how it
works. However, some websites will be very complex and difficult to understand,
even with a tool like Firebug. For example, if the website has been built with Google
Web Toolkit (GWT), the resulting JavaScript code will be machine-generated and
minified. This generated JavaScript code can be cleaned with a tool such as JS
beautifier, but the result will be verbose and the original variable names will be
lost, so it is difficult to work with. With enough effort, any website can be reverse
engineered. However, this effort can be avoided by instead using a browser rendering
engine, which is the part of the web browser that parses HTML, applies the CSS
formatting, and executes JavaScript to display a web page as we expect. In this
section, the WebKit rendering engine will be used, which has a convenient Python
interface through the Qt framework.

What is WebKit?
The code for WebKit started life as the KHTML project in 1998, which was
the rendering engine for the Konqueror web browser. It was then forked by
Apple as WebKit in 2001 for use in their Safari web browser. Google used
WebKit up to Chrome Version 27 before forking their version from WebKit
called Blink in 2013. Opera originally used their internal rendering engine
called Presto from 2003 to 2012 before briefly switching to WebKit, and
then followed Chrome to Blink. Other popular browser rendering engines
are Trident, used by Internet Explorer, and Gecko by Firefox.

PyQt or PySide
There are two available Python bindings to the Qt framework, PyQt and PySide.
PyQt was first released in 1998 but requires a license for commercial projects. Due to
this licensing problem, the company developing Qt, then Nokia and now Digia, later
developed Python bindings in 2009 called PySide and released it under the more
permissive LGPL license.

There are minor differences between the two bindings but the examples developed
here will work with either. The following snippet can be used to import whichever
Qt binding is installed:

try:
 from PySide.QtGui import *
 from PySide.QtCore import *
 from PySide.QtWebKit import *
except ImportError:
 from PyQt4.QtGui import *
 from PyQt4.QtCore import *
 from PyQt4.QtWebKit import *

Dynamic Content

[70]

Here, if PySide is not available, an ImportError exception will be raised and PyQt
will be imported. If PyQt is also unavailable, another ImportError will be raised and
the script will exit.

The instructions to download and install each Python binding
are available at http://qt-project.org/wiki/Setting_
up_PySide and http://pyqt.sourceforge.net/Docs/
PyQt4/installation.html.

Executing JavaScript
To confirm that WebKit can execute JavaScript, there is a simple example available at
http://example.webscraping.com/dynamic.

This web page simply uses JavaScript to write Hello World to a div element. Here is
the source code:

<html>
 <body>
 <div id="result"></div>
 <script>
 document.getElementById("result").innerText = 'Hello World';
 </script>
 </body>
</html>

With the traditional approach of downloading the original HTML and parsing the
result, the div element will be empty, as follows:

>>> url = 'http://example.webscraping.com/dynamic'
>>> html = D(url)
>>> tree = lxml.html.fromstring(html)
>>> tree.cssselect('#result')[0].text_content()
''

Here is an initial example with WebKit, which needs to follow the PyQt or PySide
imports shown in the preceding section:

>>> app = QApplication([])
>>> webview = QWebView()
>>> loop = QEventLoop()
>>> webview.loadFinished.connect(loop.quit)
>>> webview.load(QUrl(url))
>>> loop.exec_()
>>> html = webview.page().mainFrame().toHtml()

http://qt-project.org/wiki/Setting_up_PySide
http://qt-project.org/wiki/Setting_up_PySide
http://pyqt.sourceforge.net/Docs/PyQt4/installation.html
http://pyqt.sourceforge.net/Docs/PyQt4/installation.html
http://example.webscraping.com/dynamic

Chapter 5

[71]

>>> tree = lxml.html.fromstring(html)
>>> tree.cssselect('#result')[0].text_content()
'Hello World'

There is quite a lot going on here, so we will step through the code line by line:

•	 The first line instantiates the QApplication object that the Qt framework
requires to be created before other Qt objects to perform various initializations.

•	 Next, a QWebView object is created, which is a container for the web
documents.

•	 A QEventLoop object is created, which will be used to create a local
event loop.

•	 The loadFinished callback of the QwebView object is connected to the quit
method of QEventLoop so that when a web page finishes loading, the event
loop will be stopped. The URL to load is then passed to QWebView. PyQt
requires that this URL string is wrapped by a QUrl object, while for PySide,
this is optional.

•	 The QWebView load method is asynchronous, so execution will immediately
pass to the next line while the web page is loading—however, we want to wait
until this web page is loaded, so loop.exec_() is called to start the event loop.

•	 When the web page completes loading, the event loop will exit and execution
can move to the next line, where the resulting HTML of this loaded web page
is extracted.

•	 The final line shows that JavaScript has been successfully executed and the
div element contains Hello World, as expected.

The classes and methods used here are all excellently documented in the C++ Qt
framework website at http://qt-project.org/doc/qt-4.8/. PyQt and PySide
have their own documentation, however, the descriptions and formatting for the
original C++ version is superior, and, generally Python developers use it instead.

http://qt-project.org/doc/qt-4.8/

Dynamic Content

[72]

Website interaction with WebKit
The search web page we have been examining requires the user to modify and
submit a search form, and then click on the page links. However, so far, our browser
renderer can only execute JavaScript and access the resulting HTML. To scrape
the search page will require extending the browser renderer to support these
interactions. Fortunately, Qt has an excellent API to select and manipulate the HTML
elements, which makes this straightforward.

Here is an alternative version to the earlier AJAX search example, which also sets the
search term to '.' and page size to '1000' to load all the results in a single query:

app = QApplication([])
webview = QWebView()
loop = QEventLoop()
webview.loadFinished.connect(loop.quit)
webview.load(QUrl('http://example.webscraping.com/search'))
loop.exec_()
webview.show()
frame = webview.page().mainFrame()
frame.findFirstElement('#search_term').
 setAttribute('value', '.')
frame.findFirstElement('#page_size option:checked').
 setPlainText('1000')
frame.findFirstElement('#search').
 evaluateJavaScript('this.click()')
app.exec_()

The first few lines instantiate the Qt objects required to render a web page, the same
as in the previous Hello World example. Next, the QWebView GUI show() method is
called so that the render window is displayed, which is useful for debugging. Then, a
reference to the frame is created to make the following lines shorter. The QWebFrame
class has many useful methods to interact with a web page. The following two
lines use the CSS patterns to locate an element in the frame, and then set the search
parameters. Then, the form is submitted with the evaluateJavaScript() method
to simulate a click event. This method is very convenient because it allows for the
insertion of any JavaScript code we want, including calling JavaScript methods
defined in the web page directly. Then, the final line enters the application event
loop so that we can review what has happened to the form. Without this, the script
would end immediately.

Chapter 5

[73]

This is what is displayed when this script is run:

Waiting for results
The final part of implementing our WebKit crawler is scraping the search results,
which turns out to be the most difficult part because it is not obvious when the AJAX
event is complete and the country data is ready. There are three possible approaches
to deal with this:

•	 Wait a set amount of time and hope that the AJAX event is complete by then
•	 Override Qt's network manager to track when the URL requests are complete
•	 Poll the web page for the expected content to appear

Dynamic Content

[74]

The first option is the simplest to implement but is inefficient, because if a safe timeout
is set, then usually a lot more time is spent waiting than necessary. Also, when the
network is slower than usual, a fixed timeout could fail. The second option is more
efficient but cannot be applied when the delay is from the client side rather than server
side—for example, if the download is complete, but a button needs to be pressed
before the content is displayed. The third option is more reliable and straightforward to
implement, though there is the minor drawback of wasting CPU cycles when checking
whether the content has loaded yet. Here is an implementation for the third option:

>>> elements = None
>>> while not elements:
... app.processEvents()
... elements = frame.findAllElements('#results a')
...
>>> countries = [e.toPlainText().strip() for e in elements]
>>> print countries
[u'Afghanistan', u'Aland Islands', ... , u'Zambia', u'Zimbabwe']

Here, the code keeps looping until the country links are present in the results div.
For each loop, app.processEvents() is called to give the Qt event loop time to
perform tasks, such as responding to click events and updating the GUI.

The Render class
To help make this functionality easier to use in future, here are the methods used and
packaged into a class, whose source code is also available at https://bitbucket.
org/wswp/code/src/tip/chapter05/browser_render.py:

import time

class BrowserRender(QWebView):
 def __init__(self, show=True):
 self.app = QApplication(sys.argv)
 QWebView.__init__(self)
 if show:
 self.show() # show the browser

 def download(self, url, timeout=60):
 """Wait for download to complete and return result"""
 loop = QEventLoop()
 timer = QTimer()
 timer.setSingleShot(True)
 timer.timeout.connect(loop.quit)
 self.loadFinished.connect(loop.quit)
 self.load(QUrl(url))
 timer.start(timeout * 1000)

https://bitbucket.org/wswp/code/src/tip/chapter05/browser_render.py
https://bitbucket.org/wswp/code/src/tip/chapter05/browser_render.py

Chapter 5

[75]

 loop.exec_() # delay here until download finished
 if timer.isActive():
 # downloaded successfully
 timer.stop()
 return self.html()
 else:
 # timed out
 print 'Request timed out: ' + url

 def html(self):
 """Shortcut to return the current HTML"""
 return self.page().mainFrame().toHtml()

 def find(self, pattern):
 """Find all elements that match the pattern"""
 return self.page().mainFrame().findAllElements(pattern)

 def attr(self, pattern, name, value):
 """Set attribute for matching elements"""
 for e in self.find(pattern):
 e.setAttribute(name, value)

 def text(self, pattern, value):
 """Set attribute for matching elements"""
 for e in self.find(pattern):
 e.setPlainText(value)

 def click(self, pattern):
 """Click matching elements"""
 for e in self.find(pattern):
 e.evaluateJavaScript("this.click()")

 def wait_load(self, pattern, timeout=60):
 """Wait until pattern is found and return matches"""
 deadline = time.time() + timeout
 while time.time() < deadline:
 self.app.processEvents()
 matches = self.find(pattern)
 if matches:
 return matches
 print 'Wait load timed out'

You may have noticed the download() and wait_load() methods have some
additional code involving a timer. This timer tracks how long has been spent waiting
and cancels the event loop when the deadline is reached. Otherwise, when a network
problem is encountered, the event loop would run indefinitely.

Dynamic Content

[76]

Here is how to scrape the search page using this new class:

>>> br = BrowserRender()
>>> br.download('http://example.webscraping.com/search')
>>> br.attr('#search_term', 'value', '.')
>>> br.text('#page_size option:checked', '1000')
>>> br.click('#search')
>>> elements = br.wait_load('#results a')
>>> countries = [e.toPlainText().strip() for e in elements]
>>> print countries
[u'Afghanistan', u'Aland Islands', ..., u'Zambia', u'Zimbabwe']

Selenium
With the WebKit library used in the preceding example, we have full control to
customize the browser renderer to behave as we need it to. If this level of flexibility
is not needed, a good alternative is Selenium, which provides an API to automate the
web browser. Selenium can be installed using pip with the following command:

pip install selenium

To demonstrate how Selenium works, we will rewrite the previous search example
in Selenium. The first step is to create a connection to the web browser:

>>> from selenium import webdriver
>>> driver = webdriver.Firefox()

When this command is run, an empty browser window will pop up:

Chapter 5

[77]

This is handy because with each command, the browser window can be checked
to see if Selenium worked as expected. Here, Firefox was used, but Selenium also
provides interfaces to other common web browsers, such as Chrome and Internet
Explorer. Note that you can only use a Selenium interface for a web browser that is
installed on your system.

To load a web page in the chosen web browser, the get() method is called:

>>> driver.get('http://example.webscraping.com/search')

Then, to set which element to select, the ID of the search textbox can be used. Selenium
also supports selecting elements with a CSS selector or XPath. When the search textbox
is found, we can enter content with the send_keys() method, which simulates typing:

>>> driver.find_element_by_id('search_term').send_keys('.')

To return all results in a single search, we want to set the page size to 1000. However,
this is not straightforward because Selenium is designed to interact with the browser,
rather than to modify the web page content. To get around this limitation, we can
use JavaScript to set the select box content:

>>> js = "document.getElementById('page_size').options[1].text =
 '1000'"
>>> driver.execute_script(js);

Now the form inputs are all ready, so the search button can be clicked on to perform
the search:

>>> driver.find_element_by_id('search').click()

Now we need to wait for the AJAX request to complete before loading the results,
which was the hardest part of the script in the previous WebKit implementation.
Fortunately, Selenium provides a simple solution to this problem by setting a
timeout with the implicitly_wait() method:

>>> driver.implicitly_wait(30)

Here, a delay of 30 seconds was used. Now, if we search for elements and they are
not yet available, Selenium will wait up to 30 seconds before raising an exception. To
select the country links, we can use the same CSS selector that we used in the WebKit
example:

>>> links = driver.find_elements_by_css_selector('#results a')

Then, the text of each link can be extracted to create a list of countries:

>>> countries = [link.text for link in links]
>>> print countries
[u'Afghanistan', u'Aland Islands', ..., u'Zambia', u'Zimbabwe']

Dynamic Content

[78]

Finally, the browser can be shut down by calling the close() method:

>>> driver.close()

The source code for this example is available at https://bitbucket.org/wswp/
code/src/tip/chapter05/selenium_search.py. For further details about
Selenium, the Python bindings are well documented at https://selenium-python.
readthedocs.org/.

Summary
This chapter covered two approaches to scrape data from dynamic web pages. It
started with reverse engineering a dynamic web page with the help of Firebug Lite,
and then moved on to using a browser renderer to trigger JavaScript events for us.
We first used WebKit to build our own custom browser, and then reimplemented
this scraper with the high-level Selenium framework.

A browser renderer can save the time needed to understand how the backend of
a website works, however, there are disadvantages. Rendering a web page adds
overhead and so is much slower than just downloading the HTML. Additionally,
solutions using a browser renderer often require polling the web page to check
whether the resulting HTML from an event has occurred yet, which is brittle and can
easily fail when the network is slow. I typically use a browser renderer for short term
solutions where the long term performance and reliability is less important; then for
long term solutions, I make the effort to reverse engineer the website.

In the next chapter, we will cover how to interact with forms and cookies to log into
a website and edit content.

https://bitbucket.org/wswp/code/src/tip/chapter05/selenium_search.py
https://bitbucket.org/wswp/code/src/tip/chapter05/selenium_search.py
https://selenium-python.readthedocs.org/
https://selenium-python.readthedocs.org/

[79]

Interacting with Forms
In earlier chapters, we downloaded static web pages that always return the
same content. Now, in this chapter, we will interact with web pages that depend
on user input and state to return relevant content. This chapter will cover the
following topics:

•	 Sending a POST request to submit a form
•	 Using cookies to log in to a website
•	 The high-level Mechanize module for easier form submissions

To interact with these forms, you will need a user account to log in to the website.
You can register an account manually at http://example.webscraping.com/user/
register. Unfortunately, we can not yet automate the registration form until the
next chapter, which deals with CAPTCHA.

Form methods
HTML forms define two methods for submitting data to
the server—GET and POST. With the GET method, data like
?name1=value1&name2=value2 is appended to the URL,
which is known as a "query string". The browser sets a limit on
the URL length, so this is only useful for small amounts of data.
Additionally, this method is intended only to retrieve data from
the server and not make changes to it, but sometimes this is
ignored. With POST requests, the data is sent in the request
body, which is separate from the URL. Sensitive data should
only be sent in a POST request to avoid exposing it in the URL.
How the POST data is represented in the body depends on the
encoding type.
Servers can also support other HTTP methods, such as PUT and
DELETE, however, these are not supported in forms.

http://example.webscraping.com/user/register
http://example.webscraping.com/user/register

Interacting with Forms

[80]

The Login form
The first form that we will automate is the Login form, which is available at
http://example.webscraping.com/user/login. To understand the form, we will
use Firebug Lite. With the full version of Firebug or Chrome DevTools, it is possible
to just submit the form and check what data was transmitted in the network tab.
However, the Lite version is restricted to viewing the structure, as follows:

The important parts here are the action, enctype, and method attributes of the
form tag, and the two input fields. The action attribute sets the location where the
form data will be submitted, in this case, #, which means the same URL as the Login
form. The enctype attribute sets the encoding used for the submitted data, in this
case, application/x-www-form-urlencoded. Also, the method attribute is set to
post to submit form data in the body to the server. For the input tags, the important
attribute is name, which sets the name of the field when submitted to the server.

http://example.webscraping.com/user/login

Chapter 6

[81]

Form encoding
When a form uses the POST method, there are two useful choices for
how the form data is encoded before being submitted to the server.
The default is application/x-www-form-urlencoded, which
specifies that all non-alphanumeric characters must be converted
to ASCII Hex values. However, this is inefficient for forms that
contain a large amount of non-alphanumeric data, such as a binary
file upload, so multipart/form-data encoding was defined. Here,
the input is not encoded but sent as multiple parts using the MIME
protocol, which is the same standard used for e-mail.
The official details of this standard can be viewed at
http://www.w3.org/TR/html5/forms.html#selecting-
a-form-submission-encoding.

When regular users open this web page in their browser, they will enter their e-mail
and password, and click on the Login button to submit their details to the server.
Then, if the login process on the server is successful, they will be redirected to the
home page; otherwise, they will return to the Login page to try again. Here is an
initial attempt to automate this process:

>>> import urllib, urllib2
>>> LOGIN_URL = 'http://example.webscraping.com/user/login'
>>> LOGIN_EMAIL = 'example@webscraping.com'
>>> LOGIN_PASSWORD = 'example'
>>> data = {'email': LOGIN_EMAIL, 'password': LOGIN_PASSWORD}
>>> encoded_data = urllib.urlencode(data)
>>> request = urllib2.Request(LOGIN_URL, encoded_data)
>>> response = urllib2.urlopen(request)
>>> response.geturl()
'http://example.webscraping.com/user/login'

This example sets the e-mail and password fields, encodes them with urlencode, and
then submits them to the server. When the final print statement is executed, it will
output the URL of the Login page, which means that the login process has failed.

This Login form is particularly strict and requires some additional fields to be
submitted along with the e-mail and password. These additional fields can be found at
the bottom of the preceding screenshot, but are set to hidden and so are not displayed
in the browser. To access these hidden fields, here is a function using the lxml library
covered in Chapter 2, Scraping the Data, to extract all the input tag details in a form:

import lxml.html
def parse_form(html):

http://www.w3.org/TR/html5/forms.html#selecting-a-form-submission-encoding
http://www.w3.org/TR/html5/forms.html#selecting-a-form-submission-encoding

Interacting with Forms

[82]

 tree = lxml.html.fromstring(html)
 data = {}
 for e in tree.cssselect('form input'):
 if e.get('name'):
 data[e.get('name')] = e.get('value')
 return data

The function in the preceding code uses lxml CSS selectors to iterate all the input
tags in a form and return their name and value attributes in a dictionary. Here is the
result when the code is run on the Login page:

>>> import pprint
>>> html = urllib2.urlopen(LOGIN_URL).read()
>>> form = parse_form(html)
>>> pprint.pprint(form)
{
 '_next': '/',
 '_formkey': '0291ec65-9332-426e-b6a1-d97b3a2b12f8',
 '_formname': 'login',
 'email': '',
 'password': '',
 'remember': 'on'
}

The _formkey attribute is the crucial part here, which is a unique ID used by the
server to prevent multiple form submissions. Each time the web page is loaded, a
different ID is used, and then the server can tell whether a form with a given ID has
already been submitted. Here is an updated version of the login process that submits
_formkey and other hidden values:

>>> html = urllib2.urlopen(LOGIN_URL).read()
>>> data = parse_form(html)
>>> data['email'] = LOGIN_EMAIL
>>> data['password'] = LOGIN_PASSWORD
>>> encoded_data = urllib.urlencode(data)
>>> request = urllib2.Request(LOGIN_URL, encoded_data)
>>> response = urllib2.urlopen(request)
>>> response.geturl()
'http://example.webscraping.com/user/login'

Chapter 6

[83]

Unfortunately, this version did not work either, and when run the login URL was
printed again. We are missing a crucial component—cookies. When a regular
user loads the Login form, this _formkey value will be stored in a cookie, which
is then compared to the _formkey value in the submitted Login form data. Here is
an updated version using the urllib2.HTTPCookieProcessor class to add support
for cookies:

>>> import cookielib
>>> cj = cookielib.CookieJar()
>>> opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
>>> html = opener.open(LOGIN_URL).read()
>>> data = parse_form(html)
>>> data['email'] = LOGIN_EMAIL
>>> data['password'] = LOGIN_PASSWORD
>>> encoded_data = urllib.urlencode(data)
>>> request = urllib2.Request(LOGIN_URL, encoded_data)
>>> response = opener.open(request)
>>> response.geturl()
'http://example.webscraping.com'

What are cookies?
Cookies are small amounts of data sent by a website in the HTTP
response headers, which look like this: Set-Cookie: session_
id=example;. The web browser will store them, and then include them
in the headers of subsequent requests to that website. This allows a
website to identify and track users.

Success! The submitted form values have been accepted and the response URL is the
home page. This snippet and the other login examples in this chapter are available for
download at https://bitbucket.org/wswp/code/src/tip/chapter06/login.py.

Loading cookies from the web browser
Working out how to submit the login details as expected by the server can be quite
complex, as the previous example demonstrated. Fortunately, there is a workaround
for difficult websites—we can log in to the website manually in our web browser,
and then have our Python script load and reuse these cookies to be automatically
logged in. Each web browser stores their cookies in a different format, so we will
focus on just the Firefox browser in this example.

https://bitbucket.org/wswp/code/src/tip/chapter06/login.py

Interacting with Forms

[84]

FireFox stores its cookies in a sqlite database and its sessions in a JSON file, which
can be connected to directly from Python. For the login, we only need the sessions,
which are stored in this structure:

{"windows": [...
 "cookies": [
 {"host":"example.webscraping.com",
 "value":"514315085594624:e5e9a0db-5b1f-4c66-a864",
 "path":"/",
 "name":"session_id_places"}
 ...]
]}

Here is a function that can be used to parse these sessions into a CookieJar object:

def load_ff_sessions(session_filename):
 cj = cookielib.CookieJar()
 if os.path.exists(session_filename):
 json_data = json.loads(open(session_filename, 'rb').read())
 for window in json_data.get('windows', []):
 for cookie in window.get('cookies', []):
 c = cookielib.Cookie(0,
 cookie.get('name', ''),
 cookie.get('value', ''), None, False,
 cookie.get('host', ''),
 cookie.get('host', '').startswith('.'),
 cookie.get('host', '').startswith('.'),
 cookie.get('path', ''), False, False,
 str(int(time.time()) + 3600 * 24 * 7),
 False, None, None, {})
 cj.set_cookie(c)
 else:
 print 'Session filename does not exist:', session_filename
 return cj

One complexity is that the location of the FireFox sessions file will vary, depending
on the operating system. On Linux, it should be located at this path:

~/.mozilla/firefox/*.default/sessionstore.js

Chapter 6

[85]

In OS X, it should be located at:

~/Library/Application Support/Firefox/Profiles/*.default/
 sessionstore.js

Also, for Windows Vista and above, it should be located at:

%APPDATA%/Roaming/Mozilla/Firefox/Profiles/*.default/sessionstore.js

Here is a helper function to return the path to the session file:

import os, glob
def find_ff_sessions():
 paths = [
 '~/.mozilla/firefox/*.default',
 '~/Library/Application Support/Firefox/Profiles/*.default',
 '%APPDATA%/Roaming/Mozilla/Firefox/Profiles/*.default'
]
 for path in paths:
 filename = os.path.join(path, 'sessionstore.js')
 matches = glob.glob(os.path.expanduser(filename))
 if matches:
 return matches[0]

Note that the glob module used here will return all the matching files for the given
path. Now here is an updated snippet using the browser cookies to log in:

 >>> session_filename = find_ff_sessions()
 >>> cj = load_ff_sessions(session_filename)
 >>> processor = urllib2.HTTPCookieProcessor(cj)
 >>> opener = urllib2.build_opener(processor)
 >>> url = 'http://example.webscraping.com'
 >>> html = opener.open(url).read()

Interacting with Forms

[86]

To check whether the session was loaded successfully, we cannot rely on the login
redirect this time. Instead, we will scrape the resulting HTML to check whether the
logged in user label exists. If the result here is Login, the sessions have failed to
load correctly. If this is the case, make sure you are already logged in to the example
website in FireFox. Here is the structure of the user label in Firebug:

Firebug shows that this label is located within a tag of ID "navbar", which can
easily be extracted with the lxml library used in Chapter 2, Scraping the Data:

>>> tree = lxml.html.fromstring(html)
>>> tree.cssselect('ul#navbar li a')[0].text_content()
Welcome Test account

The code in this section was quite complex and only supports loading sessions
from the Firefox browser. If you want support for all cookies as well as other
web browsers try the browsercookie module, which can be installed with pip
install browsercookie and is documented at https://pypi.python.org/pypi/
browsercookie.

https://pypi.python.org/pypi/browsercookie
https://pypi.python.org/pypi/browsercookie

Chapter 6

[87]

Extending the login script to update
content
Now that the login automation is working, we can make the script more interesting
by extending it to interact with the website and update the country data. The code
used in this section is available at https://bitbucket.org/wswp/code/src/tip/
chapter06/edit.py. You may have noticed an Edit link at the bottom of each country:

https://bitbucket.org/wswp/code/src/tip/chapter06/edit.py
https://bitbucket.org/wswp/code/src/tip/chapter06/edit.py

Interacting with Forms

[88]

When logged in, this leads to another page where each property of a country can
be edited:

We will make a script to increase the population of a country by one person each
time it is run. The first step is to extract the current values of the country by reusing
the parse_form() function:

>>> import login
>>> COUNTRY_URL = 'http://example.webscraping.com/edit/
 United-Kingdom-239'

Chapter 6

[89]

>>> opener = login.login_cookies()
>>> country_html = opener.open(COUNTRY_URL).read()
>>> data = parse_form(country_html)
>>> pprint.pprint(data)
{'_formkey': '4cf0294d-ea71-4cd8-ae2a-43d4ca0d46dd',
 '_formname': 'places/5402840151359488',
 'area': '244820.00',
 'capital': 'London',
 'continent': 'EU',
 'country': 'United Kingdom',
 'currency_code': 'GBP',
 'currency_name': 'Pound',
 'id': '5402840151359488',
 'iso': 'GB',
 'languages': 'en-GB,cy-GB,gd',
 'neighbours': 'IE',
 'phone': '44',
 'population': '62348447',
 'postal_code_format': '@# #@@|@## #@@|@@# #@@|@@## #@@|@#@
 #@@|@@#@ #@@|GIR0AA',
 'postal_code_regex': '^(([A-Z]\\d{2}[A-Z]{2})|([A-Z]\\d{3}
 [A-Z]{2})|([A-Z]{2}\\d{2}[A-Z]{2})|([A-Z]{2}\\d{3}
 [A-Z]{2})|([A-Z]\\d[A-Z]\\d[A-Z]{2})|([A-Z]{2}\\
 d[A-Z]\\d[A-Z]{2})|(GIR0AA))$',
 'tld': '.uk'}

Now we increase the population by one and submit the updated version to the server:

>>> data['population'] = int(data['population']) + 1
>>> encoded_data = urllib.urlencode(data)
>>> request = urllib2.Request(COUNTRY_URL, encoded_data)
>>> response = opener.open(request)

When we return to the country page, we can verify that the population has increased
to 62,348,448:

Interacting with Forms

[90]

Feel free to test and modify the other fields too—the database is restored to the original
country data each hour to keep the data sane. The code used in this section is available
at https://bitbucket.org/wswp/code/src/tip/chapter06/edit.py. Note that
the example covered here is not strictly web scraping, but falls under the wider scope
of online bots. However, the form techniques used can be applied to interacting with
complex forms when scraping.

Automating forms with the Mechanize
module
The examples built so far work, but each form requires a fair amount of work
and testing. This effort can be minimized by using Mechanize, which provides
a high-level interface to interact with forms. Mechanize can be installed via pip
using this command:

pip install mechanize

Here is how to implement the previous population increase example with Mechanize:

>>> import mechanize
>>> br = mechanize.Browser()
>>> br.open(LOGIN_URL)
>>> br.select_form(nr=0)
>>> br['email'] = LOGIN_EMAIL
>>> br['password'] = LOGIN_PASSWORD
>>> response = br.submit()
>>> br.open(COUNTRY_URL)
>>> br.select_form(nr=0)
>>> br['population'] = str(int(br['population']) + 1)
>>> br.submit()

This code is much simpler than the previous example because we no longer need
to manage cookies and the form inputs are easily accessible. This script first creates
the Mechanize browser object, and then we navigate to the login URL and select the
login form. The selected form inputs are set by passing the name and values directly
to the browser object. When debugging, br.form can be called to show the state of a
form before it is submitted, as shown here:

>>> print br.form
<POST http://example.webscraping.com/user/login# application/
 x-www-form-urlencoded

https://bitbucket.org/wswp/code/src/tip/chapter06/edit.py

Chapter 6

[91]

 <TextControl(email=)>
 <PasswordControl(password=)>
 <CheckboxControl(remember=[on])>
 <SubmitControl(<None>=Login) (readonly)>
 <SubmitButtonControl(<None>=) (readonly)>
 <HiddenControl(_next=/) (readonly)>
 <HiddenControl(_formkey=5fa268b4-0dfd-4e3f-a274-e73c6b7ce584)
 (readonly)>
 <HiddenControl(_formname=login) (readonly)>>

Once the login form parameters are set, br.submit() is called to submit the
selected login form, and the script will be logged in. Now, we can navigate to the
edit country page, and use the form interface again to increment the population.
Note that the population input expects a string, otherwise Mechanize will raise a
TypeError exception.

To check whether this has worked, we can use Mechanize to return to the country
form and query the current population, as follows:

>>> br.open(COUNTRY_URL)
>>> br.select_form(nr=0)
>>> br['population']
62348449

As expected, the population has increased again and is now 62,348,449.

Further documentation and examples for the Mechanize
module are available from the project website at http://
wwwsearch.sourceforge.net/mechanize/.

Summary
Interacting with forms is a necessary skill when scraping web pages. This chapter
covered two approaches: first, analyzing the form to generate the expected POST
request manually, and second, using the high-level Mechanize module.

In the following chapter, we will expand our form skillset and learn how to submit
forms that require passing CAPTCHA.

http://wwwsearch.sourceforge.net/mechanize/
http://wwwsearch.sourceforge.net/mechanize/

[93]

Solving CAPTCHA
CAPTCHA stands for Completely Automated Public Turing test to tell Computers
and Humans Apart. As the acronym suggests, it is a test to determine whether
the user is human or not. A typical CAPTCHA consists of distorted text, which a
computer program will find difficult to interpret but a human can (hopefully) still
read. Many websites use CAPTCHA to try and prevent bots from interacting with
their website. For example, my bank website forces me to pass a CAPTCHA every
time I log in, which is a pain. This chapter will cover how to solve a CAPTCHA
automatically, first through Optical Character Recognition (OCR) and then with a
CAPTCHA solving API.

Solving CAPTCHA

[94]

Registering an account
In the preceding chapter on forms, we logged in to the example website using a
manually created account and skipped automating the account creation part, because
the registration form requires passing a CAPTCHA. This is how the registration page
at http://example.webscraping.com/user/register looks:

Note that each time this form is loaded, a different CAPTCHA image will be shown.
To understand what the form requires, we can reuse the parse_form() function
developed in the preceding chapter.

>>> import cookielib, urllib2, pprint
>>> REGISTER_URL = 'http://example.webscraping.com/user/register'
>>> cj = cookielib.CookieJar()
>>> opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
>>> html = opener.open(REGISTER_URL).read()
>>> form = parse_form(html)
>>> pprint.pprint(form)
{'_formkey': '1ed4e4c4-fbc6-4d82-a0d3-771d289f8661',
 '_formname': 'register',
 '_next': '/',

http://example.webscraping.com/user/register

Chapter 7

[95]

 'email': '',
 'first_name': '',
 'last_name': '',
 'password': '',
 'password_two': None,
 'recaptcha_response_field': None}

All of the fields in the preceding code are straightforward, except for
recaptcha_response_field, which in this case requires extracting strange
from the image.

Loading the CAPTCHA image
Before the CAPTCHA image can be analyzed, it needs to be extracted from the form.
FireBug shows that the data for this image is embedded in the web page, rather than
being loaded from a separate URL:

To work with images in Python, we will use the Pillow package, which can be
installed via pip using this command:

pip install Pillow

Alternative ways to install Pillow are covered at http://pillow.readthedocs.
org/installation.html.

Pillow provides a convenient Image class with a number of high-level methods that
will be used to manipulate the CAPTCHA images. Here is a function that takes the
HTML of the registration page, and returns the CAPTCHA image in an Image object:

from io import BytesIO
import lxml.html
from PIL import Image

def get_captcha(html):
 tree = lxml.html.fromstring(html)
 img_data = tree.cssselect('div#recaptcha img')[0].get('src')
 img_data = img_data.partition(',')[-1]
 binary_img_data = img_data.decode('base64')

http://pillow.readthedocs.org/installation.html
http://pillow.readthedocs.org/installation.html

Solving CAPTCHA

[96]

 file_like = BytesIO(binary_img_data)
 img = Image.open(file_like)
 return img

The first few lines here use lxml to extract the image data from the form. This image
data is prepended with a header that defines the type of data. In this case, it is a PNG
image encoded in Base64, which is a format used to represent binary data in ASCII.
This header is removed by partitioning on the first comma. Then, this image data
needs to be decoded from Base64 into the original binary format. To load an image,
PIL expects a file-like interface, so this binary data is wrapped with BytesIO and
then passed to the Image class.

Now that we have the CAPTCHA image in a more useful format, we are ready to
attempt extracting the text.

Pillow vs PIL
Pillow is a fork of the better known Python Image Library (PIL),
which currently has not been updated since 2009. It uses the same
interface as the original PIL package and is well documented at
http://pillow.readthedocs.org. The examples in this chapter
will work with both Pillow and PIL.

Optical Character Recognition
Optical Character Recognition (OCR) is a process to extract text from images. In
this section, we will use the open source Tesseract OCR engine, which was originally
developed at HP and now primarily at Google. Installation instructions for Tesseract
are available at https://code.google.com/p/tesseract-ocr/wiki/ReadMe. Then,
the pytesseract Python wrapper can be installed with pip:

pip install pytesseract

If the original CAPTCHA image is passed to pytesseract, the results are terrible:

>>> import pytesseract
>>> img = get_captcha(html)
>>> pytesseract.image_to_string(img)
''

http://pillow.readthedocs.org
https://code.google.com/p/tesseract-ocr/wiki/ReadMe

Chapter 7

[97]

An empty string was returned, which means Tesseract failed to extract any characters
from the input image. Tesseract was designed to extract more typical types of text, such
as book pages with a consistent background. If we want to use Tesseract effectively, we
will need to first modify the CAPTCHA images to remove the background noise and
isolate the text. To better understand the CAPTCHA system we are dealing with, here
are some more samples:

The samples in the preceding screenshot show that the CAPTCHA text is always
black while the background is lighter, so this text can be isolated by checking each
pixel and only keeping the black ones, a process known as thresholding. This
process is straightforward to achieve with Pillow:

>>> img.save('captcha_original.png')
>>> gray = img.convert('L')
>>> gray.save('captcha_gray.png')
>>> bw = gray.point(lambda x: 0 if x < 1 else 255, '1')
>>> bw.save('captcha_thresholded.png')

Solving CAPTCHA

[98]

Here, a threshold of less than 1 was used, which means only keeping pixels that are
completely black. This snippet saved three images—the original CAPTCHA image,
when converted to grayscale, and after thresholding. Here are the images saved at
each stage:

The text in the final thresholded image is much clearer and is ready to be passed
to Tesseract:

>>> pytesseract.image_to_string(bw)
'strange'

Success! The CAPTCHA text has been successfully extracted. In my test of 100 images,
this approach correctly interpreted the CAPTCHA image 84 times. Since the sample
text is always lowercase ASCII, the performance can be improved further by restricting
the result to these characters:

>>> import string
>>> word = pytesseract.image_to_string(bw)
>>> ascii_word = ''.join(c for c in word if c in
 string.letters).lower()

Chapter 7

[99]

In my test on the same sample images, this improved performance to 88 times out of
100. Here is the full code of the registration script so far:

import cookielib
import urllib
import urllib2
import string
import pytesseract
REGISTER_URL = 'http://example.webscraping.com/user/register'

def register(first_name, last_name, email, password):
 cj = cookielib.CookieJar()
 opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
 html = opener.open(REGISTER_URL).read()
 form = parse_form(html)
 form['first_name'] = first_name
 form['last_name'] = last_name
 form['email'] = email
 form['password'] = form['password_two'] = password
 img = extract_image(html)
 captcha = ocr(img)
 form['recaptcha_response_field'] = captcha
 encoded_data = urllib.urlencode(form)
 request = urllib2.Request(REGISTER_URL, encoded_data)
 response = opener.open(request)
 success = '/user/register' not in response.geturl()
 return success

def ocr(img):
 gray = img.convert('L')
 bw = gray.point(lambda x: 0 if x < 1 else 255, '1')
 word = pytesseract.image_to_string(bw)
 ascii_word = ''.join(c for c in word if c in
 string.letters).lower()
 return ascii_word

Solving CAPTCHA

[100]

The register() function downloads the registration page and scrapes the form as
usual, where the desired name, e-mail, and password for the new account are set.
The CAPTCHA image is then extracted, passed to the OCR function, and the result is
added to the form. This form data is then submitted and the response URL is checked
to see if registration was successful. If it fails, this would still be the registration
page, either because the CAPTCHA image was solved incorrectly or an account with
this e-mail already existed. Now, to register an account, we simply need to call the
register() function with the new account details:

>>> register(first_name, last_name, email, password)
True

Further improvements
To improve the CAPTCHA OCR performance further, there are a number of
possibilities, as follows:

•	 Experimenting with different threshold levels
•	 Eroding the thresholded text to emphasize the shape of characters
•	 Resizing the image—sometimes increasing the size helps
•	 Training the OCR tool on the CAPCHA font
•	 Restricting results to dictionary words

If you are interested in experimenting to improve performance, the sample data
used is available at https://bitbucket.org/wswp/code/src/tip/chapter07/
samples/. However the current 88 percent accuracy is sufficient for our purposes of
registering an account, because actual users will also make mistakes when entering
the CAPTCHA text. Even 1 percent accuracy would be sufficient, because the script
could be run many times until successful, though this would be rather impolite to
the server and may lead to your IP being blocked.

Solving complex CAPTCHAs
The CAPTCHA system tested so far was relatively straightforward to solve—the
black font color meant the text could easily be distinguished from the background,
and additionally, the text was level and did not need to be rotated for Tesseract to
interpret it accurately. Often, you will find websites using simple custom CAPTCHA
systems similar to this, and in these cases, an OCR solution is practical. However,
if a website uses a more complex system, such as Google's reCAPTCHA, OCR
will take a lot more effort and may not be practical. Here are some more complex
CAPTCHA images from around the web:

https://bitbucket.org/wswp/code/src/tip/chapter07/samples/
https://bitbucket.org/wswp/code/src/tip/chapter07/samples/

Chapter 7

[101]

In these examples, the text is placed at different angles and with different fonts
and colors, so a lot more work needs to be done to clean the image before OCR is
practical. They are also somewhat difficult for people to interpret, particularly for
those with vision disabilities.

Using a CAPTCHA solving service
To solve these more complex images, we will make use of a CAPTCHA solving
service. There are many CAPTCHA solving services available, such as 2captcha.com
and deathbycaptcha.com, and they all offer a similar rate of around 1000 CAPTCHAs
for $1. When a CAPTCHA image is passed to their API, a person will then manually
examine the image and provide the parsed text in an HTTP response, typically within
30 seconds. For the examples in this section, we will use the service at 9kw.eu, which
does not provide the cheapest per CAPTCHA rate or the best designed API. However,
on the positive side, it is possible to use the API without spending money. This is
because 9kw.eu allows users to manually solve CAPTCHAs to build up credit, which
can then be spent on testing the API with our own CAPTCHAs.

https://2captcha.com/
http://deathbycaptcha.com/user/login
https://www.9kw.eu/
9kw.eu

Solving CAPTCHA

[102]

Getting started with 9kw
To start using 9kw, you will need to first create an account at https://www.9kw.eu/
register.html:

Then, follow the account confirmation instructions, and when logged in, navigate to
https://www.9kw.eu/usercaptcha.html:

On this page, you can solve other people's CAPTCHAs to build up credit to later use
with the API. After solving a few CAPTCHAs, navigate to https://www.9kw.eu/
index.cgi?action=userapinew&source=api to create an API key.

https://www.9kw.eu/register.html
https://www.9kw.eu/register.html
https://www.9kw.eu/usercaptcha.html
https://www.9kw.eu/index.cgi?action=userapinew&source=api
https://www.9kw.eu/index.cgi?action=userapinew&source=api

Chapter 7

[103]

9kw CAPTCHA API
The 9kw API is documented at https://www.9kw.eu/api.html#apisubmit-tab.
The important parts for our purposes to submit a CAPTCHA and check the result
are summarized here:

Submit captcha
URL: https://www.9kw.eu/index.cgi (POST)

apikey: your API key

action: must be set to "usercaptchaupload"

file-upload-01: the image to solve (either a file, url or string)

base64: set to "1" if the input is Base64 encoded

maxtimeout: the maximum time to wait for a solution
(must be between 60 - 3999 seconds)

selfsolve: set to "1" to solve this CAPTCHA ourself

Return value: ID of this CAPTCHA

Request result of submitted captcha
URL: https://www.9kw.eu/index.cgi (GET)

apikey: your API key

action: must be set to "usercaptchacorrectdata"

id: ID of CAPTCHA to check

info: set to "1" to return "NO DATA" when there is not yet a solution
(by default returns nothing)

Return value: Text of the solved CAPTCHA or an error code

https://www.9kw.eu/api.html#apisubmit-tab
https://www.9kw.eu/index.cgi
https://www.9kw.eu/index.cgi

Solving CAPTCHA

[104]

Error codes
0001 API key doesn't exist

0002 API key not found

0003 Active API key not found

...

0031 An account is not yet 24 hours in the system.

0032 An account does not have the full rights.

0033 Plugin needs an update.

Here is an initial implementation to send a CAPTCHA image to this API:

import urllib
import urllib2
API_URL = 'https://www.9kw.eu/index.cgi'

def send_captcha(api_key, img_data):
 data = {
 'action': 'usercaptchaupload',
 'apikey': api_key,
 'file-upload-01': img_data.encode('base64'),
 'base64': '1',
 'selfsolve': '1',
 'maxtimeout': '60'
 }
 encoded_data = urllib.urlencode(data)
 request = urllib2.Request(API_URL, encoded_data)
 response = urllib2.urlopen(request)
 return response.read()

This structure should hopefully be looking familiar by now—first, build a dictionary
of the required parameters, encode them, and then submit this in the body of your
request. Note that the selfsolve option is set to '1': this means that if we are
currently solving CAPTCHAs at the 9kv web interface, this CAPTCHA image will be
passed to us to solve, which saves us credit. If not logged in, the CAPTCHA image is
passed to another user to solve as usual.

Chapter 7

[105]

Here is the code to fetch the result of a solved CAPTCHA image:

def get_captcha(api_key, captcha_id):
 data = {
 'action': 'usercaptchacorrectdata',
 'id': captcha_id,
 'apikey': api_key
 }
 encoded_data = urllib.urlencode(data)
 # note this is a GET request
 # so the data is appended to the URL
 response = urllib2.urlopen(API_URL + '?' + encoded_data)
 return response.read()

A drawback with the 9kw API is that the response is a plain string rather than a
structured format, such as JSON, which makes distinguishing the error messages
more complex. For example, if no user is available to solve the CAPTCHA image in
time, the ERROR NO USER string is returned. Hopefully, the CAPTCHA image we
submit never includes this text!

Another difficulty is that the get_captcha() function will return error messages
until another user has had time to manually examine the CAPTCHA image, as
mentioned earlier, typically 30 seconds later. To make our implementation friendlier,
we will add a wrapper function to submit the CAPTCHA image and wait until
the result is ready. Here is an expanded version that wraps this functionality in a
reusable class, as well as checking for error messages:

import time
import urllib
import urllib2
import re
from io import BytesIO

class CaptchaAPI:
 def __init__(self, api_key, timeout=60):
 self.api_key = api_key
 self.timeout = timeout
 self.url = 'https://www.9kw.eu/index.cgi'

 def solve(self, img):
 """Submit CAPTCHA and return result when ready
 """
 img_buffer = BytesIO()
 img.save(img_buffer, format="PNG")
 img_data = img_buffer.getvalue()

Solving CAPTCHA

[106]

 captcha_id = self.send(img_data)
 start_time = time.time()
 while time.time() < start_time + self.timeout:
 try:
 text = self.get(captcha_id)
 except CaptchaError:
 pass # CAPTCHA still not ready
 else:
 if text != 'NO DATA':
 if text == 'ERROR NO USER':
 raise CaptchaError('Error: no user
 available to solve CAPTCHA')
 else:
 print 'CAPTCHA solved!'
 return text
 print 'Waiting for CAPTCHA ...'

 raise CaptchaError('Error: API timeout')

 def send(self, img_data):
 """Send CAPTCHA for solving
 """
 print'Submitting CAPTCHA'
 data = {
 'action': 'usercaptchaupload',
 'apikey': self.api_key,
 'file-upload-01': img_data.encode('base64'),
 'base64': '1',
 'selfsolve': '1',
 'maxtimeout': str(self.timeout)
 }
 encoded_data = urllib.urlencode(data)
 request = urllib2.Request(self.url, encoded_data)
 response = urllib2.urlopen(request)
 result = response.read()
 self.check(result)
 return result

 def get(self, captcha_id):
 """Get result of solved CAPTCHA
 """
 data = {
 'action': 'usercaptchacorrectdata',
 'id': captcha_id,

Chapter 7

[107]

 'apikey': self.api_key,
 'info': '1'
 }
 encoded_data = urllib.urlencode(data)
 response = urllib2.urlopen(self.url + '?' + encoded_data)
 result = response.read()
 self.check(result)
 return result

 def check(self, result):
 """Check result of API and raise error if error code
 """
 if re.match('00\d\d \w+', result):
 raise CaptchaError('API error: ' + result)

class CaptchaError(Exception):
 pass

The source for the CaptchaAPI class is also available at https://bitbucket.org/
wswp/code/src/tip/chapter07/api.py, which will be kept updated if 9kw.eu
modifies their API. This class is instantiated with your API key and a timeout, by
default, set to 60 seconds. Then, the solve() method submits a CAPTCHA image
to the API and keeps requesting the solution until either the CAPTCHA image is
solved or a timeout is reached. To check for error messages in the API response, the
check() method merely examines whether the initial characters follow the expected
format of four digits for the error code before the error message. For more robust use
of this API, this method could be expanded to cover each of the 34 error types.

Here is an example of solving a CAPTCHA image with the CaptchaAPI class:

>>> API_KEY = ...
>>> captcha = CaptchaAPI(API_KEY)
>>> img = Image.open('captcha.png')
>>> text = captcha.solve(img)
Submitting CAPTCHA
Waiting for CAPTCHA ...
Waiting for CAPTCHA ...
Waiting for CAPTCHA ...
Waiting for CAPTCHA ...
Waiting for CAPTCHA ...
Waiting for CAPTCHA ...
Waiting for CAPTCHA ...
Waiting for CAPTCHA ...
Waiting for CAPTCHA ...

https://bitbucket.org/wswp/code/src/tip/chapter07/api.py
https://bitbucket.org/wswp/code/src/tip/chapter07/api.py

Solving CAPTCHA

[108]

Waiting for CAPTCHA ...
Waiting for CAPTCHA ...
CAPTCHA solved!
>>> text
juxhvgy

This is the correct solution for the first complex CAPTCHA image shown earlier in
this chapter. If the same CAPTCHA image is submitted again soon after, the cached
result is returned immediately and no additional credit is used:

>>> text = captcha.solve(img_data)
Submitting CAPTCHA
>>> text
juxhvgy

Integrating with registration
Now that we have a working CAPTCHA API solution, we can integrate it with the
previous form. Here is a modified version of the register function that now takes
a function to solve the CAPTCHA image as an argument so that it can be used with
either the OCR or API solutions:

def register(first_name, last_name, email, password, captcha_fn):
 cj = cookielib.CookieJar()
 opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
 html = opener.open(REGISTER_URL).read()
 form = parse_form(html)
 form['first_name'] = first_name
 form['last_name'] = last_name
 form['email'] = email
 form['password'] = form['password_two'] = password
 img = extract_image(html)
 form['recaptcha_response_field'] = captcha_fn(img)
 encoded_data = urllib.urlencode(form)
 request = urllib2.Request(REGISTER_URL, encoded_data)
 response = opener.open(request)
 success = '/user/register' not in response.geturl()
 return success

Here is an example of how to use it:

>>> captcha = CaptchaAPI(API_KEY)
>>> register(first_name, last_name, email, password, captcha.solve)
Submitting CAPTCHA
Waiting for CAPTCHA ...
Waiting for CAPTCHA ...

Chapter 7

[109]

Waiting for CAPTCHA ...
Waiting for CAPTCHA ...
Waiting for CAPTCHA ...
Waiting for CAPTCHA ...
Waiting for CAPTCHA ...
True

It worked! The CAPTCHA image was successfully extracted from the form,
submitted to the 9kv API, solved manually by another user, and then the result was
submitted to the web server to register a new account.

Summary
This chapter showed how to solve CAPTCHAs, first by using OCR, and then with an
external API. For simple CAPTCHAs, or for when you need to solve a large amount
of CAPTCHAs, investing time in an OCR solution can be worthwhile. Otherwise,
using a CAPTCHA solving API can prove to be a cost effective alternative.

In the next chapter, we will introduce Scrapy, which is a popular high-level
framework used to build scraping applications.

[111]

Scrapy
Scrapy is a popular web scraping framework that comes with many high-level
functions to make scraping websites easier. In this chapter, we will get to know
Scrapy by using it to scrape the example website, just as we did in Chapter 2, Scraping
the Data. Then, we will cover Portia, which is an application based on Scrapy that
allows you to scrape a website through a point and click interface

Installation
Scrapy can be installed with the pip command, as follows:

pip install Scrapy

Scrapy relies on some external libraries so if you have trouble installing it
there is additional information available on the official website at:
http://doc.scrapy.org/en/latest/intro/install.html.

Currently, Scrapy only supports Python 2.7, which is more restrictive than other
packages introduced in this book. Previously, Python 2.6 was also supported, but
this was dropped in Scrapy 0.20. Also due to the dependency on Twisted, support
for Python 3 is not yet possible, though the Scrapy team assures me they are working
to solve this.

http://doc.scrapy.org/en/latest/intro/install.html

Scrapy

[112]

If Scrapy is installed correctly, a scrapy command will now be available in the
terminal:

$ scrapy -h

Scrapy 0.24.4 - no active project

Usage:

 scrapy <command> [options] [args]

Available commands:

 bench Run quick benchmark test

 check Check spider contracts

 crawl Run a spider

...

We will use the following commands in this chapter:

•	 startproject: Creates a new project
•	 genspider: Generates a new spider from a template
•	 crawl: Runs a spider
•	 shell: Starts the interactive scraping console

For detailed information about these and the other commands
available, refer to http://doc.scrapy.org/en/latest/
topics/commands.html.

Starting a project
Now that Scrapy is installed, we can run the startproject command to generate
the default structure for this project. To do this, open the terminal and navigate to
the directory where you want to store your Scrapy project, and then run scrapy
startproject <project name>. Here, we will use example for the project name:

$ scrapy startproject example

$ cd example

http://doc.scrapy.org/en/latest/topics/commands.html
http://doc.scrapy.org/en/latest/topics/commands.html

Chapter 8

[113]

Here are the files generated by the scrapy command:

 scrapy.cfg
 example/
 __init__.py
 items.py
 pipelines.py
 settings.py
 spiders/
 __init__.py

The important files for this chapter are as follows:

•	 items.py: This file defines a model of the fields that will be scraped
•	 settings.py: This file defines settings, such as the user agent and crawl delay
•	 spiders/: The actual scraping and crawling code are stored in this directory

Additionally, Scrapy uses scrapy.cfg for project configuration and pipelines.py
to process the scraped fields, but they will not need to be modified in this example.

Defining a model
By default, example/items.py contains the following code:

import scrapy

class ExampleItem(scrapy.Item):
 # define the fields for your item here like:
 # name = scrapy.Field()
 pass

The ExampleItem class is a template that needs to be replaced with how we want
to store the scraped country details when the spider is run. To help focus on what
Scrapy does, we will just scrape the country name and population, rather than all the
country details. Here is an updated model to support this:

class ExampleItem(scrapy.Item):
 name = scrapy.Field()
 population = scrapy.Field()

Full documentation about defining models is available
at http://doc.scrapy.org/en/latest/topics/
items.html.

http://doc.scrapy.org/en/latest/topics/items.html
http://doc.scrapy.org/en/latest/topics/items.html

Scrapy

[114]

Creating a spider
Now, we will build the actual crawling and scraping code, known as a spider in
Scrapy. An initial template can be generated with the genspider command, which
takes the name you want to call the spider, the domain, and optionally, a template:

$ scrapy genspider country example.webscraping.com --template=crawl

The built-in crawl template was used here to generate an initial version closer to
what we need to crawl the countries. After running the genspider command, the
following code will have been generated in example/spiders/country.py:

import scrapy
from scrapy.contrib.linkextractors import LinkExtractor
from scrapy.contrib.spiders import CrawlSpider, Rule

from example.items import ExampleItem

class CountrySpider(CrawlSpider):
 name = 'country'
 start_urls = ['http://www.example.webscraping.com/']
 allowed_domains = ['example.webscraping.com']

 rules = (
 Rule(LinkExtractor(allow=r'Items/'),
 callback='parse_item', follow=True),
)

 def parse_item(self, response):
 i = ExampleItem()
 #i['domain_id'] =
 response.xpath('//input[@id="sid"]/@value').extract()
 #i['name'] = response.xpath('//div[@id="name"]').extract()
 #i['description'] =
 response.xpath('//div[@id="description"]').extract()
 return i

Chapter 8

[115]

The initial lines import the required Scrapy libraries, including the ExampleItem
model defined in the Defining a model section. Then, a class is created for the spider,
which contains a number of class attributes, as follows:

•	 name: This attribute is a string to identify the spider
•	 start_urls: This attribute is a list of URLs to start the crawl. However, the

start_urls default attribute is not what we want because www has been
prepended to the example.webscraping.com domain

•	 allowed_domains: This attribute is a list of the domains that can be
crawled—if this is not defined, any domain can be crawled

•	 rules: This attribute is a set of regular expressions to tell the crawler which
links to follow

The rules attribute also has a callback function to parse the responses of these
downloads, and the parse_item() example method gives an example of how to
scrape data from the response.

Scrapy is a high-level framework, so there is a lot going on here in these few lines of
code. The official documentation has further details about building spiders, and can
be found at http://doc.scrapy.org/en/latest/topics/spiders.html.

Tuning settings
Before running the generated spider, the Scrapy settings should be updated to
avoid the spider being blocked. By default, Scrapy allows up to eight concurrent
downloads for a domain with no delay between downloads, which is much faster
than a real user would browse, and so is straightforward for a server to detect. As
mentioned in the Preface, the example website that we are scraping is configured
to temporarily block crawlers that consistently download at faster than one request
a second, so the default settings would cause our spider to be blocked. Unless you
are running the example website locally then I recommend adding these lines to
example/settings.py so that the crawler only downloads a single request at a time
per domain with a delay between downloads:

CONCURRENT_REQUESTS_PER_DOMAIN = 1
DOWNLOAD_DELAY = 5

Note that Scrapy will not use this exact delay between requests, because this would
also make a crawler easier to detect and block. Instead, it adds a random offset to this
delay between requests. For details about these settings and the many others available,
refer to http://doc.scrapy.org/en/latest/topics/settings.html.

http://doc.scrapy.org/en/latest/topics/spiders.html
http://doc.scrapy.org/en/latest/topics/settings.html

Scrapy

[116]

Testing the spider
To run a spider from the command line, the crawl command is used along with
the name of the spider:

$ scrapy crawl country -s LOG_LEVEL=ERROR

[country] ERROR: Error downloading <GET http://www.example.webscraping.
com/>: DNS lookup failed: address 'www.example.webscraping.com' not
found: [Errno -5] No address associated with hostname.

As expected, the crawl failed on this default spider because http://www.example.
webscraping.com does not exist. Take note of the -s LOG_LEVEL=ERROR flag—
this is a Scrapy setting and is equivalent to defining LOG_LEVEL = 'ERROR' in the
settings.py file. By default, Scrapy will output all log messages to the terminal, so
here the log level was raised to isolate the error messages.

Here is an updated version of the spider to correct the starting URL and set which
web pages to crawl:

 start_urls = ['http://example.webscraping.com/']

 rules = (
 Rule(LinkExtractor(allow='/index/'), follow=True),
 Rule(LinkExtractor(allow='/view/'), callback='parse_item')
)

The first rule will crawl the index pages and follow their links, and then the second
rule will crawl the country pages and pass the downloaded response to the callback
function for scraping. Let us see what happens when this spider is run with the log
level set to DEBUG to show all messages:

$ scrapy crawl country -s LOG_LEVEL=DEBUG

...

[country] DEBUG: Crawled (200) <GET http://example.webscraping.com/>

[country] DEBUG: Crawled (200) <GET http://example.webscraping.com/
index/1>

[country] DEBUG: Filtered duplicate request: <GET http://example.
webscraping.com/index/1> - no more duplicates will be shown (see
DUPEFILTER_DEBUG to show all duplicates)

[country] DEBUG: Crawled (200) <GET http://example.webscraping.com/view/
Antigua-and-Barbuda-10>

[country] DEBUG: Crawled (200) <GET http://example.webscraping.com/user/
login?_next=%2Findex%2F1>

[country] DEBUG: Crawled (200) <GET http://example.webscraping.com/user/
register?_next=%2Findex%2F1>

...

http://www.example.webscraping.com
http://www.example.webscraping.com

Chapter 8

[117]

This log output shows that the index pages and countries are being crawled and
duplicate links are filtered, which is handy. However, the spider is wasting resources
by also crawling the login and register forms linked from each web page, because
they match the rules regular expressions. The login URL in the preceding command
ends with _next=%2Findex%2F1, which is a URL encoding equivalent to _next=/
index/1, and would let the server know where to redirect to after the user logged in.
To prevent crawling these URLs, we can use the deny parameter of the rules, which
also expects a regular expression and will prevent crawling all matching URLs. Here
is an updated version of code to prevent crawling the user login and registration
forms by avoiding the URLs containing /user/:

 rules = (
 Rule(LinkExtractor(allow='/index/', deny='/user/'),
 follow=True),
 Rule(LinkExtractor(allow='/view/', deny='/user/'),
 callback='parse_item')
)

Further documentation about how to use this class is available
at http://doc.scrapy.org/en/latest/topics/link-
extractors.html.

Scraping with the shell command
Now that Scrapy can crawl the countries, we need to define what data should be
scraped. To help test how to extract data from a web page, Scrapy comes with a
handy command called shell that will download a URL and provide the resulting
state in the Python interpreter. Here are the results for a sample country:

$ scrapy shell http://example.webscraping.com/view/United-Kingdom-239

[s] Available Scrapy objects:

[s] crawler <scrapy.crawler.Crawler object at 0x7f1475da5390>

[s] item {}

[s] request <GET http://example.webscraping.com/view/United-
Kingdom-239>

[s] response <200 http://example.webscraping.com/view/United-
Kingdom-239>

[s] settings <scrapy.settings.Settings object at 0x7f147c1fb490>

[s] spider <Spider 'default' at 0x7f147552eb90>

[s] Useful shortcuts:

[s] shelp() Shell help (print this help)

[s] fetch(req_or_url) Fetch request (or URL) and update local objects

[s] view(response) View response in a browser

http://doc.scrapy.org/en/latest/topics/link-extractors.html
http://doc.scrapy.org/en/latest/topics/link-extractors.html

Scrapy

[118]

We can now query these objects to check what data is available.

In [1]: response.url
'http://example.webscraping.com/view/United-Kingdom-239'
In [2]: response.status
200

Scrapy uses lxml to scrape data, so we can use the same CSS selectors as those in
Chapter 2, Scraping the Data:

In [3]: response.css('tr#places_country__row td.w2p_fw::text')
[<Selector xpath=u"descendant-or-self::
 tr[@id = 'places_country__row']/descendant-or-self::
 */td[@class and contains(
 concat(' ', normalize-space(@class), ' '),
 ' w2p_fw ')]/text()" data=u'United Kingdom'>]

This method returns an lxml selector; to apply it, the extract() method needs
to be called:

In [4]: name_css = 'tr#places_country__row td.w2p_fw::text'
In [5]: response.css(name_css).extract()
[u'United Kingdom']
In [6]: pop_css = 'tr#places_population__row td.w2p_fw::text'
In [7]: response.css(pop_css).extract()
[u'62,348,447']

These CSS selectors can then be used in the parse_item() method generated earlier
in example/spiders/country.py:

def parse_item(self, response):
 item = ExampleItem()
 name_css = 'tr#places_country__row td.w2p_fw::text'
 item['name'] = response.css(name_css).extract()
 pop_css = 'tr#places_population__row td.w2p_fw::text'
 item['population'] = response.css(pop_css).extract()
 return item

Checking results
Here is the completed version of our spider:

class CountrySpider(CrawlSpider):
 name = 'country'
 start_urls = ['http://example.webscraping.com/']
 allowed_domains = ['example.webscraping.com']
 rules = (

Chapter 8

[119]

 Rule(LinkExtractor(allow='/index/', deny='/user/'),
 follow=True),
 Rule(LinkExtractor(allow='/view/', deny='/user/'),
 callback='parse_item')
)

 def parse_item(self, response):
 item = ExampleItem()
 name_css = 'tr#places_country__row td.w2p_fw::text'
 item['name'] = response.css(name_css).extract()
 pop_css = 'tr#places_population__row td.w2p_fw::text'
 item['population'] = response.css(pop_css).extract()
 return item

To save the results, we could add extra code to the parse_item() method to write
the scraped country data, or perhaps define a pipeline. However, this work is not
necessary because Scrapy provides a handy --output flag to save scraped items
automatically in CSV, JSON, or XML format. Here are the results when the final
version of the spider is run with the results output to a CSV file and the log level is
set to INFO, to filter out less important messages:

$ scrapy crawl country --output=countries.csv -s LOG_LEVEL=INFO

[scrapy] INFO: Scrapy 0.24.4 started (bot: example)

[country] INFO: Spider opened

[country] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0
items/min)

[country] INFO: Crawled 10 pages (at 10 pages/min), scraped 9 items (at 9
items/min)

...

[country] INFO: Crawled 264 pages (at 10 pages/min), scraped 238 items
(at 9 items/min)

[country] INFO: Crawled 274 pages (at 10 pages/min), scraped 248 items
(at 10 items/min)

[country] INFO: Closing spider (finished)

[country] INFO: Stored csv feed (252 items) in: countries.csv

[country] INFO: Dumping Scrapy stats:

 {'downloader/request_bytes': 155001,

 'downloader/request_count': 279,

 'downloader/request_method_count/GET': 279,

 'downloader/response_bytes': 943190,

Scrapy

[120]

 'downloader/response_count': 279,

 'downloader/response_status_count/200': 279,

 'dupefilter/filtered': 61,

 'finish_reason': 'finished',

 'item_scraped_count': 252,

 'log_count/INFO': 36,

 'request_depth_max': 26,

 'response_received_count': 279,

 'scheduler/dequeued': 279,

 'scheduler/dequeued/memory': 279,

 'scheduler/enqueued': 279,

 'scheduler/enqueued/memory': 279}

[country] INFO: Spider closed (finished)

At the end of the crawl, Scrapy outputs some statistics to give an indication of
how the crawl performed. From these statistics, we know that 279 web pages were
crawled and 252 items were scraped, which is the expected number of countries in
the database, so we know that the crawler was able to find them all.

To verify these countries were scraped correctly we can check the contents of
countries.csv:

name,population
Afghanistan,"29,121,286"
Antigua and Barbuda,"86,754"
Antarctica,0
Anguilla,"13,254"
Angola,"13,068,161"
Andorra,"84,000"
American Samoa,"57,881"
Algeria,"34,586,184"
Albania,"2,986,952"
Aland Islands,"26,711"
...

As expected this spreadsheet contains the name and population for each country.
Scraping this data required writing less code than the original crawler built in Chapter
2, Scraping the Data because Scrapy provides a lot of high-level functionalities. In the
following section on Portia we will re-implement this scraper writing even less code.

Chapter 8

[121]

Interrupting and resuming a crawl
Sometimes when scraping a website, it can be useful to pause the crawl and resume
it later without needing to start over from the beginning. For example, you may need
to interrupt the crawl to reset your computer after a software update, or perhaps,
the website you are crawling is returning errors and you want to continue the crawl
later. Conveniently, Scrapy comes built-in with support to pause and resume crawls
without needing to modify our example spider. To enable this feature, we just need
to define the JOBDIR setting for the directory where the current state of a crawl
is saved. Note that separate directories must be used to save the state of multiple
crawls. Here is an example using this feature with our spider:

$ scrapy crawl country -s LOG_LEVEL=DEBUG -s JOBDIR=crawls/country

...

[country] DEBUG: Scraped from <200 http://example.webscraping.com/view/
Afghanistan-1>

 {'name': [u'Afghanistan'], 'population': [u'29,121,286']}

^C [scrapy] INFO: Received SIGINT, shutting down gracefully. Send again
to force

[country] INFO: Closing spider (shutdown)

[country] DEBUG: Crawled (200) <GET http://example.webscraping.com/view/
Antigua-and-Barbuda-10> (referer: http://example.webscraping.com/)

[country] DEBUG: Scraped from <200 http://example.webscraping.com/view/
Antigua-and-Barbuda-10>

 {'name': [u'Antigua and Barbuda'], 'population': [u'86,754']}

[country] DEBUG: Crawled (200) <GET http://example.webscraping.com/view/
Antarctica-9> (referer: http://example.webscraping.com/)

[country] DEBUG: Scraped from <200 http://example.webscraping.com/view/
Antarctica-9>

 {'name': [u'Antarctica'], 'population': [u'0']}

...

[country] INFO: Spider closed (shutdown)

Here, we see that ^C (Ctrl + C) was used to send the terminate signal, and that the
spider finished processing a few items before terminating. To have Scrapy save the
crawl state, you must wait here for the crawl to shut down gracefully and resist
the temptation to enter Ctrl + C again to force immediate termination! The state of
the crawl will now be saved in crawls/country, and the crawl can be resumed by
running the same command:

$ scrapy crawl country -s LOG_LEVEL=DEBUG -s JOBDIR=crawls/country

...

Scrapy

[122]

[country] INFO: Resuming crawl (12 requests scheduled)

[country] DEBUG: Crawled (200) <GET http://example.webscraping.com/view/
Anguilla-8> (referer: http://example.webscraping.com/)

[country] DEBUG: Scraped from <200 http://example.webscraping.com/view/
Anguilla-8>

 {'name': [u'Anguilla'], 'population': [u'13,254']}

[country] DEBUG: Crawled (200) <GET http://example.webscraping.com/view/
Angola-7> (referer: http://example.webscraping.com/)

[country] DEBUG: Scraped from <200 http://example.webscraping.com/view/
Angola-7>

 {'name': [u'Angola'], 'population': [u'13,068,161']}

...

The crawl now resumes from where it was paused and continues as normal. This
feature is not particularly useful for our example website because the number of
pages to download is very small. However, for larger websites that take months to
crawl, being able to pause and resume crawls is very convenient.

Note that there are some edge cases not covered here that can cause problems when
resuming a crawl, such as expiring cookies, which are mentioned in the Scrapy
documentation available at http://doc.scrapy.org/en/latest/topics/jobs.
html.

Visual scraping with Portia
Portia is a an open-source tool built on top of Scrapy that supports building a
spider by clicking on the parts of a website that need to be scraped, which can
be more convenient than creating the CSS selectors manually.

Installation
Portia is a powerful tool, and it depends on multiple external libraries for
its functionality. It is also relatively new, so currently, the installation steps
are somewhat involved. In case the installation is simplified in future, the
latest documentation can be found at https://github.com/scrapinghub/
portia#running-portia.

http://doc.scrapy.org/en/latest/topics/jobs.html
http://doc.scrapy.org/en/latest/topics/jobs.html
https://github.com/scrapinghub/portia#running-portia
https://github.com/scrapinghub/portia#running-portia

Chapter 8

[123]

The recommended first step is to create a virtual Python environment with
virtualenv. Here, we name our environment portia_example, which can be
replaced with whatever name you choose:

$ pip install virtualenv

$ virtualenv portia_example --no-site-packages

$ source portia_example/bin/activate

(portia_example)$ cd portia_example

Why use virtualenv?
Imagine if your project was developed with an earlier version of
lxml, and then in a later version, lxml introduced some backwards
incompatible changes that would break your project. However, other
projects are going to depend on the newer version of lxml. If your
project uses the system-installed lxml, it is eventually going to break
when lxml is updated to support other projects.
Ian Bicking's virtualenv provides a clever hack to this problem by
copying the system Python executable and its dependencies into a local
directory to create an isolated Python environment. This allows a project
to install specific versions of Python libraries locally and independent of
the wider system. Further details are available in the documentation at
https://virtualenv.pypa.io.

Then, from within virtualenv, Portia and its dependencies can be installed:

(portia_example)$ git clone https://github.com/scrapinghub/portia

(portia_example)$ cd portia

(portia_example)$ pip install -r requirements.txt

(portia_example)$ pip install -e ./slybot

Portia is under active development, so the interface may have changed by the
time you read this. If you want to use the same version as the one this tutorial was
developed with, run this git command:

(portia_example)$ git checkout 8210941

If you do not have git installed, the latest version of Portia can be downloaded
directly from https://github.com/scrapinghub/portia/archive/master.zip.

https://virtualenv.pypa.io
https://github.com/scrapinghub/portia/archive/master.zip

Scrapy

[124]

Once the installation steps are completed, Portia can be started by changing to the
slyd directory and starting the server:

(portia_example)$ cd slyd

(portia_example)$ twistd -n slyd

If installed correctly, the Portia tool will now be accessible in your web browser at
http://localhost:9001/static/main.html.

This is how the initial screen looks:

If you have problems during installation it is worth checking the Portia Issues page
at https://github.com/scrapinghub/portia/issues, in case someone else has
experienced the same problem and found a solution.

Annotation
At the Portia start page, there is a textbox to enter the URL of the website you want
to scrape, such as http://example.webscraping.com. Portia will then load this
web page in the main panel:

https://github.com/scrapinghub/portia/issues
http://example.webscraping.com

Chapter 8

[125]

By default, the project name is set to new_project, and the spider name is set to the
domain (example.webscraping.com), which can both be modified by clicking on
these labels. Next, navigate to a sample country web page to annotate what data is of
interest to you:

Scrapy

[126]

Click on the Annotate this page button, and then when the country population is
clicked on, this dialogue box will pop-up:

Click on the + field button to create a new field called population, and click on
Done to save the new field. Then, do the same for the country name and any other
fields you are interested in. The annotated fields will be highlighted in the web page
and can be edited in the panel on the right-hand side:

When the annotations are complete, click on the blue Continue Browsing button at
the top.

Chapter 8

[127]

Tuning a spider
After completing the annotations, Portia will generate a Scrapy project and store the
resulting files in data/projects. To run this spider, the portiacrawl command is
used along with the project and spider name. However, if this spider is run using the
default settings, it will quickly encounter server errors:

(portia_example)$ portiacrawl portia/slyd/data/projects/new_project
example.webscraping.com [example.webscraping.com] DEBUG: Crawled (200)
<GET http://example.webscraping.com/view/Antarctica-9>

[example.webscraping.com] DEBUG: Scraped from <200 http://example.
webscraping.com/view/Antarctica-9>

 {'_template': '9300cdc044d4b75151044340118ccf4efd976922',

 '_type': u'default',

 u'name': [u'Antarctica'],

 u'population': [u'0'],

 'url': 'http://example.webscraping.com/view/Antarctica-9'}

...

[example.webscraping.com] DEBUG: Retrying <GET http://example.
webscraping.com/edit/Antarctica-9> (failed 1 times): 500 Internal Server
Error

This is the same problem that was touched on in the Tuning the settings section
because this Portia-generated project uses the default Scrapy crawl settings, which
download too fast. These settings can again be modified in the settings file (located
at data/projects/new_project/spiders/settings.py). However, to demonstrate
something new this time, we will set them from the command line:

(portia_example)$ portiacrawl portia/slyd/data/projects/new_project
example.webscraping.com -s CONCURRENT_REQUESTS_PER_DOMAIN=1 -s DOWNLOAD_
DELAY=5

...

[example.webscraping.com] DEBUG: Crawled (200) <GET http://example.
webscraping.com/user/login?_next=%2Findex%2F1>

[example.webscraping.com] DEBUG: Crawled (200) <GET http://example.
webscraping.com/user/register?_next=%2Findex%2F1>

Scrapy

[128]

If this slower crawl is run, it will avoid being blocked. However, it will then
encounter the same inefficiency of downloading unnecessary web pages, such as
login and registration. By default, Portia will generate a spider that crawls all the
URLs of a given domain. To instead crawl only specific URLs, the Crawling tab
in the right-hand side panel can be configured:

Here, we added /index/ and /view/ for the spider follow patterns, and /user/ for
the exclude pattern, similar to what we used in the previous Scrapy project. If the
Overlay blocked links box at the bottom is checked, Portia will highlight green and
red the links that will be followed and excluded respectively:

Chapter 8

[129]

Checking results
The generated spider is now ready for execution, and, as before, the output CSV file
can be specified using the --output flag:

(portia_example)$ portiacrawl portia/slyd/data/projects/new_project
example.webscraping.com --output=countries.csv -s CONCURRENT_REQUESTS_
PER_DOMAIN=1 -s DOWNLOAD_DELAY=5

When this command is run, this spider will produce the exact output as the manually
created Scrapy version.

Portia is a handy tool to use in conjunction with Scrapy. For straightforward
websites, it will typically be faster to develop the crawler with Portia. On the
other hand, for more complex websites—for example, if the interface is JavaScript
dependent—there is the option to develop the Scrapy crawler directly in Python.

Scrapy

[130]

Automated scraping with Scrapely
For scraping the annotated fields Portia uses a library called Scrapely, which is
a useful open-source tool developed independently of Portia and is available at
https://github.com/scrapy/scrapely. Scrapely uses training data to build a
model of what to scrape from a web page, and then this model can be applied to
scrape other web pages with the same structure in future. Here is an example to
show how it works:

(portia_example)$ python

>>> from scrapely import Scraper

>>> s = Scraper()

>>> train_url = 'http://example.webscraping.com/view/Afghanistan-1'

>>> s.train(train_url, {'name': 'Afghanistan', 'population':
'29,121,286'})

>>> test_url = 'http://example.webscraping.com/view/United-Kingdom-239'

>>> s.scrape(test_url)

[{u'name': [u'United Kingdom'], u'population': [u'62,348,447']}]

First, Scrapely is given the data we want to scrape from the Afghanistan web page
to train the model, being the country name and population. Then, this model is
applied to another country page and Scrapely uses this model to correctly return the
country name and population here too.

This workflow allows scraping web pages without needing to know their structure,
only the desired content to extract in a training case. This approach can be
particularly useful if the content of a web page is static, while the layout is changing.
For example, with a news website, the text of the published article will most likely
not change, though the layout may be updated. In this case, Scrapely can then be
retrained using the same data to generate a model for the new website structure.

The example web page used here to test Scrapely is well structured with separate
tags and attributes for each data type so that Scrapely was able to correctly train a
model. However, for more complex web pages, Scrapely can fail to locate the content
correctly, and so their documentation warns that you should "train with caution".
Perhaps, in future, a more robust automated web scraping library will be released,
but, for now, it is still necessary to know how to scrape a website directly using the
techniques covered in Chapter 2, Scraping the Data.

https://github.com/scrapy/scrapely

Chapter 8

[131]

Summary
This chapter introduced Scrapy, a web scraping framework with many high-level
features to improve efficiency at scraping websites. Additionally, this chapter
covered Portia, which provides a visual interface to generate Scrapy spiders. Finally,
we tested Scrapely, the library used by Portia to scrape web pages automatically for
a given model.

In the next chapter, we will apply the skills learned so far to some real-world
websites.

[133]

Overview
This book has so far introduced scraping techniques using a custom website,
which helped us focus on learning particular skills. Now, in this chapter, we will
analyze a variety of real-world websites to show how these techniques can be applied.
Firstly, we will use Google to show a real-world search form, then Facebook for a
JavaScript-dependent website, Gap for a typical online store, and finally, BMW for a
map interface. Since these are live websites, there is a risk that they will have changed
by the time you read this. However, this is fine because the purpose of these examples
is to show you how the techniques learned so far can be applied, rather than to show
you how to scrape a particular website. If you choose to run an example, first check
whether the website structure has changed since these examples were made and
whether their current terms and conditions prohibit scraping.

Google search engine
According to the Alexa data used in Chapter 4, Concurrent Downloading, google.com
is the world's most popular website, and conveniently, its structure is simple and
straightforward to scrape.

International Google
Google may redirect to a country-specific version, depending on
your location. To use a consistent Google search wherever you are
in the world, the international English version of Google can be
loaded at http://www.google.com/ncr. Here, ncr stands for
no country redirect.

http://www.google.com/ncr

Overview

[134]

Here is the Google search homepage loaded with Firebug to inspect the form:

We can see here that the search query is stored in an input with name q, and then
the form is submitted to the path /search set by the action attribute. We can test
this by doing a test search to submit the form, which would then be redirected to a
URL like https://www.google.com/searchq=test&oq=test&es_sm=93&ie=UTF-8.
The exact URL will depend on your browser and location. Also note that if you have
Google Instant enabled, AJAX will be used to load the search results dynamically
rather than submitting the form. This URL has many parameters but the only one
required is q for the query. The URL https://www.google.com/search?q=test
will produce the same result, as shown in this screenshot:

https://www.google.com/searchq=test&oq=test&es_sm=93&ie=UTF-8
https://www.google.com/search?q=test

Chapter 9

[135]

The structure of the search results can be examined with Firebug, as shown here:

Here, we see that the search results are structured as links whose parent element is
a <h3> tag of class "r". To scrape the search results we will use a CSS selector, which
were introduced in Chapter 2, Scraping the Data:

>>> import lxml.html
>>> from downloader import Downloader
>>> D = Downloader()
>>> html = D('https://www.google.com/search?q=test')
>>> tree = lxml.html.fromstring(html)
>>> results = tree.cssselect('h3.r a')
>>> results
[<Element a at 0x7f3d9affeaf8>,
 <Element a at 0x7f3d9affe890>,
 <Element a at 0x7f3d9affe8e8>,
 <Element a at 0x7f3d9affeaa0>,
 <Element a at 0x7f3d9b1a9e68>,
 <Element a at 0x7f3d9b1a9c58>,
 <Element a at 0x7f3d9b1a9ec0>,
 <Element a at 0x7f3d9b1a9f18>,
 <Element a at 0x7f3d9b1a9f70>,
 <Element a at 0x7f3d9b1a9fc8>]

So far, we downloaded the Google search results and used lxml to extract the links. In
the preceding screenshot, the link includes a bunch of extra parameters alongside the
actual website URL, which are used for tracking clicks. Here is the first link:

>>> link = results[0].get('href')
>>> link
'/url?q=http://www.speedtest.net/
 &sa=U&ei=nmgqVbgCw&ved=0CB&usg=ACA_cA'

Overview

[136]

The content we want here is http://www.speedtest.net/, which can be parsed
from the query string using the urlparse module:

>>> import urlparse
>>> qs = urlparse.urlparse(link).query
>>> urlparse.parse_qs(qs)
{'q': ['http://www.speedtest.net/'],
 'ei': ['nmgqVbgCw'],
 'sa': ['U'],
 'usg': ['ACA_cA'],
 'ved': ['0CB']}
>>> urlparse.parse_qs(qs).get('q', [])
['http://www.speedtest.net/']

This query string parsing can be applied to extract all links.

>>> links = []
>>> for result in results:
... link = result.get('href')
... qs = urlparse.urlparse(link).query
... links.extend(urlparse.parse_qs(qs).get('q', []))
...
>>> links
['http://www.speedtest.net/',
 'https://www.test.com/',
 'http://www.tested.com/',
 'http://www.speakeasy.net/speedtest/',
 'http://www.humanmetrics.com/cgi-win/jtypes2.asp',
 'http://en.wikipedia.org/wiki/Test_cricket',
 'https://html5test.com/',
 'http://www.16personalities.com/free-personality-test',
 'https://www.google.com/webmasters/tools/mobile-friendly/',
 'http://speedtest.comcast.net/']

Success! The links from this Google search have been successfully scraped. The full
source for this example is available at https://bitbucket.org/wswp/code/src/
tip/chapter09/google.py.

https://bitbucket.org/wswp/code/src/tip/chapter09/google.py
https://bitbucket.org/wswp/code/src/tip/chapter09/google.py
http://www.speedtest.net/

Chapter 9

[137]

One difficulty with Google is that a CAPTCHA image will be shown if your IP
appears suspicious, for example, when downloading too fast.

This CAPTCHA image could be solved using the techniques covered in Chapter 7,
Solving CAPTCHA, though it would be preferable to avoid suspicion and download
slowly, or use proxies if a faster download rate is required.

Facebook
Currently, Facebook is the world's largest social network in terms of monthly active
users, and therefore, its user data is extremely valuable.

Overview

[138]

The website
Here is an example Facebook page for Packt Publishing at https://www.facebook.
com/PacktPub:

Viewing the source of this page, you would find that the first few posts are available,
and that later posts are loaded with AJAX when the browser scrolls. Facebook also
has a mobile interface, which, as mentioned in Chapter 1, Introduction to Web Scraping,
is often easier to scrape. The same page using the mobile interface is available at
https://m.facebook.com/PacktPub:

https://www.facebook.com/PacktPub
https://www.facebook.com/PacktPub
https://m.facebook.com/PacktPub

Chapter 9

[139]

If we interacted with the mobile website and then checked Firebug we would find
that this interface uses a similar structure for the AJAX events, so it is not actually
easier to scrape. These AJAX events can be reverse engineered; however, different
types of Facebook pages use different AJAX calls, and from my past experience,
Facebook often changes the structure of these calls so scraping them will require
ongoing maintenance. Therefore, as discussed in Chapter 5, Dynamic Content, unless
performance is crucial, it would be preferable to use a browser rendering engine to
execute the JavaScript events for us and give us access to the resulting HTML.

Here is an example snippet using Selenium to automate logging in to Facebook and
then redirecting to the given page URL:

from selenium import webdriver

def facebook(username, password, url):
 driver = webdriver.Firefox()
 driver.get('https://www.facebook.com')
 driver.find_element_by_id('email').send_keys(username)
 driver.find_element_by_id('pass').send_keys(password)
 driver.find_element_by_id('login_form').submit()
 driver.implicitly_wait(30)
 # wait until the search box is available,
 # which means have successfully logged in
 search = driver.find_element_by_id('q')
 # now logged in so can go to the page of interest
 driver.get(url)
 # add code to scrape data of interest here ...

This function can then be called to load the Facebook page of interest and scrape the
resulting generated HTML.

The API
As mentioned in Chapter 1, Introduction to Web Scraping, scraping a website is a last
resort when their data is not available in a structured format. Facebook does offer
API's for some of their data, so we should check whether these provide access to
what we are after before scraping. Here is an example of using Facebook's Graph API
to extract data from the Packt Publishing page:

>>> import json, pprint
>>> html = D('http://graph.facebook.com/PacktPub')
>>> pprint.pprint(json.loads(html))
{u'about': u'Packt Publishing provides books, eBooks, video
 tutorials, and articles for IT developers, administrators, and
 users.',
 u'category': u'Product/service',

Overview

[140]

 u'founded': u'2004',
 u'id': u'204603129458',
 u'likes': 4817,
 u'link': u'https://www.facebook.com/PacktPub',
 u'mission': u'We help the world put software to work in new ways,
 through the delivery of effective learning and information
 services to IT professionals.',
 u'name': u'Packt Publishing',
 u'talking_about_count': 55,
 u'username': u'PacktPub',
 u'website': u'http://www.PacktPub.com'}

This API call returns the data in JSON format, which was parsed into a Python dict
using the json module. Then, some useful features, such as the company name,
description, and website can be extracted.

The Graph API provides many other calls to access user data and is documented on
Facebook's developer page at https://developers.facebook.com/docs/graph-api.
However, most of these API calls are designed for a Facebook app interacting with an
authenticated Facebook user, and are, therefore, not useful for extracting other people's
data. To extract additional details, such as user posts, would require scraping.

Gap
Gap has a well structured website with a Sitemap to help web crawlers locate their
updated content. If we use the techniques from Chapter 1, Introduction to Web Scraping,
to investigate a website, we would find their robots.txt file at http://www.gap.
com/robots.txt, which contains a link to this Sitemap:

Sitemap: http://www.gap.com/products/sitemap_index.xml

Here are the contents of the linked Sitemap file:

<?xml version="1.0" encoding="UTF-8"?>
<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <sitemap>
 <loc>http://www.gap.com/products/sitemap_1.xml</loc>
 <lastmod>2015-03-03</lastmod>
 </sitemap>
 <sitemap>
 <loc>http://www.gap.com/products/sitemap_2.xml</loc>
 <lastmod>2015-03-03</lastmod>
 </sitemap>
</sitemapindex>

https://developers.facebook.com/docs/graph-api
http://www.gap.com/robots.txt
http://www.gap.com/robots.txt

Chapter 9

[141]

As shown here, this Sitemap link is just an index and contains links to other Sitemap
files. These other Sitemap files then contain links to thousands of product categories,
such as http://www.gap.com/products/blue-long-sleeve-shirts-for-men.jsp:

There is a lot of content to crawl here, so we will use the threaded crawler developed
in Chapter 4, Concurrent Downloading. You may recall that this crawler supports an
optional callback for defining how to parse the downloaded web page. Here is a
callback to crawl the Gap Sitemap link:

from lxml import etree
from threaded_crawler import threaded_crawler

def scrape_callback(url, html):
 if url.endswith('.xml'):
 # Parse the sitemap XML file
 tree = etree.fromstring(html)
 links = [e[0].text for e in tree]
 return links
 else:
 # Add scraping code here
 pass

This callback first checks the downloaded URL extension. If the extension is .xml,
the downloaded URL is for a Sitemap file, and the lxml etree module is used
to parse the XML and extract the links from it. Otherwise, this is a category URL,
although this example does not implement scraping the category. Now we can use
this callback with the threaded crawler to crawl gap.com:

>>> from threaded_crawler import threaded_crawler
>>> sitemap = 'http://www.gap.com/products/sitemap_index.xml'
>>> threaded_crawler(sitemap, scrape_callback=scrape_callback)
Downloading: http://www.gap.com/products/sitemap_1.xml

http://www.gap.com/products/blue-long-sleeve-shirts-for-men.jsp

Overview

[142]

Downloading: http://www.gap.com/products/sitemap_2.xml
Downloading: http://www.gap.com/products/
 cable-knit-beanie-P987537.jsp
Downloading: http://www.gap.com/products/
 2-in-1-stripe-tee-P987544.jsp
Downloading: http://www.gap.com/products/boyfriend-jeans-2.jsp
...

As expected the Sitemap files were first downloaded and then the clothing
categories.

BMW
The BMW website has a search tool to find local dealerships, available at
https://www.bmw.de/de/home.html?entryType=dlo:

https://www.bmw.de/de/home.html?entryType=dlo

Chapter 9

[143]

This tool takes a location, and then displays the points near it on a map, such as this
search for Berlin:

Using Firebug, we find that the search triggers this AJAX request:

https://c2b-services.bmw.com/c2b-localsearch/services/api/v3/
 clients/BMWDIGITAL_DLO/DE/
 pois?country=DE&category=BM&maxResults=99&language=en&
 lat=52.507537768880056&lng=13.425269635701511

Here, the maxResults parameter is set to 99. However, we can increase this to
download all locations in a single query, a technique covered in Chapter 1, Introduction
to Web Scraping. Here is the result when maxResults is increased to 1000:

>>> url = 'https://c2b-services.bmw.com/
 c2b-localsearch/services/api/v3/clients/BMWDIGITAL_DLO/DE/
 pois?country=DE&category=BM&maxResults=%d&language=en&
 lat=52.507537768880056&lng=13.425269635701511'
>>> jsonp = D(url % 1000)
>>> jsonp
'callback({"status":{
...
})'

Overview

[144]

This AJAX request provides the data in JSONP format, which stands for JSON with
padding. The padding is usually a function to call, with the pure JSON data as an
argument, in this case the callback function call. To parse this data with Python's
json module, we need to first strip this padding:

>>> import json
>>> pure_json = jsonp[jsonp.index('(') + 1 : jsonp.rindex(')')]
>>> dealers = json.loads(pure_json)
>>> dealers.keys()
[u'status', u'count', u'translation', u'data', u'metadata']
>>> dealers['count']
731

We now have all the German BMW dealers loaded in a JSON object—currently,
731 of them. Here is the data for the first dealer:

>>> dealers['data']['pois'][0]
{u'attributes': {u'businessTypeCodes': [u'NO', u'PR'],
 u'distributionBranches': [u'T', u'F', u'G'],
 u'distributionCode': u'NL',
 u'distributionPartnerId': u'00081',
 u'fax': u'+49 (30) 20099-2110',
 u'homepage': u'http://bmw-partner.bmw.de/
 niederlassung-berlin-weissensee',
 u'mail': u'nl.berlin@bmw.de',
 u'outletId': u'3',
 u'outletTypes': [u'FU'],
 u'phone': u'+49 (30) 20099-0',
 u'requestServices': [u'RFO', u'RID', u'TDA'],
 u'services': []},
 u'category': u'BMW',
 u'city': u'Berlin',
 u'country': u'Germany',
 u'countryCode': u'DE',
 u'dist': 6.65291036632401,
 u'key': u'00081_3',
 u'lat': 52.562568863415,
 u'lng': 13.463589476607,
 u'name': u'BMW AG Niederlassung Berlin Filiale Wei\xdfensee',
 u'postalCode': u'13088',
 u'street': u'Gehringstr. 20'}

Chapter 9

[145]

We can now save the data of interest. Here is a snippet to write the name and
latitude and longitude of these dealers to a spreadsheet:

with open('bmw.csv', 'w') as fp:
 writer = csv.writer(fp)
 writer.writerow(['Name', 'Latitude', 'Longitude'])
 for dealer in dealers['data']['pois']:
 name = dealer['name'].encode('utf-8')
 lat, lng = dealer['lat'], dealer['lng']
 writer.writerow([name, lat, lng])

After running this example, the contents of the bmw.csv spreadsheet will look similar
to this:

Name,Latitude,Longitude
BMW AG Niederlassung Berlin Filiale
Weißensee,52.562568863415,13.463589476607
Autohaus Graubaum GmbH,52.4528925,13.521265
Autohaus Reier GmbH & Co. KG,52.56473,13.32521
...

The full source code for scraping this data from BMW is available at
https://bitbucket.org/wswp/code/src/tip/chapter09/bmw.py.

Translating foreign content
You may have noticed that the first screenshot for BMW was in
German, but the second in English. This is because the text for the
second was translated using the Google Translate browser extension.
This is a useful technique when trying to understand how to navigate
a website in a foreign language. When the BMW website is translated,
the website still works as usual. Be aware, though, as Google Translate
will break some websites, for example, if the content of a select box is
translated and a form depends on the original value.
Google Translate is available as the Google Translate extension
for Chrome, the Google Translator addon for Firefox, and can be
installed as the Google Toolbar for Internet Explorer. Alternatively,
http://translate.google.com can be used for translations—
however, this often breaks functionality because Google is hosting the
content.

https://bitbucket.org/wswp/code/src/tip/chapter09/bmw.py
http://translate.google.com

Overview

[146]

Summary
This chapter analyzed a variety of prominent websites and demonstrated how the
techniques covered in this book can be applied to them. We applied CSS selectors
to scrape Google results, tested a browser renderer and an API to scrape Facebook
pages, used a Sitemap to crawl Gap, and took advantage of an AJAX call to scrape
all BMW dealers from a map.

You can now apply the techniques covered in this book to scrape websites that
contain data of interest to you. I hope you enjoy this power as much as I have!

[147]

Index
Symbols
2Captcha

URL 101
9kw

URL 102
using 102

A
absolute link 15
account

CAPTCHA image, loading 95, 96
registering 94, 95
URL, for registration 94

advanced features, link crawler
downloads, throttling 18, 19
maximum depth, setting 20
proxies, supporting 17
robots.txt file, parsing 16
spider traps, avoiding 19

Alexa list
parsing 50, 51
URL 49

annotation, Portia 124-126
Asynchronous JavaScript and XML

(AJAX) 64
automated scraping

with Scrapely 130

B
Beautiful Soup

about 27
common methods 27
overview 27
URL 27

Blink 69
BMW

about 142
reference link 145
URL 142
using 143-145

builtwith module 6

C
cache

compression, adding 47
implementing, in MongoDB 46, 47
testing, in MongoDB 48
URL, for testing 48

CAPTCHA API
about 103
example 107
image, loading 95, 96
implementation 104, 105
integrating, with registration form 108

CAPTCHA solving service
using 101

complex CAPTCHA
solving 100, 101

cookies
about 83
loading, from browser 83-86

crawling
about 7
crawl, interrupting 121, 122
crawl, resuming 121, 122
ID iteration crawler 11-13
link crawler 14-16
sitemap crawler 11
web page, downloading 8

[148]

cross-process crawler 55-58
CSS selectors

about 11, 28
references 29

D
Death by Captcha

URL 101
disk cache

about 37, 38
drawbacks 43
implementation 39, 40
MongoDB 44
NoSQL 44
testing 40, 41
URL, for source code 40

disk space
saving 41
stale data, expiring 41, 42

dynamic web page
example 62-64
JavaScript, executing 70, 71
reference link, for example 62
rendering, with PyQt 69
rendering, with PySide 69
rendering, with Selenium 76, 77
reverse engineering 64-67
website interaction, with WebKit 72

E
edge cases 67, 68

F
Facebook

about 137
API 139, 140
website 138, 139

Firebug Lite
URL 23

form encodings
about 81
reference link 81

G
Gap

URL 141
using 141

Gecko 69
genspider command 112
GET method 79
Google search engine

about 133
homepage 134
test search, performing 134-137

Google Translate
about 145
URL 145

Google Web Toolkit (GWT) 69
Graph API

about 139
example 139, 140
URL 140

I
ID iteration crawler 11-13
Internet Engineering Task Force

URL 9
items.py file 113

J
JavaScript

executing 70, 71
JSONP format 144

L
link crawler

about 14-16
advanced features, adding 16
cache support, adding 35-37
scrape callback, adding 32, 33
URL 32

Login form
about 80
automating 81-83
automating, with Mechanize module 90, 91

[149]

content, updating 87-90
cookies, loading from browser 83-86
examples, reference link 81
GET method 79
POST method 79
URL 80

Lxml
about 27, 28
CSS selectors 28
URL 27

M
Mechanize module

Login form, automating 90, 91
URL 90

model, Scrapy
defining 113
URL 113

MongoDB
about 44
cache, implementing 46, 47
cache, testing 48
compression, adding to cache 47
installing 44
overview 45
URL 44

N
no country redirect (ncr)

about 133
URL 133

Not Only SQL (NoSQL) 44

O
one million web pages

Alexa list, parsing 50, 51
downloading 49

Optical Character Recognition (OCR)
9kw, using 102
about 96
CAPTCHA API 103-107
CAPTCHA solving service, using 101
complex CAPTCHA, solving 100, 101
example 97-100
performance, improving 100

owner, website
searching 7

P
padding 144
Pillow library

URL 95, 96
using 95
versus Python Image Library (PIL) 96

pip command 111
Portia

about 111, 122
annotation 124-126
automated scraping, with Scrapely 130
installing 123
results, checking 129
spider, tuning 127, 128
URL 122
used, for visual scraping 122

POST method 79
Presto 69
process_link_crawler

URL 58
PyQt

about 69
URL 70

PySide
about 69
URL 70

Python Image Library (PIL) 96

Q
Qt 4.8

URL 71

R
regular expressions

about 24, 25
URL 24

relative link 15
reverse engineering

about 64
dynamic web page 64-67
edge cases 67, 68

[150]

robots.txt file
checking 3
URL 3

S
scrape callback

adding, to link crawler 32, 33
Scrapely

URL 130
used, for automated scraping 130

scraping approaches
advantages 32
Beautiful Soup 26, 27
comparing 29, 30
disadvantages 32
Lxml 27
regular expressions 24-26
results, testing 30, 31

Scrapy
about 111
installing 111, 112
URL 122

Scrapy project
model, defining 113
spider, creating 114, 115
starting 112, 113

Selenium
about 76, 77
URL 78

sequential crawler
about 51
URL 51

settings.py file 113
shell command

about 112
using 117, 118

sitemap crawler 11
Sitemap file

examining 4
reference link 4

spider
about 114
creating 114, 115
reference link 115
results, checking 118-120
scraping, with shell command 117, 118

settings, tuning 115
testing 116, 117
tuning 127, 128
URL, for settings 115

spider trap
about 19
avoiding 19

startproject command 112

T
technology

identifying 6
Tesseract OCR engine

about 96
URL 96

threaded crawler
about 52
cross-process crawler 55-58
implementation 53, 54
performance 58
process 52
URL 54

thresholding 97
Trident 69

V
virtualenv

about 123
URL 123

visual scraping
with Portia 122

W
WebKit

about 69
Render class, using 74-76
search results, scraping 73, 74
website interaction 72

web page
analyzing 22-24
downloading, for crawling 8
downloads, retrying 8, 9
user agent, setting 10

[151]

web scraping
legality 2
referenced, for legal cases 2
usage 1

website
background research 2
owner, searching 7
robots.txt file, checking 3
Sitemap file, examining 4
size, estimating 4, 5
technology, identifying 6

Whois
URL 7

Thank you for buying
Web Scraping with Python

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Instant PHP Web Scraping
ISBN: 978-1-78216-476-0 Paperback: 60 pages

Get up and running with the basic techniques of web
scraping using PHP

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Build a re-usable scraping class to expand on
for future projects.

3.	 Scrape, parse, and save data from any website
with ease.

4.	 Build a solid foundation for future web
scraping topics.

Instant Web Scraping
with Java
ISBN: 978-1-84969-688-3 Paperback: 72 pages

Build simple scrapers or vast armies of Java-based
bots to untangle and capture the Web

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Get your Java environment up and running.

3.	 Gather clean, formatted web data into your
own database.

4.	 Learn how to work around crawler-resistant
websites and legally subvert security measures.

Please check www.PacktPub.com for information on our titles

Learning Data Mining with R
ISBN: 978-1-78398-210-3 Paperback: 314 pages

Develop key skills and techniques with R to create
and customize data mining algorithms

1.	 Develop a sound strategy for solving predictive
modeling problems using the most popular
data mining algorithms.

2.	 Gain understanding of the major methods of
predictive modeling.

3.	 Packed with practical advice and tips to help
you get to grips with data mining.

Expert Python Programming
ISBN: 978-1-84719-494-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1.	 Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions.

2.	 Apply object-oriented principles, design
patterns, and advanced syntax tricks.

3.	 Manage your code with distributed
version control.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Web Scraping
	When is web scraping useful?
	Is web scraping legal?
	Background research
	Checking robots.txt
	Examining the Sitemap
	Estimating the size of a website
	Identifying the technology used by a website
	Finding the owner of a website

	Crawling your first website
	Downloading a web page
	Retrying downloads
	Setting a user agent

	Sitemap crawler
	ID iteration crawler
	Link crawler
	Advanced features

	Summary

	Chapter 2: Scraping the Data
	Analyzing a web page
	Three approaches to scrape a web page
	Regular expressions
	Beautiful Soup
	Lxml
	CSS selectors

	Comparing performance
	Scraping results

	Overview
	Adding a scrape callback to the link crawler

	Summary

	Chapter 3: Caching Downloads
	Adding cache support to the link crawler
	Disk cache
	Implementation
	Testing the cache
	Saving disk space
	Expiring stale data
	Drawbacks

	Database cache
	What is NoSQL?
	Installing MongoDB
	Overview of MongoDB
	MongoDB cache implementation
	Compression
	Testing the cache

	Summary

	Chapter 4: Concurrent Downloading
	One million web pages
	Parsing the Alexa list

	Sequential crawler
	Threaded crawler
	How threads and processes work
	Implementation
	Cross-process crawler

	Performance
	Summary

	Chapter 5: Dynamic Content
	An example dynamic web page
	Reverse engineering a dynamic
web page
	Edge cases

	Rendering a dynamic web page
	PyQt or PySide
	Executing JavaScript
	Website interaction with WebKit
	Waiting for results
	The Render class

	Selenium

	Summary

	Chapter 6: Interacting with Forms
	The Login form
	Loading cookies from the web browser

	Extending the login script to update content
	Automating forms with the Mechanize module
	Summary

	Chapter 7: Solving CAPTCHA
	Registering an account
	Loading the CAPTCHA image

	Optical Character Recognition
	Further improvements

	Solving complex CAPTCHAs
	Using a CAPTCHA solving service
	Getting started with 9kw
	9kw CAPTCHA API

	Integrating with registration

	Summary

	Chapter 8: Scrapy
	Installation
	Starting a project
	Defining a model
	Creating a spider
	Tuning settings
	Testing the spider

	Scraping with the shell command
	Checking results
	Interrupting and resuming a crawl

	Visual scraping with Portia
	Installation
	Annotation
	Tuning a spider
	Checking results

	Automated scraping with Scrapely
	Summary

	Chapter 9: Overview
	Google search engine
	Facebook
	The website
	The API

	Gap
	BMW
	Summary

	Index

