
Web Services Foundations (2): SOAP, WSDL and UDDI

Helen Paik

School of Computer Science and Engineering
University of New South Wales

References used for the Lecture:

Webber Book Chapter 7

Blue Book Chapters 5-7

Mike Book Chapter 6

http://www.soaspecs.com/ws.php

Acknowledgement: Some other materials is adapted from COMP9322 lectures in previous sessions, which are prepared by
Dr. Helen H-Y Paik, Dr. Sherif Sakr.

Week 3

H. Paik (CSE, UNSW) ws-foundation Week 3 1 / 52

http://www.soaspecs.com/ws.php

Part I

More on SOAP/WSDL

H. Paik (CSE, UNSW) ws-foundation Week 3 2 / 52

Designing WS Interface with SOAP/WSDL
Given an operation:

Operation name: concat

Parameters: (st1: string, st2: string)

Return: string

More precisely as WS operation ...

Local name: concat

Namespace: http://sltf.unsw.edu.au/eg

Input message:

Part 1:

Name: st1

Type: string in http://www.w3.org/2001/XMLSchema

Part 2:

Name: st2

Type: string in http://www.w3.org/2001/XMLSchema

Output message:

Part 1:

Name: return

Type: string in http://www.w3.org/2001/XMLSchema

H. Paik (CSE, UNSW) ws-foundation Week 3 3 / 52

Designing WS Interface with SOAP/WSDL - RPC style

Local name: concat
Namespace: http://sltf.unsw.edu.au/eg
Input message:
Part 1:
 Name: st1
 Type: string in http://www.w3.org/2001/XMLSchema
Part 2:
 Name: st2
 Type: string in http://www.w3.org/2001/XMLSchema
Output message:
Part 1:
 Name: return
 Type: string in http://www.w3.org/2001/XMLSchema

<ese:concat xmlns:ese="http://sltf.unsw.edu.au/eg"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance">
 <st1 xsi:type="xsd:string">service</st1>
 <st2 xsi:type="xsd:string">foundry</st2>
</ese:concat>

<ese:concatResponse xmlns:ese ="http://sltf.unsw.edu.au/eg"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance">
 <return xsi:type="xsd:string">service foundry</return>
</ese:concatResponse>

H. Paik (CSE, UNSW) ws-foundation Week 3 4 / 52

Designing WS Interface w/ SOAP/WSDL: Document-style

(note - We first should define the message types)

Local name: concat
Namespace: http://sltf.unsw.edu.au/eg
Input message:
Part 1:
 Name: concatRequest
 Element: concatRequest in http://sltf.unsw.edu.au/eg
Output message:
...

<xsd:schema targetNamespace="http://sltf.unsw.edu.au/eg"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="concatRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="st1" type="xsd:string"/>
 <xsd:element name="st2" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Type of concatRequest defined as a schema

H. Paik (CSE, UNSW) ws-foundation Week 3 5 / 52

Designing WS Interface w/ SOAP/WSDL: Document-style

Local name: concat
Namespace: http://sltf.unsw.edu.au/eg
Input message:
Part 1:
 Name: concatRequest
 Element: concatRequest in http://sltf.unsw.edu.au/eg
Output message:
Part 1:
 Name: concatResponse
 Element: concatResponse in http://sltf.unsw.edu.au/eg

<xsd:schema targetNamespace="http://sltf.unsw.edu.au/eg"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="concatRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="st1" type="xsd:string"/>
 <xsd:element name="st2" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="concatResponse" type="xsd:string"/>
</xsd:schema>

Type of concatResponse also defined as a schema

H. Paik (CSE, UNSW) ws-foundation Week 3 6 / 52

Designing WS Interface w/ SOAP/WSDL: Document-style

<xsd:schema targetNamespace="http://sltf.unsw.edu.au/eg"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="concatRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="st1" type="xsd:string"/>
 <xsd:element name="st2" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="concatResponse" type="xsd:string"/>
</xsd:schema>

<ese:concatRequest xmlns:ese="http://sltf.unsw.edu.au/eg">
 <st1>service</st1>
 <st2>foundry</st2>
</ese:concatRequest>

<ese:concatResponse xmlns:ese ="http://sltf.unsw.edu.au/eg">
 service foundry
</ese:concatResponse>

These SOAP messages can be validated against the schema

H. Paik (CSE, UNSW) ws-foundation Week 3 7 / 52

Fault Handling in SOAP

A SOAP Fault message is reserved for providing an extensible mechanism
for transporting structured and unstructured information about problems
that have arisen during the processing of SOAP messages.

Because clients can be written on a variety of platforms using different
languages, there must exist a standard, platform-independent mechanism
for communicating the error. SOAP provides a platform-independent way
of describing the error within the SOAP message using a SOAP fault.

Fault element is located inside body of the message

Two mandatory elements: Code and Reason

Code - e.g., VersionMismatch, MustUnderStand,

DataEncodingUnknown, Sender

Reason - Human readable description of the fault

and other elements (see documents: JAX-WS SOAP Faults)

H. Paik (CSE, UNSW) ws-foundation Week 3 8 / 52

SOAP faults appear in the SOAP body section
e.g., SOAP v1.2

<?xml version=’1.0’ ?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope" ...

<env:Body>

<env:Fault>

<env:Code>

<env:Value>env:Sender</env:Value>

<env:Subcode>

<env:Value>rpc:BadArguments</env:Value>

</env:Subcode>

</env:Code>

<env:Reason>

<env:Text xml:lang="en-US">Processing error</env:Text>

</env:Reason>

<env:Detail>

<e:myFaultDetails xmlns:e="http://travelcompany.example.org/faults">

<e:message>Name does not match card number</e:message>

<e:errorcode>098</e:errorcode>

</e:myFaultDetails>

</env:Detail>

</env:Fault>

</env:Body>

</env:Envelope>
H. Paik (CSE, UNSW) ws-foundation Week 3 9 / 52

SOAP faults appear in the SOAP body section

e.g., SOAP v1.1 (simpler structure)

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap=’http://schemas.xmlsoap.org/soap/envelope’>

<soap:Body>

<soap:Fault>

<faultcode>soap:VersionMismatch</faultcode>

<faultstring, xml:lang=’en">

Message was not SOAP 1.1 compliant

</faultstring>

<faultactor>

http://sample.org.ocm/jws/authnticator

</faultactor>

</soap:Fault>

</soap:Body>

</soap:Envelope>

H. Paik (CSE, UNSW) ws-foundation Week 3 10 / 52

<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://examples/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://schemas.xmlsoap…
 targetNamespace="http://examples/" name="HelloWorldService">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://examples/" schemaLocation="http://localhost:…/>
 </xsd:schema>
 </types>
 <message name="sayHelloWorld">
 <part name="parameters" element="tns:sayHelloWorld" />
 </message>
 <message name="sayHelloWorldResponse">
 <part name="parameters" element="tns:sayHelloWorldResponse" />
 </message>
 <message name="MissingName">
 <part name="fault" element="tns:MissingName" />
 </message>
 <portType name="HelloWorld">
 <operation name="sayHelloWorld">
 <input message="tns:sayHelloWorld" />
 <output message="tns:sayHelloWorldResponse" />
 <fault message="tns:MissingName" name="MissingName" />
 </operation>
 </portType>
 <binding name="HelloWorldPortBinding" type="tns:HelloWorld">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document" />
 <operation name="sayHelloWorld">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 <fault name="MissingName">
 <soap:fault name="MissingName" use="literal" />
 </fault>
 </operation>
 </binding>
 <service name="HelloWorldService">
 <port name="HelloWorldPort" binding="tns:HelloWorldPortBinding">
 <soap:address
 location="http://localhost:7001/HelloWorld/HelloWorldService" />
 </port>
 </service>

Modelled SOAP faults - in WSDL definition (example from Oracle Docs)

H. Paik (CSE, UNSW) ws-foundation Week 3 11 / 52

Modelled SOAP faults - in service-side code

Web services throws the custom Exception- MissingName

package examples;
import javax.jws.WebService;

@WebService(name="HelloWorld", serviceName="HelloWorldService")
public class HelloWorld {
 public String sayHelloWorld(String message) throws MissingName {
 System.out.println("Say Hello World: " + message);
 if (message == null || message.isEmpty()) {
 throw new MissingName();
 }
 return "Here is the message: '" + message + "'";
 }
}

Custom Exception (MissingName.java)

package examples;
import java.lang.Exception;

public class MissingName extends Exception {
 public MissingName() {
 super("Your name is required.");
 }
}

H. Paik (CSE, UNSW) ws-foundation Week 3 12 / 52

Modelled SOAP faults - in SOAP

The following shows how the SOAP fault is communicated in the resulting
SOAP message when the MissingName Java exception is thrown.

<?xml version = '1.0' encoding = 'UTF-8'?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">
 <faultcode>S:Server</faultcode>
 <faultstring>Your name is required.</faultstring>
 <detail>
 <ns2:MissingName xmlns:ns2="http://examples/">
 <message>Your name is required.</message>
 </ns2:MissingName>
 </detail>
 </S:Fault>
 </S:Body>
</S:Envelope>

H. Paik (CSE, UNSW) ws-foundation Week 3 13 / 52

SOAP Processing Model and SOAP Headers

the lifecycle of a single SOAP message (from the initial sender to the
final receiver)

The messages pass through a number of intermediate nodes between
the sender and the receiver.

Initial Sender: The message originator
Ultimate Receiver: The intended recipient
Intermediaries: Processing blocks that operate on the soap message
before it reaches the ultimate receiver (a SOAP intermediary is a node
that acts as both a sender and a receiver at the same time).

Sender Intermediate
next

Intermediate
next

UltimateReceiver...

Message Flow

H. Paik (CSE, UNSW) ws-foundation Week 3 14 / 52

SOAP processing model

In a SOAP server (handlers == nodes):

SOAP Server

Web Service Application Logic

Dispatch

body body

header

header

header

header

Handler

Handler

Handler

Handler

header(s)
body

header(s)
body

SO
AP

 R
eq

ue
st

SO
AP R

esponse
Consumes ... Produces ...

Network

Request: process the header blocks, Response: generates the header blocks
H. Paik (CSE, UNSW) ws-foundation Week 3 15 / 52

SOAP Processing Model

The intermediaries work by intercepting messages, performing their
function, and forwarding the (altered) message to the ultimate receiver.

Common examples of intermediaries would be:

logging

encryption/decryption intermediary

caching ...

Above all, using this model, it is possible to build ’extensions’ to basic
SOAP (e.g., supporting transaction, different security standards)

A SOAP engine ’implements’ a model of their own based on these basics
(cf. Axis2 or CXF architecture documentations).

H. Paik (CSE, UNSW) ws-foundation Week 3 16 / 52

SOAP Headers

header blocks should contain information that influences payload processing (e.g.,
WS-security standard: a credentials element that helps control access to an
operation - docs.oracle.com)

H. Paik (CSE, UNSW) ws-foundation Week 3 17 / 52

Summary

Binding in WSDL defines (i) message encoding format (ii) transport
protocol details. (...) and (...) are two options available in
<soap:binding style=’...’>.

A SOAP server employs a pipeline based SOAP message processing
model which includes: a sender, ultimate receiver and a series of (...).

Each (...) is responsible for processing a (...)

Can you roughly draw a diagram to illustrate how in-bound and
out-bound SOAP messages are handled by a SOAP server?

Why, would you say, is this type of processing model important in
using SOAP for WS communication?

SOAP message body can contain a normal response or a fault
through (...)

Where are the details of faults (if any) by a service declared ?

H. Paik (CSE, UNSW) ws-foundation Week 3 18 / 52

Part II

UDDI - Advertising/Discovering Services

H. Paik (CSE, UNSW) ws-foundation Week 3 19 / 52

Service Registries

To discover Web services, a service registry is needed. This requires
describing and registering the Web service.

Publication of a service requires proper description of a Web service
in terms of business, service, and technical information.

Registration deals with persistently storing the Web service
descriptions in the Web services registry.

Two types of registries can be used:
The document-based registry: enables its clients to publish
information, by storing XML-based service documents such as business
profiles or technical specifications (including WSDL descriptions of the
service).
The meta-data-based service registry: captures the essence of the
submitted document.

H. Paik (CSE, UNSW) ws-foundation Week 3 20 / 52

Service Discovery

Service discovery is the process of locating Web service providers,
and retrieving Web services descriptions that have been previously
published.

Interrogating services involve querying the service registry for Web
services matching the needs of a service requestor.

A query consists of search criteria such as: the type of the desired
service, preferred price and maximum number of returned results, and
is executed against service information published by service provider.

After the discovery process is complete, the service developer or client
application should know the exact location of a Web service (URI), its
capabilities, and how to interface with it.

H. Paik (CSE, UNSW) ws-foundation Week 3 21 / 52

Types of service discovery

Static:

The service implementation details are bound at design time and a service
retrieval is performed on a service registry.

The results of the retrieval operation are examined usually by a human
designer and the service description returned by the retrieval operation is
incorporated into the application logic.

Dynamic:

The service implementation details are left unbound at design time so that
they can be determined at run-time.

The Web service requestor has to specify preferences to enable the
application to infer/reason which Web service(s) to choose

Based on application logic quality of service considerations such as best
price, performance or security certificates. The application chooses the most
appropriate service, binds to it, and invokes it.

H. Paik (CSE, UNSW) ws-foundation Week 3 22 / 52

UDDI

Universal Description Discovery and Integration

Service

Service
Registry

Service
Requestor

Service
Provider

Service
Description

Service
Description

In UDDI

Using
SOAP

In Your
Own

Language

In WSDL

Find

Bind

Publish

H. Paik (CSE, UNSW) ws-foundation Week 3 23 / 52

UDDI and the big idea

UDDI Business Registry

1. SW companies, standard bodies,
and programmers populate the
registry with description of
various types of services

2. Businesses populate
the registry with
descriptions of the
services
they support

3. UBR assigns a unique
identifier to each service and
business registration

4. Marketplaces,
search engines and

business apps query the
registry to

discover services at
other companies

5. Business uses this data
to facilitate easier

integration with each
other over the web

Business
Registrations

Service Type
Registrations

H. Paik (CSE, UNSW) ws-foundation Week 3 24 / 52

UDDI and the big idea

How to find the service you want among a potentially large collection of
services and servers. The client does not necessarily need to know a priori
where the server resides or which server provides the service.

Service
Registry

Service
Requestor

Service
Provider

(1) Registration request
for service description

(2) Query for all
matching services in

the registry

(3) Discovery
results

(4) Request
for selected

service information

(5) Service
information of

selected service

(6) Invocation request
including inputs

(7) Invocation resutls

SEARCH

INVOKE

PUBLISH

H. Paik (CSE, UNSW) ws-foundation Week 3 25 / 52

UDDI

UDDI is a registry (not repository) of Web services

IBM and Microsoft *used* to host public UDDI registry

Before UDDI, there was no standard way of finding documentation or
the location of a particular remote object. Ad-hoc documentation
may look like:

Contact person: John Smith

COM+ Object: GetWeatherInfo

COMP+ Server: http://bindingpoint.com

Relative URL: /metero/weather

Proxy Location: /Instal/GetWeatherInfo.dll

Description: Returns today’s weather. It requires a zip code ...

UDDI is not part of W3C standard (unlike SOAP, WSDL)

The main standard body for it is OASIS http://www.oasis-open.org,
http://uddi.xml.org

H. Paik (CSE, UNSW) ws-foundation Week 3 26 / 52

http://www.oasis-open.org
http://uddi.xml.org

UDDI

UDDI shares similarities with telephone directories.

White Pages: Contact information about the service provider
company. This information includes the business or entity name,
address, contact information, other short descriptive information
about the service provider, and unique identifier with which to
facilitate locating this business

Yellow Pages: Categories under which Web services implementing
functionalities within those categories can be found

Green Pages: Technical information about the capabilities and
behavioral grouping of Web services

H. Paik (CSE, UNSW) ws-foundation Week 3 27 / 52

UDDI - overview of its data structure

UDDI Registry Entry

Business Entity
 name
 contacts
 description
 identifiers
 categories

Business Entity
 name
 contacts
 description
 identifiers
 categories

Business Service
 service key
 business key
 name
 description
 categories

Business Service
 service key
 business key
 name
 description
 categories

Binding Template
 binding key
 description
 access point

Binding Template
 binding key
 description
 access point

Binding Template
 binding key
 description
 access point

tModel
 name
 description
 overview document
 URL to specifications

WSDL document
(located at the
service provider's
site)

white page information

yellow page information

green page information

H. Paik (CSE, UNSW) ws-foundation Week 3 28 / 52

WSDL and UDDI Mapping (e.g., jUDDI Apache Project)

<import>

<service>

<port>

<import>

<binding>

<types>
<messages>
<portType>

businessEntity

businessService

bindingTemplate
 accessPoint=[access point]
 portType=[portType tModel]
 binding=[binding tModel]
 local name=[port local name]

tModel name=[binding local name]
 overviewURL=[wsdl location]

categoryBag
 type=binding
 namespace=[namespace]
 portType=[portType tModel]

tModel name=[binding local name]
 overviewURL=[wsdl location]

categoryBag
 type=portType
 namespace=[namespace]

<port>

WSDL

Service Implementation

Service Binding

Service Interface

UDDI

H. Paik (CSE, UNSW) ws-foundation Week 3 29 / 52

UDDI

UDDI registry can be browsed by human

UDDI registry can be programmatically accessed

Inquiry API: enable lookup of registry information

Publishers API: allow applications to register services

an XML schema for SOAP message is defined

SOAP is used as the communication protocol

An example implementation (jUDDI by Apache)
http://juddi.apache.org
http://juddi.apache.org/docs/3.2/juddi-client-guide/html/

H. Paik (CSE, UNSW) ws-foundation Week 3 30 / 52

UDDI’s provided APIs

UDDI provides a SOAP-based API to the business registry.

UDDI Inquiry APIs: includes operations to find registry entries.

Browse, Drilldown, Invocation Patterns

UDDI Publish APIs: operations to add, modify and delete entries in
the registry.

UDDI Security API: for access control to the UDDI registry.

UDDI Subscription API: for clients to subscribe to changes of
information in the UDDI registry.

UDDI Replication API: to perform replication of information across
nodes in a UDDI registry.

H. Paik (CSE, UNSW) ws-foundation Week 3 31 / 52

UDDI’s provided APIs

White pages info.White pages info.

Yellow pages info.Yellow pages info.

Green pages info.Green pages info.

Technical info.Technical info.

Pointer to service descriptionPointer to service description

UDDI entryUDDI entry

ServiceService

UDDI
service
registry

ServiceService
descriptiondescription

Service
requestor

Service
provider

WSDLWSDL
serviceservice
descriptiondescription

Inquiry URL Publishing URL

SOAP-HTTP SOAP-HTTPS

H. Paik (CSE, UNSW) ws-foundation Week 3 32 / 52

Interaction with and between UDDIs

Service ProviderService Consumer

Web Service Interface

Web Service Description
Web Service Description

Web Service Interface

Web Service Description
Web Service Description

Publisher APIInquiry API

Subscription,
Replication,
Transfer API
(HTTPS/SOAP)

HTTP/SOAP SOAP/HTTPS

H. Paik (CSE, UNSW) ws-foundation Week 3 33 / 52

How UDDI could play out: an opinion (Webber Book pp.136-141)

Question: Is it reasonable to assume that “people” will search a service
registry using APIs to select a service during design time?

Most likely no ... that’s just not how “people” do business

You will browse, ask around (word of mouth), google, etc.

Oftentimes, the selection criteria can be tricky (e.g., existing business
relationships, cutting deals, etc.)

If UDDI is not going to be useful in selecting services ... then what?

Note: Most of the UDDI registries in place today are private registries
operating inside companies or maintained by a set of companies in a
private manner

H. Paik (CSE, UNSW) ws-foundation Week 3 34 / 52

How UDDI could play out: an opinion (Webber Book pp.136-141)

... UDDI might be useful at runtime ...

Case 1: Service Life-cycle Management

Consider the issues you have to deal with after Web services are deployed
and clients are using them

Overtime, some changes might have to be made (not only the code,
but also the physical environment that the service is deployed in)

e.g., migration to a new server, multiple mirror servers, routine
maintenance on the server ...

Applications that rely on Web services need to stay updated with the
latest access end-point information

How do we propagate the changes to the access point?

UDDI can play the runtime broker/middleman in handling and propagating
these changes ...

H. Paik (CSE, UNSW) ws-foundation Week 3 35 / 52

How UDDI could play out: an opinion (Webber Book pp.136-141)

Scenario: Service Life-cycle management with UDDI

A Web service is selected for use (searched in or outside UDDI)

Save (in your local database) the bindingTemplate information of the
service from UDDI

Develop an application using the service

If the service call fails (or times out):

query UDDI for the lastest information

compare the info. with the saved info.

if different, try calling the service again with the new info.

update your local bindingTemplate if needed

H. Paik (CSE, UNSW) ws-foundation Week 3 36 / 52

How UDDI could play out: an opinion (Webber Book pp.136-141)

... UDDI might be useful at runtime ...

Case 2: Dynamic access point management

Not only when a service call is failed, you may want to dynamically
manage and select the most appropriate access point for a service.

A service may be available from multiple geographical locations

The client application may have been developed in one country and
later used in another county

The concept is similar to downloading files from different mirror sites.
The access point can be hardwired in the client application, but by
dynamically selecting the most appropriate access point (based on certain
criteria) may lead to increased performanace.

H. Paik (CSE, UNSW) ws-foundation Week 3 37 / 52

How UDDI could play out: an opinion (Webber Book pp.136-141)

UDDI
Registry

Service
Aggregator

Access

Web Portal
Access

Direct
Programmatic

Acess

Direct
Programmatic

Acess

Design-time
Access to UDDI

Run-time
Access to UDDI

Accessing UDDI:

Desgin time access – via manual search or direct API acccess, to search
and discover services during the application design phase

Runtime access (UDDI playing a brokering/middleman role) – via direct
API access, it offers possibilities to build more robust and flexible
applications

H. Paik (CSE, UNSW) ws-foundation Week 3 38 / 52

Static Discovery of Web Services ...

There are some public Web service registries operating (not following
UDDI):

XMETHODS (seems to be offline nowadays):
http://www.xmethods.net/ve2/Directory.po

WebserviceX.NET:
http://www.webservicex.net/WS/wscatlist.aspx

WebServiceList:
http://www.webservicelist.com (with user rating info)

H. Paik (CSE, UNSW) ws-foundation Week 3 39 / 52

http://www.xmethods.net/ve2/Directory.po
http://www.webservicex.net/WS/wscatlist.aspx
http://www.webservicelist.com

Summary

Can you describe a service registration process and a service discovery
process?

What is the purpose of a WSDL to UDDI mapping model?

Can you list some of the operations in UDDI API?

Alternative/suggested use of UDDI ...?

H. Paik (CSE, UNSW) ws-foundation Week 3 40 / 52

Part III

WS-*: Web Service Extensions

H. Paik (CSE, UNSW) ws-foundation Week 3 41 / 52

Web Service Standards: WS-* extensions

The term “WS-*” refers to the second generation of Web services
standards/specifications.
On top of the basic standards (WSDL, SOAP and UDDI), these
extensions focus on providing supports for various issues in enterprise
computing environment

Transports

Messaging

Description and Discovery

Transactions Reliability Security

Business Processes Management

First Generation WS

Second Generation WS

http://www.ibm.com/developerworks/webservices/standards/

H. Paik (CSE, UNSW) ws-foundation Week 3 42 / 52

Web Service Standards: WS-* extensions

e.g., http://www.ibm.com/developerworks/webservices/standards/
Standards Maze

WS-Addressing

WS-Attachments

WS-Transfer

WS-ReliableMessaging

WS-Reliability

WS-Acknowledegment

ebXMLBPML
SPML

WS-Provisioning

WSDL

Cool! But,
What

Standards I
use?

We should integrate our systems
using Web Service Technologies …

Manager

UDDI

WSRP

WS-InspectionWS-Discovery
ASAP

SOAP

SOAP MTOM

WS-Routing

WS-Referral

XrML

WSXL

WS-Coordination

WS-Enumeration

WS-NotificationWS-Eventing

WS-Topics

WSCI

WSCDLBPEL4WS

WS-MetadataExchange

WS-PolicyFramework

WS-PolicyAssertions
WS-PolicyAttachment

XACMLWS-SecurityPolicy

WSCL

WS-Manageability

WS-ResourceWSDM

WS-BusinessActivity
WS-Transaction

WS-AtomicTransactions

BTP

use?

WS-Federation

WS-Security

WS-Trust

WS-SecureConversation

SAML

XKMS
WS-NonRepudiation

WS-MessageDataWS-CallBack

Too many, Overlap, Conflicts, Convergence (WSDL, SOAP)
(See ``Interoperability Specifications’’, May 06, IEEE Computer, by. Motahari,

Benatallah, Casati and Toumani)

OWL Fat OWL Light

H. Paik (CSE, UNSW) ws-foundation Week 3 43 / 52

WS-* extensions and their relationships

WSDL

WS-
Reliable

Messaging

WS-
Coordination

BPEL4WS

UDDI

WS-
Transaction

WS-
Security

WS-Policy

SOAP

Web
Services

enables
discovery of

describes
the service for

describes

uses

governs

manages
context for

provides
protocol for

provides
end-to-end
security for

provides
guaranteed
delivery for

uses

uses

binds to

enables
communication

between

uses

orchestrates
describes

the services for

improves
reliability ofenables

distributed
transactions for

provides
protocol for

manages
context across

uses

uses

is accessed using

http://www.soaspecs.com/ws.php

H. Paik (CSE, UNSW) ws-foundation Week 3 44 / 52

WS-* extensions: Reliable Messaging (Blue Book Chap. 7)

After a Web service transmit a message, it has no immediate way of
knowing whether:

the message successfully arrived at its destination

the message failed to arrive and therefore requires a retransmission

a series of messages arrived in the sequence they were intended to

Web service reliable messaging is a framework that enables an application
running on one application server to reliably invoke a Web service running
on another application server, assuming that both servers implement the
WS-ReliableMessaging specification.

Reliable is defined as the ability to guarantee message delivery between the
two endpoints (Web service and client) in the presence of software
component, system, or network failures.

H. Paik (CSE, UNSW) ws-foundation Week 3 45 / 52

Reliable Messaging (Blue Book Chap. 7)

Application
Source

Application
Destination

RM
Source

RM
Destination

SEND RECEIVE

TRANSMIT

WS-RM separates/abstracts ‘initiating messaging’ from ‘performing
actual transmission’

e.g., application source is the service that sends the message to the
RM source (the physical processor/node that performs the actual wire
transmission.

H. Paik (CSE, UNSW) ws-foundation Week 3 46 / 52

Reliable Messaging (Blue Book Chap. 7)

Sequences:

A sequence establishes the order in which messages should be
delivered

Each message is labeled with a message number, the last one being a
last message identifier.

Acknowledgements:

A core part of reliable messaging is a notification system used to
communicate conditions from the RM dest. to the RM source.

The acknowledgement message indicates to the RM source which
messages were received.

All this information is “injected” into SOAP headers within the messages
themselves.

H. Paik (CSE, UNSW) ws-foundation Week 3 47 / 52

Reliable Messaging (Blue Book Chap. 7)

SEQUENCE

Application
Source

Application
Destination

RM
Source

RM
Destination

SEQUENCE
ACK.

A sequence acknowledgement sent by the RM dest. after the successful
delivery of a sequence of messages.

H. Paik (CSE, UNSW) ws-foundation Week 3 48 / 52

Reliable Messaging (Blue Book Chap. 7)

Incomplete Sequence

Application
Source

Application
Destination

RM
Source

RM
Destination

failed delivery

Successful delivery

negative acknowledgement delivery

A negative ack. sent by the RM dest. to the RM source, indicating failed
delivery prior to the completion of the sequence.

H. Paik (CSE, UNSW) ws-foundation Week 3 49 / 52

Reliable Messaging (Blue Book Chap. 7)

Delivery assurances:

the nature of a sequence is determined by a set of reliability rules
known as Delivery Assurances.
They are predefined message delivery patterns that establish a set of
reliability policies

H. Paik (CSE, UNSW) ws-foundation Week 3 50 / 52

Reliable Messaging (Blue Book Chap. 17)
An example:
<Envelope

xmlns="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2004/03/rm">

<Header>

<wsrm:Sequence>

<wsu:Identifier>

http://www.xmlrc.com/railco/seq22231

</wsu:Identifier>

<wsrm:MessageNumber>

15

</wsrm:MessageNumber>

<wsrm:LastMessage/>

</wsrm:Sequence>

</Header>

<Body>

...

</Body>

</Envelope>

H. Paik (CSE, UNSW) ws-foundation Week 3 51 / 52

Reliable Messaging (Blue Book Chap. 17)
An example:
<Envelope

xmlns="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2004/03/rm">

<Header>

<wsrm:SequenceAcknowledgement>

<wsu:Identifier>

http://www.xmlrc.com/railco/seq22231

</wsu:Identifier>

<wsrm:AcknowledgementRange Upper="4" Lower="1"/>

<wsrm:AcknowledgementRange Upper="8" Lower="6"/>

<wsrm:AcknowledgementRange Upper="12" Lower="11"/>

<wsrm:AcknowledgementRange Upper="15" Lower="14"/>

</wsrm:SequenceAcknowledgement>

</Header>

<Body>

...

</Body>

</Envelope>

H. Paik (CSE, UNSW) ws-foundation Week 3 52 / 52

	More on SOAP/WSDL
	UDDI - Advertising/Discovering Services
	WS-*: Web Service Extensions

